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SoC Verification is Challenging
• SoC verification is full of hard problems:

• Exhaustive corner cases at block level
• FW/HW interaction at subsystem level
• 3rd party IP integration at SoC top level
• …
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• Therefore SoC verification 
is time/resource intensive

Courtesy: Harry D. Foster “The 2018 Wilson Research Group ASIC and 
FPGA Functional Verification Study” [11] 



Formal Indeed Can Help, But
• Most verification teams still choose dynamic simulation for verification 

signoff on formal friendly blocks
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Our verification engineers often ask:
“How do I know what has been verified in 
formal?”
“How do I know if I have enough assertions?”
“how do I know when a block verified using 
formal is ready for signoff?”

Our verification managers often ask:
“How can I monitor verification progress when a block 
is verified by formal?”
“Will formal cause coverage holes in my overall 
verification architecture?”
“Will formal cause reusability issues with class-based 
systemverilog testbenches?”

• We believe the lack of a measurable formal verification flow with equivalent 
signoff metric is one major barrier to adopting FV exclusively for verification 
signoff



How to Gain Mainstream Acceptance for Formal 
Verification?
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Solution:

A coverage-driven formal verification methodology with simulation-
compatible signoff metrics
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Why is Formal Coverage Important?
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• Reason #1: Uncovers over-constraints

 Unintentional over-constraints make legal 
design state space unreachable

 Solution: RTL stimuli coverage and 
functional coverage

Initial state

Legal state space based on Specification

Total possible state spaceFV-Covered legal state space

Over-constrained legal state space
FV-Constrained state space

Initial state

Legal state space based on Specification++

Total possible state space

FV-Covered legal state space

Over-constrained legal state space
FV-Constrained state space

Initial state

Legal state space based on Specification++

Total possible state space



Why is Formal Coverage Important?
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• Reason #2: Validates Bounded Proofs

 Bounded proofs are often inevitable

 Solution: bounded proof coverage and 
functional coverage

Initial state Legal state space based on Specification
State space proven/covered by full FVInitial state

Legal state space based on Specification+

State space proven/covered by full FVInitial state

Legal state space based on Specification+

State space proven/covered by full FVInitial state

Legal state space based on Specification+ State space covered by semi-formal 



Formal Coverage Types
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• Automatic code coverage:
1. Input stimuli coverage: determine 

reachable design state space under 
input constraints

2. Cone of Influence (COI) coverage: 
determine how completely your 
assertions cover the design

3. Proof core coverage: determine proven 
state space covered by your assertions

4. Bound coverage: check the quality of 
the bounded proof

Courtesy: X. Feng (Oracle), X. Chen, A. Muchandikar(Synopsys) 
“Coverage Models for Formal Verification”, DVCon 2017 [8]



FV TB

Checking 
Model

Coverage Model

DUT

I/F

I/F

I/F

I/F Agent

I/F AgentI/F Agent

end2end cov

Generate 
Model

TB CFG

Sampling 
events

Interface cov
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Formal Coverage Types Cont’d

10

• Functional coverage:

 Used as a proof of feature checked

 User-defined coverage based on design 
specifications

– Configuration register values
– I/F transactions

 Defines a minimum set of exercised 
design behaviors required for signoff



Formal Signoff using Coverage
• All types of formal coverage are used together to achieve verification 

signoff
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FV Signoff Checklist Stimuli 
Coverage

COI/Proofcore
Coverage

Bound 
Coverage

Functional 
Coverage

Is my formal testbench over-
constrained to disallow legal 
stimuli? 

√ √
Are my checkers complete? √
Are my bounded proofs 
reaching sufficient depth? √ √
How much of the design has 
been formally verified? √ √ √
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Functional Requirements in Vplan
• Verification plan (vplan) 

– set clear goals using measurable metrics
– a prioritized list of functional requirements
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Requirement Type Description Implementation Method in FV

Generate defines stimulus generation assume properties + SV modeling 
code

Check defines behavioral checks assert properties + SV modeling 
code

Cover defines design behaviors that need 
to be covered during verification

cover properties + covergroups + 
SV modeling code



Formal and Simulation Co-Verification
• Feature-based verification experiment 

with formal and simulation
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VPLAN
FEATURE REQUIREMENT ID REQUIREMENT

TYPE
METHOD COVERAGE

SCORE

Feature 1 FEATURE1.GEN.01 Generate Simulation

Feature 1 FEATURE1.CHK.01 Check Simulation

Feature 1 FEATURE1.COV.01 Cover Simulation 80%

Feature 2 FEATURE2.GEN.01 Generate Formal

Feature 2 FEATURE2.CHK.01 Check Formal

Feature 2 FEATURE2.COV.01 Cover Formal 100%

Sim 
coverage

Simulator A

Single vplan

Formal 
Tool B

Simulation 
TB FV TB

FV 
coverage

 vplan with 
merged 

coverage 
scores

Coverage 
calculator

Separate 
coverage 
databases 
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Stage 1: Planning Stage
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S.1 Create 
Formal Vplan

Planning Stage
 Create vplan based on 

design spec:
- Generate requirement
- Check requirement
- Cover requirement



Stage 2: Testbench Coding Stage

17

S.2 Implement 
Formal 

Testbench

Planning Stage

TB Coding Stage
Implement FV testbench:
• Generate requirement -> 

generate model, I/F agent
• Check requirement -> e2e 

checking model
• Cover requirement -> 

coverage model



Stage 3: Regression Stage
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S.4.1 Extend 
Func Covers

S.3.1 Prove 
Assertions

S.3.2 Code 
Coverage 
Closure

S.4.2 Coverage 
Closure using 

Full Formal
S.3.3 Assertion 

Bug Hunting

S.4.3 Coverage 
Closure using 
Semi-Formal

Planning Stage
TB Coding Stage

Regression Stage

Coverage closure 
regression

• Regression with 
coverage model 
enabled

• Purpose is to 
cover required 
design state 
space

• Assertions are 
evaluated in 
cover traces

Assertion proving 
regression

• Regression with 
coverage model 
disabled

• Purpose is to 
prove all assert 
properties

• Code coverage 
analyzed on top 
of assertion proof 
results



Stage 4: Release Stage
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S.5 Calculate 
Regression 
Coverage

S.6 Release 
Results to 
Reporting 

System

Planning Stage
TB Coding Stage

Regression Stage

Release Stage
 Two metrics to track progress:

 Implementation status for all 
type of requirements

 Coverage scores for cover
requirements

 Coverage scores are derived 
from percentage of cover 
points reached/exercised



FV Signoff Criteria
• Verification signoff for the design can be declared when the following 

criteria are met:

1. 100% functional coverage reached. No assertion failures evaluated in any functional 
cover trace

2. 100% COI and Reachability coverage reached with waivers (for dead code, etc.)

3. All assertions are either fully proven or bounded proven with sufficient bounds

4. No conflict in FV constraints
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FV Signoff Block Background
• Formal signoff for a complex micro-

sequencer block

• This block is a highly concurrent 
control-oriented design

• Hard to exhaustively simulate all 
corner cases in the past

• ROI results obtained are shown in 
following slides
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Courtesy: C. Komar, M. Diehl, “Optimizing IP Verification – Which Engine?”, 
DVCon 2017 [12]

Sequential 
Depth

Design 
Type

I/F

Block 
Specification/
Knowledge

Block Size

Block 
Criticality

Micro-sequencer Design Info

# of Requirement Flop Count Line of RTL 

104 16K 4K



Design Spec Improvement
• FV necessitates very accurate and complete design specifications. 

– For the micro-sequencer design we verified in FV, over 70% of the requirements in the specification were 
improved and clarified. One example:
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Before:
The micro-sequencer engine shall continuously monitor the state of all input signals defined in the registers T_Array, 
and use the settings in the V_Array registers to determine which, if any, inputs are currently considered Active. If an 
input is considered Active, the V_PENDING field of the corresponding V_Array register shall be set.

After:
The micro-sequencer engine shall continuously monitor the state of all input signals defined in the registers T_Array, 
and use the settings in the V_Array registers (<input_port_name>.v_array[i]) to determine which, if any, inputs are 
currently Active.  An input is “Active” when the conditions specified by V_COND 
((<input_port_name>.v_array[i].v_cond) and V_BHV (<input_port_name>.v_array.v_bhv) are met (v_act[i] 
shall be pulsed in the same clock cycle). If an input is Active, the V_PENDING field of the corresponding V_Array
register (<input_port_name>.v_array[i].v_pending) shall be set in the next cycle if the microsequencer is 
enabled (seq_en = 1).



Quality of Bugs Discovered
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• In terms of bug finding:
 32 bugs found in total 

 5 high quality bugs that mostly led to re-
architecture of the design

 6 bugs found during coverage closure 
phase

 Comparative study shows the debug 
cycle is 30% shorter than similar blocks 
verified in simulation

Benchmark Design Info

DUT # of Requirement Flop Count Line of RTL 

Micro-sequencer 104 16K 4K

BLK_A 100 7K 16K

BLK_B 103 4K 6K



Execution Time Improvement
• We also found overall execution time improvement using the FV signoff 

methodology. Two reasons:
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1. FV testbench is in general 
simpler. 

DUT TB Complexity
(line of codes)

Verif
Methodology

micro-
sequencer

~4,000 FV

BLK_A ~20,000 Simulation

BLK_B ~13,400 Simulation

2. Coverage closure is in general 
faster using FV.
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Conclusion
• Formal signoff is REAL!

– Comprehensive
– Speedy
– Efficient

• Methodology is key to wider adoption of FV
– Deterministic
– Measurable
– Repeatable
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