A Dyadic Transformation Based Methodology To Achieve Coverage Driven Verification Goal

Swapnajit Mitra Feb 2017

Broadcom Proprietary and Confidential. © 2017 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.

Meeting Coverage Goal is EVERYTHING

- Goals for Constrained Random Verification Methodology are coverage driven.
- Unless coverage goals are met, verification is incomplete.
 - Both functional cover group coverage goals and
 - Cover property coverage goals must be met.
- Meeting cover property coverage goal is challenging.
 - Majority of the cover properties are hit without much effort in a constrained random regression.
 - However, hitting the rest is always a challenge.
- If a cover property is not hit, the usual solution is to iterate over the following steps:
 - Designer analyzes/guesses why a cover property is not hit
 - Verifier tries to reproduce it
- This paper is proposing a methodology to eliminate the need for guesses from the designer and automate the process of analysis.

What Would It Take to Hit This Cover Property?

Two Simple Examples

- Conjunctive Normal Form.
 Disjunctive Normal Form.
- As long as we can convert a sequence expression to CNF or DNF, we know precisely the condition to get the cover property get hit.

Things Quickly Get Messy for Temporal Expressions

• How do we analyze easily why this cover property is not hit?

```
sequence seq;
    !req ##1 req[*1:$] ##1 !req |-> !ack[*1:$] ##1 ack[*1:$]
##1 !ack ;
endsequence
cp: cover property @(posedge clk) seq;
```

- It would be very convenient, if we can convert the above sequence expression to a CNF.
- This paper proposes a methodology to do this.

The Math

Definitions

- A Nominally Expressed Property (NEP) in this paper is defined as a concurrent property P(e({v}), T) whose property expression is a generalized heterogeneous combination of conjunctive normal and disjunctive normal forms involving temporal or immediate events e on the set of variables {v} with T as the time horizon for the life cycle of a single spawn of the property.
- Temporal Transformation Function (TTF) Φ^{m,n}(c):c ← (c, m, n) is a function that returns true if any of the set of values a literal c had from m to n clock cycles earlier was true.
 - $-\Phi^{n,n}(c):c \leftarrow (c, n, n)$ represents if a literal c was true exactly n clock cycles earlier.
 - $\Phi^n(c)$ is used to represent $\Phi_{n,n(c)}$.
- \mathbb{T} as a dyadic transformation that maps an NEP compliant expression to a CNF involving a new set of events e'involving a transformed set of variables v'in the same time horizon T.

$$\mathfrak{T}(e(\{v\}), T) \rightarrow \wedge e'(\{v'\}, T)$$

The Math (Contd.)

- The two parts that the dyadic transformation ${f T}$ consists of are
 - Part A) the transformation on the variables that do not need any temporal transformation and
 - Part B) on the ones that do.
- Since any normalized boolean expression can be represented in a CNF without any change in the set of variables, v' can be expressed as a union of a proper subset of v and a converted form of rest of the variables of v through function Φ for the corresponding values of n (or m, n) associated with each variable.

 $v' = s1 U s2 | s1 \subset \{v\}, s2 = \{ \Phi^{m,n}(\{v\}-s1) \}$

• Combining:

$$\textcircled{T} (e(\{v\}), T) \to \wedge e'(\{s1 \ U \ s2 \ | \ s1 \subset \{v\}, \ s2 = \{ \ \Phi^{m,n}(\{v\}-s1)\}\}, \ T)$$

Flow Chart

Also A Sample Implementation for TTF

```
function bit ttf (bit c, int m, int n=-1);
bit equality;
int i;
if (n == -1) begin // if only m has been passed
   ttf = $past(c, m); // note that some simulators
need constant m to be passed
end else begin // if both m and n have been passed
   equality = 1'b0;
   for (i=m; i<=n; i++) begin</pre>
      equality = equality | $past(c, i);
      if (equality == 1'b1) begin
         i = n+1;
      end
   end
   ttf = equality;
end
endfunction
```


ш

Part

∢

art

Examples:

- Case 1: *s: (алсvbлс)*
 - Immediate sequence expression \rightarrow there is no Part A, and the transformation has Part B only.
 - Corresponding CNF can be derived using only non-temporal transformation for s which is c(avb).
 - To hit cp, both c and (avb) need to be hit. Since (avb) can be hit if either a or b is hit, c and one of a or b need to be hit.

sequence seq;		sequence seq;
(irdy & trdy) (irdy & stop);		irdy & (trdy stop);
endsequence		endsequence
cp: cover property @(posedge clk) seq;		cp: cover property @(posedge clk) seq;

Case 2: s: avbлс

8

- no temporal transformation and corresponding CNF for s is $(avb) \wedge (avc)$.
- To hit cp, both (avc) and (avb) need to be hit, i.e., a or both b and c need to be hit.

```
sequence seq;
(csr1[4] | csr2[7]) & csr7[0];
endsequence
cp: cover property @ (posedge clk) seq;
sequence seq;
(csr1[4]&csr7[0]) | (csr2[7]& csr7[0]);
endsequence
cp: cover property @ (posedge clk) seq;
```

Examples (Contd.)

- Case 3: *s: a* ##`*N b*
 - In this case, s has a temporal transformation on a. Here, s can be expressed as a CNF as ttf(a, N)h.
 - To hit *cp* in this case, *ttf(a, `N)* and *b* need to be hit.

Examples (Contd.):

10

- Case 4: *s: a ## [`M:`N]b*
 - s has a temporal transformation on a over a spread of `M to `N clock cycles. Here, s can be expressed as a CNF as $ttf(a, M, N) \wedge b$.
 - To hit *cp* in this case, *ttf(a, `M,`N)* and *b* must be hit.
 - This is similar to Case 3, but has a temporal spread.

sequence seq;		sequence seq;
a ##[5:9] b;		ttf(a, 5, 9) & b;
endsequence		endsequence
cp: cover property @(posedge clk) seq;		cp: cover property @(posedge clk) seq;

Examples (Contd.)

- Case 5: *s: a* |-> ##[`M:`N]b
 - The operator |-> is not a temporal transformation by itself. Thus, s in this case will be same as ttf(a, `M, `N) |-> b.
 - It is easy to see though that the non-vacuous success case will be $ttf(a, M, N) \wedge b$.
 - Thus, to hit *cp*, both *ttf(a,`M,`N)* and *b* must be hit.

A Complex Example and Summary

• A complex example:

- · A methodology based on a dyadic transformation is proposed
 - To aid, if not eliminate, human need for analysis of an un-hit cover property expression.
 - Both temporal and immediate components are considered.
 - A mathematical structure of the transformation is shown with associated examples.

BROADCOM[®] connecting everything •