
A Coverage-Driven Formal Methodology for
Verification Sign-off

1

Ang Li, Hao Chen, Jason K Yu, Ee Loon Teoh, Iswerya Prem Anand
NVM Solutions Group

Intel Corporation

Agenda
• Introduction
• Formal Coverage
• Verification Plan
• Coverage-driven Formal Signoff Flow
• Real-World Results: Micro-Sequencer Design
• Conclusion

2

SoC Verification is Challenging
• SoC verification is full of hard problems:

• Exhaustive corner cases at block level
• FW/HW interaction at subsystem level
• 3rd party IP integration at SoC top level
• …

3

• Therefore SoC verification
is time/resource intensive

Courtesy: Harry D. Foster “The 2018 Wilson Research Group ASIC and
FPGA Functional Verification Study” [11]

Formal Indeed Can Help, But
• Most verification teams still choose dynamic simulation for verification

signoff on formal friendly blocks

4

Our verification engineers often ask:
“How do I know what has been verified in
formal?”
“How do I know if I have enough assertions?”
“how do I know when a block verified using
formal is ready for signoff?”

Our verification managers often ask:
“How can I monitor verification progress when a block
is verified by formal?”
“Will formal cause coverage holes in my overall
verification architecture?”
“Will formal cause reusability issues with class-based
systemverilog testbenches?”

• We believe the lack of a measurable formal verification flow with equivalent
signoff metric is one major barrier to adopting FV exclusively for verification
signoff

How to Gain Mainstream Acceptance for Formal
Verification?

5

Solution:

A coverage-driven formal verification methodology with simulation-
compatible signoff metrics

Agenda
• Introduction
• Formal Coverage
• Verification Plan
• Coverage-driven Formal Signoff Flow
• Real-World Results: Micro-Sequencer Design
• Conclusion

6

Why is Formal Coverage Important?

7

• Reason #1: Uncovers over-constraints

 Unintentional over-constraints make legal
design state space unreachable

 Solution: RTL stimuli coverage and
functional coverage

Initial state

Legal state space based on Specification

Total possible state spaceFV-Covered legal state space

Over-constrained legal state space
FV-Constrained state space

Initial state

Legal state space based on Specification++

Total possible state space

FV-Covered legal state space

Over-constrained legal state space
FV-Constrained state space

Initial state

Legal state space based on Specification++

Total possible state space

Why is Formal Coverage Important?

8

• Reason #2: Validates Bounded Proofs

 Bounded proofs are often inevitable

 Solution: bounded proof coverage and
functional coverage

Initial state Legal state space based on Specification
State space proven/covered by full FVInitial state

Legal state space based on Specification+

State space proven/covered by full FVInitial state

Legal state space based on Specification+

State space proven/covered by full FVInitial state

Legal state space based on Specification+ State space covered by semi-formal

Formal Coverage Types

9

• Automatic code coverage:
1. Input stimuli coverage: determine

reachable design state space under
input constraints

2. Cone of Influence (COI) coverage:
determine how completely your
assertions cover the design

3. Proof core coverage: determine proven
state space covered by your assertions

4. Bound coverage: check the quality of
the bounded proof

Courtesy: X. Feng (Oracle), X. Chen, A. Muchandikar(Synopsys)
“Coverage Models for Formal Verification”, DVCon 2017 [8]

FV TB

Checking
Model

Coverage Model

DUT

I/F

I/F

I/F

I/F Agent

I/F AgentI/F Agent

end2end cov

Generate
Model

TB CFG

Sampling
events

Interface cov

Interface covInterface cov

Formal Coverage Types Cont’d

10

• Functional coverage:

 Used as a proof of feature checked

 User-defined coverage based on design
specifications

– Configuration register values
– I/F transactions

 Defines a minimum set of exercised
design behaviors required for signoff

Formal Signoff using Coverage
• All types of formal coverage are used together to achieve verification

signoff

11

FV Signoff Checklist Stimuli
Coverage

COI/Proofcore
Coverage

Bound
Coverage

Functional
Coverage

Is my formal testbench over-
constrained to disallow legal
stimuli?

√ √
Are my checkers complete? √
Are my bounded proofs
reaching sufficient depth? √ √
How much of the design has
been formally verified? √ √ √

Agenda
• Introduction
• Formal Coverage
• Verification Plan
• Coverage-driven Formal Signoff Flow
• Real-World Results: Micro-Sequencer Design
• Conclusion

12

Functional Requirements in Vplan
• Verification plan (vplan)

– set clear goals using measurable metrics
– a prioritized list of functional requirements

13

Requirement Type Description Implementation Method in FV

Generate defines stimulus generation assume properties + SV modeling
code

Check defines behavioral checks assert properties + SV modeling
code

Cover defines design behaviors that need
to be covered during verification

cover properties + covergroups +
SV modeling code

Formal and Simulation Co-Verification
• Feature-based verification experiment

with formal and simulation

14

VPLAN
FEATURE REQUIREMENT ID REQUIREMENT

TYPE
METHOD COVERAGE

SCORE

Feature 1 FEATURE1.GEN.01 Generate Simulation

Feature 1 FEATURE1.CHK.01 Check Simulation

Feature 1 FEATURE1.COV.01 Cover Simulation 80%

Feature 2 FEATURE2.GEN.01 Generate Formal

Feature 2 FEATURE2.CHK.01 Check Formal

Feature 2 FEATURE2.COV.01 Cover Formal 100%

Sim
coverage

Simulator A

Single vplan

Formal
Tool B

Simulation
TB FV TB

FV
coverage

 vplan with
merged

coverage
scores

Coverage
calculator

Separate
coverage
databases

Agenda
• Introduction
• Formal Coverage
• Verification Plan
• Coverage-driven Formal Signoff Flow
• Real-World Results: Micro-Sequencer Design
• Conclusion

15

Stage 1: Planning Stage

16

S.1 Create
Formal Vplan

Planning Stage
 Create vplan based on

design spec:
- Generate requirement
- Check requirement
- Cover requirement

Stage 2: Testbench Coding Stage

17

S.2 Implement
Formal

Testbench

Planning Stage

TB Coding Stage
Implement FV testbench:
• Generate requirement ->

generate model, I/F agent
• Check requirement -> e2e

checking model
• Cover requirement ->

coverage model

Stage 3: Regression Stage

18

S.4.1 Extend
Func Covers

S.3.1 Prove
Assertions

S.3.2 Code
Coverage
Closure

S.4.2 Coverage
Closure using

Full Formal
S.3.3 Assertion

Bug Hunting

S.4.3 Coverage
Closure using
Semi-Formal

Planning Stage
TB Coding Stage

Regression Stage

Coverage closure
regression

• Regression with
coverage model
enabled

• Purpose is to
cover required
design state
space

• Assertions are
evaluated in
cover traces

Assertion proving
regression

• Regression with
coverage model
disabled

• Purpose is to
prove all assert
properties

• Code coverage
analyzed on top
of assertion proof
results

Stage 4: Release Stage

19

S.5 Calculate
Regression
Coverage

S.6 Release
Results to
Reporting

System

Planning Stage
TB Coding Stage

Regression Stage

Release Stage
 Two metrics to track progress:

 Implementation status for all
type of requirements

 Coverage scores for cover
requirements

 Coverage scores are derived
from percentage of cover
points reached/exercised

FV Signoff Criteria
• Verification signoff for the design can be declared when the following

criteria are met:

1. 100% functional coverage reached. No assertion failures evaluated in any functional
cover trace

2. 100% COI and Reachability coverage reached with waivers (for dead code, etc.)

3. All assertions are either fully proven or bounded proven with sufficient bounds

4. No conflict in FV constraints

20

Agenda
• Introduction
• Formal Coverage
• Verification Plan
• Coverage-driven Formal Signoff Flow
• Real-World Results: Micro-Sequencer Design
• Conclusion

21

FV Signoff Block Background
• Formal signoff for a complex micro-

sequencer block

• This block is a highly concurrent
control-oriented design

• Hard to exhaustively simulate all
corner cases in the past

• ROI results obtained are shown in
following slides

22

Courtesy: C. Komar, M. Diehl, “Optimizing IP Verification – Which Engine?”,
DVCon 2017 [12]

Sequential
Depth

Design
Type

I/F

Block
Specification/
Knowledge

Block Size

Block
Criticality

Micro-sequencer Design Info

of Requirement Flop Count Line of RTL

104 16K 4K

Design Spec Improvement
• FV necessitates very accurate and complete design specifications.

– For the micro-sequencer design we verified in FV, over 70% of the requirements in the specification were
improved and clarified. One example:

23

Before:
The micro-sequencer engine shall continuously monitor the state of all input signals defined in the registers T_Array,
and use the settings in the V_Array registers to determine which, if any, inputs are currently considered Active. If an
input is considered Active, the V_PENDING field of the corresponding V_Array register shall be set.

After:
The micro-sequencer engine shall continuously monitor the state of all input signals defined in the registers T_Array,
and use the settings in the V_Array registers (<input_port_name>.v_array[i]) to determine which, if any, inputs are
currently Active. An input is “Active” when the conditions specified by V_COND
((<input_port_name>.v_array[i].v_cond) and V_BHV (<input_port_name>.v_array.v_bhv) are met (v_act[i]
shall be pulsed in the same clock cycle). If an input is Active, the V_PENDING field of the corresponding V_Array
register (<input_port_name>.v_array[i].v_pending) shall be set in the next cycle if the microsequencer is
enabled (seq_en = 1).

Quality of Bugs Discovered

24

• In terms of bug finding:
 32 bugs found in total

 5 high quality bugs that mostly led to re-
architecture of the design

 6 bugs found during coverage closure
phase

 Comparative study shows the debug
cycle is 30% shorter than similar blocks
verified in simulation

Benchmark Design Info

DUT # of Requirement Flop Count Line of RTL

Micro-sequencer 104 16K 4K

BLK_A 100 7K 16K

BLK_B 103 4K 6K

Execution Time Improvement
• We also found overall execution time improvement using the FV signoff

methodology. Two reasons:

25

1. FV testbench is in general
simpler.

DUT TB Complexity
(line of codes)

Verif
Methodology

micro-
sequencer

~4,000 FV

BLK_A ~20,000 Simulation

BLK_B ~13,400 Simulation

2. Coverage closure is in general
faster using FV.

Agenda
• Introduction
• Formal Coverage
• Verification Plan
• Coverage-driven Formal Signoff Flow
• Real-World Results: Micro-Sequencer Design
• Conclusion

26

Conclusion
• Formal signoff is REAL!

– Comprehensive
– Speedy
– Efficient

• Methodology is key to wider adoption of FV
– Deterministic
– Measurable
– Repeatable

27

References
• [1] Erik Seligman, Tom Schubert, and M V A. Kiran Kumar, “Formal Verification, An Essential Toolkit for Modern VLSI Design,”

Morgan Kaufmann, 2015
• [2] Douglas L. Perry, Harry Foster, “Applied Formal Verification,” McGraw-Hill, 2005
• [3] Anish Mathew, “Coverage-Driven Formal Verification Signoff on CCIX Design”, JUG 2017.
• [4] N. Kim, J. Park, H. Singh, V. Singhal, “Sign-off with Bounded Formal Verification Proofs”, DVCon 2014.
• [5] I.Tripathi, A. Saxena, A. Verma, P. Aggarwal, “The Process and Proof for Formal Sign-off: A Live Case Study”, DVCon 2016.
• [6] B.Wang, X. Chen, “Coverage Driven Signoff with Formal Verification on Power Management IPs”, DVCon 2016.
• [7] M A. Kiran Kumar, E. Seligman, A. Gupta, S. Bindumadhava, A. Bharadwaj, “Making Formal Property Verification

Mainstream: An Intel Graphics Experience”, DVCon 2017.
• [8] X. Feng, X. Chen, A. Muchandikar, “Coverage Models for Formal Verification”, DVCon 2017.
• [9] J. R. Maas, N. Regmi, A. Kulkarni, K. Palaniswami, “End to End Formal Verification Strategies for IP Verification”, DVCon

2017.
• [10] M. Munishwar, X. Chen, A. Saha, S. Jana, “Fast Track Formal Verification Signoff”, DVCon 2017.
• [11] Harry D. Foster, “The 2018 Wilson Research Group ASIC and FPGA Functional Verification Study”
• [12] C. Komar, M. Diehl, “Optimizing IP Verification – Which Engine?”, Tutorial from Cadence, DVCon 2017.

28

	­A Coverage-Driven Formal Methodology for Verification Sign-off
	Agenda
	SoC Verification is Challenging
	Formal Indeed Can Help, But
	How to Gain Mainstream Acceptance for Formal Verification?
	Agenda
	Why is Formal Coverage Important?
	Why is Formal Coverage Important?
	Formal Coverage Types
	Formal Coverage Types Cont’d
	Formal Signoff using Coverage
	Agenda
	Functional Requirements in Vplan
	Formal and Simulation Co-Verification
	Agenda
	Stage 1: Planning Stage
	Stage 2: Testbench Coding Stage
	Stage 3: Regression Stage
	Stage 4: Release Stage
	FV Signoff Criteria
	Agenda
	FV Signoff Block Background
	Design Spec Improvement
	Quality of Bugs Discovered
	Execution Time Improvement
	Agenda
	Conclusion
	References

