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Abstract- In the Electronic System Level domain, the SystemC language uses non-preemptive processes to simulate 

hardware parallelism in C++ [1]. Processes are a fundamental construct of the language, which makes modeling of 

hardware easier than in plain C++. Since processes are a key design element of SystemC, there are various application 

domains (e.g. debugging, performance analysis) where a generic mechanism to associate user-defined callbacks with 

process state changes will prove to be beneficial. We propose such a generic interface for registering user-defined 

callbacks triggered at SystemC process state changes. We also present an application case study for such an interface for 

simulation performance profiling in a virtual platform and in an approximately-timed memory controller model. 

 

I.   INTRODUCTION 

Hardware description languages, e.g. SystemVerilog [2], VHDL [3] use processes to model the parallel nature of 

electronic systems and to simulate the concurrent behavior of multiple elements, even if the simulation execution is 

sequential.   

In the Electronic System Level domain, the SystemC language [1] uses non-preemptive processes to simulate 

hardware parallelism. SystemC is designed as a C++ class library [4], and processes are a fundamental construct of 

the SystemC language that makes modeling of hardware easier than in plain C++. There are two kinds of SystemC 

processes: methods and threads. A method process executes completely from beginning to end in each execution, 

and does not maintain any local state. A thread process maintains its own local state, and on execution can 

voluntarily suspend itself using the wait() construct. SystemC defines a co-routine semantics [1] of process 

execution. When a process is created, it can be specified to trigger on specific events (e.g. signal value change). This 

is called the static sensitivity of that process. When a process executes, it can dynamically change its sensitivity to a 

different set of event triggers. When a process’s sensitivity triggers, the process is scheduled for execution. A 

method process always executes from beginning to end, and returns control back to the SystemC scheduler. Once a 

thread process starts execution, it voluntarily yields either to the next thread process, or to the SystemC scheduler, or 

terminates itself by exiting its associated function. The SystemC scheduler never preempts a process forcefully. In 

addition, SystemC also defines process control constructs using which a process can explicitly suspend, resume, 

disable, enable, kill, reset or throw an exception in another process. 

Given that processes are the fundamental behavioral block in SystemC, there are various application domains 

(e.g. debugging, performance analysis) where a generic mechanism to associate user-defined callbacks with process 

state changes will prove to be beneficial. In this paper, we propose such a language extension to register user-

defined callbacks triggered at process state changes including creation, activation, suspension, resumption, 

termination, reset, disable, enable, etc.  
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The rest of the paper is organized as follows: In Section II, we present our process instrumentation interface, 

differentiating with previous work in this area. In Section III, we discuss implementation of this interface, keeping 

performance concerns in mind. In Section IV, we present an application of our process instrumentation interface for 

simulation performance profiling in a virtual platform and in an approximately-timed memory controller design, and 

we analyze the results. Finally, we conclude in Section V with some directions for future work. 

 

II.   SYSTEMC PROCESS INSTRUMENTATION INTERFACE 

 

A. Previous Work 

An initial proposal for process callbacks (and event callbacks) was submitted as a part of the P1666-2011 

standardization process [5], but did not make it to the standard. Our work takes into account the proposal in [5], 

along with the feedback provided in the Accellera SystemC Language Working Group [6], and proposes significant 

enhancements and modifications to come up with a complete and comprehensive solution for registering process 

state change callbacks. 

 

B. Requirements for a complete process instrumentation interface 

The main additional requirements over [5] were: 

 Method and thread processes should be handled consistently, for ease of use 

 All process control constructs should also be uniformly handled 

 The triggering signal for a process reset should be added; from user experience, this is a useful piece of 

information 

 Details of process creation callback should be specified, with hook to sc_spawn_options class for 

completeness 

 Language-standard sc_process_handle class should be used instead of implementation-defined class 

sc_process_b, for ‘safer’ callbacks 

 Callback registration should be available at different granularity levels ranging from individual process 

handles to all processes in a module hierarchy to all processes in a design 

 Most importantly, rigorous details of the semantics should be specified  

 

C. Specification of the process instrumentation interface 

The sc_process_callback class defines the process callback interface. The user derives a custom class from the 

sc_process_callback base class and registers an instance of the custom class using the global callback registration 

functions. A SystemC simulator invokes a callback when the process associated with the callback changes its state. 

 

Class Definition of the sc_process_callback Base Class 

class sc_process_callback { 
public: 
    /* Called after the method or thread is created */ 
    virtual void process_created(sc_process_handle process){} 
    /* Called before invoking a method or thread */ 
    virtual void process_activated(sc_process_handle process){} 
    /* Called after halting/suspending a method or thread */ 
    virtual void process_halted(sc_process_handle process){} 
    /* Called after a method or thread is terminated */ 
    virtual void process_terminated(sc_process_handle process){} 
    enum process_control_construct_t {  
        SUSPEND, RESUME, DISABLE, ENABLE,  
        KILL, RESET, 
        SYNC_RESET_ON, SYNC_RESET_OFF,  
        RESET_SIGNAL_IS, ASYNC_RESET_SIGNAL_IS  
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    }; 
    /* Called before invoking a process control construct*/ 
    virtual void process_control_construct_invoked( 
      sc_process_handle process,  
      process_control_construct_t kind 
    ); 
    /* Called when port/signal specified in {async_}reset_signal_is() changes value */ 
    enum reset_active_t {ACTIVE, INACTIVE}; 
    virtual void reset_signal_changed( 
      sc_process_handle process,  
      const char* reset_sig_name,  
      reset_active_t reset_sig_state 
    );  
    virtual ~sc_process_callback() {} 
private:  
    sc_process_callback() {} 
}; 
 

The member methods of sc_process_callback class have the following semantics:  

 process_created(): This callback is invoked when the process is created. Processes can be created statically 

or dynamically using sc_spawn(). For both cases, the process_created() callback is invoked as soon as the 

process is created.  

 process_activated(): This callback is invoked before the process is activated and every time control goes to 

a function associated with a process. For methods, this callback is called every time a method executes from 

the beginning. For threads, it is called when a thread is first started and every time the thread resumes. 

   Note that the process_activated() callback is not called exactly before executing the first line or the 

resumed line of the associated function. It gets invoked before the function executes, but some 

implementation code executes in between the callback being called and the function code executing. Exactly 

how much implementation code executes is implementation dependent. An implementation must guarantee 

that the same amount of code executes uniformly for every thread process and for every method process. 

 process_halted(): This callback is invoked when a process halts. For a method process, it is called when a 

method completes. For a thread process, it is called whenever the process suspends itself. This callback is 

called close to the point after a process suspends, and is uniform for all threads and methods. The exact 

quantification is implementation-defined.  

 process_terminated(): For a thread, this callback is invoked when a thread returns from its associated 

function. This can be voluntary or because of a process control construct such as kill(), reset(), or throw_it(). 

For a method, this callback is invoked only if a method is explicitly killed using the process control construct 

kill(). Similar to the other callbacks, exact timing of this call is implementation-dependent but close to the 

actual termination, and consistent across threads and methods. 

 process_control_construct_invoked(): This callback is invoked when a process control construct is issued 

on the process handle. The exact process control construct that was issued is provided in the ‘reason’ 

argument of type process_control_construct_t. 

 reset_signal_changed(): This callback is invoked when the port/signal specified in reset_signal_is() or 

async_reset_signal_is() changes value. The additional parameters to this callback specify if the reset 

signal/port went active or inactive, and the name of the reset signal/port.   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Callback Registration Functions:   

Callback registration for all processes in a design  

    bool sc_add_process_callback_all( 

        sc_process_callback   *callback 

    );  
    bool sc_remove_process_callback_all( 
        sc_process_callback *callback 
    );  
 

The sc_add_process_callback_all() global function registers process callbacks for all processes in a design, 

including the processes that exist at the time of the registration, and processes that are created later. For processes 

that already exist when the registration function is called, the process_created() callback is missed, and possibly 

other state change callbacks are also missed that have already happened before. For processes that are created after 

the registration function is invoked, every state change is triggered, including the process_created() callback. 

When invoking a callback registered with the sc_add_process_callback_all() function for a process instance, the 

implementation creates a local sc_process_handle for that process instance and calls the process callback with that 

local process handle. This local process handle goes out of scope once the process callback returns. 

It is legal to call the sc_add_proces_callback_all() registration function from a static initializer. 

If the same sc_process_callback instance is registered multiple times using the sc_add_process_callback_all() 

function, only the first registration applies and subsequent ones are ignored with a warning. If there are multiple 

invocations of sc_add_process_callback_all() function, multiple process callbacks are registered with all the 

processes. 

The sc_remove_process_callback_all() function de-registers any callbacks previously registered with the 

sc_add_process_callback_all() function. An error is raised if the sc_remove_process_callback_all() function is 

invoked with a sc_process_callback instance that was not previously registered using function 

sc_add_process_callback_all() function. 

The sc_add_process_callback_all() and sc_remove_process_callback_all() functions return true for successful 

registration or de-registration, and false otherwise. 

 

Callback registration for all processes in a module  

    bool sc_add_process_callback_module( 
        sc_module* mod, sc_process_callback *callback 
    ); 
    bool sc_remove_process_callback_module( 
        sc_module* mod, sc_process_callback *callback 
    );    

 

The global sc_add_process_callback_module() and sc_remove_process_callback_module() functions register and 

de-register process callbacks for all processes that belong to the hierarchy of a given module. The first argument to 

these functions is the module pointer, and it is the user’s responsibility to ensure the module pointer is valid when 

these functions are invoked. 

If the module registration function is called after processes inside the module hierarchy are already created, all 

such processes in that module's hierarchy will miss the process_created() callback. 

If during simulation, a new process is created using the sc_spawn() routine inside a module's hierarchy, the 

specified sc_process_callback class instance gets registered with the newly created process. The process_created() 

callback is called on the newly created process instance before the sc_spawn() call returns. 

When invoking a callback registered with sc_add_process_callback_module() function for a process instance, the 

implementation creates a local sc_process_handle object for that process instance, and calls the process callback 

with that local process handle. This local process handle goes out of scope once the process callback returns. 
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If the same sc_process_callback instance is registered multiple times on the same module using the 

sc_add_process_callback_module(), then only the first registration applies and subsequent registrations are ignored 

with a warning. 

An error is raised if the sc_remove_process_callback_module() is invoked with a sc_process_callback instance 

that was not previously registered using the sc_add_process_callback_module() function on the same module 

instance. 

The sc_add_process_callback_module() and sc_remove_process_callback_module() functions return the status as 

true for successful registration or de-registration, and false otherwise. 

 

Callback registration for a specific process in a design  

   bool sc_add_process_callback(sc_process_handle process, 
                                                     sc_process_callback *callback,  
                                                     sc_descendant_inclusion_info  
                                                          include_descendants =  
                                                          SC_NO_DESCENDANTS 
   ); 
   bool sc_remove_process_callback(sc_process_handle process, 
                                                           sc_process_callback *callback, 
                                                           sc_descendant_inclusion_info  
                                                                include_descendants =  
                                                               SC_NO_DESCENDANTS 
   ); 
   class sc_spawn_options { 
    public: 
       ... 
       bool add_process_callback(sc_process_callback *); 
   }; 

 

Given a process handle as first argument, the global functions sc_add_process_callback() and 

sc_remove_process_callback() register and deregister process callbacks respectively, for that process handle. The 

third parameter to these functions indicate if the registration applies to the entire process hierarchy tree rooted at the 

sc_process_handle, including future descendants created using sc_spawn().   

If the sc_process_handle is invalid, a warning is generated and the registration or deregistration functions have no 

effect.  

If same process callback instance is registered to same process handle multiple times, a warning is generated for 

the subsequent calls, and only the first registration applies.  

These functions return true for successful registration or deregistration, and false otherwise. 

The function sc_spawn() returns a sc_process_handle. This handle can be used with registration function 

sc_add_process_callback() to register process callbacks. However, when sc_spawn() is called during simulation, by 

the time sc_spawn() returns, the process has already been created, so the process_created() callback is missed. 

Hence, for completeness, an additional interface to register process callbacks is provided for sc_spawn_options. The 

behavior of sc_spawn_options::add_process_callback() is to attach the callbacks implicitly to the 

sc_process_handle returned from the sc_spawn() call to which the sc_spawn_options instance is passed as an 

argument. In that case, the process_created() callback fires before the sc_spawn() call returns. 

 

Callback Registration is Cumulative:   

 

A single process instance can have multiple callbacks registered by using different kinds of registration functions. 

For example, a global callback can be registered using the sc_add_process_callback_all() function. There can also 

be module-specific callbacks registered on parent and child modules top and top.mid using the 

sc_add_process_callback_module(). The process top.mid.p1 will then have the following callbacks registered. 
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 Global callbacks 

 Callbacks registered with top module 

 Callbacks registered with top.mid module 

 

The order in which these callbacks are invoked is implementation-defined. 

 

Callback Rules:   

 

 Multiple callbacks can be attached to the same process.   

o The order in which the callbacks are triggered is implementation defined. 

 Same callback object can be attached to multiple processes. Callbacks are invoked with the change in 

process state with the respective process handle. 

o User manages the lifetime of the callback object. Process callback needs to be removed from 

registration before it is deleted. 

 Exceptions 

o All exceptions raised from process callbacks including the SC_REPORT shall be caught and re-

thrown. 

 Callbacks cannot consume time 

o Callback cannot consume time (‘wait()’ call is not allowed). 

 Callbacks cannot call process control constructs.  

 

 

III.   IMPLEMENTATION OF THE PROCESS INSTRUMENTATION INTERFACE 

 

A subset of the process callback interface specified in Section II, has been implemented in the Cadence Incisive® 

simulator, in the 15.10 release. Callback functions process_control_construct_invoked() and reset_signal_changed() 

gives more information about the callback state and are useful for advanced use case. These callback 

implementations are planned for future releases. Callback registration for individual process handle and 

sc_spawn_options::add_process_callback() also qualify as finer-grained, advanced use models that have been left 

for future implementation. 

The implementation requires fundamental kernel level instrumentation that affects scheduling. One key concern 

when implementing such a kernel-level instrumentation is performance for the common case. Our implementation 

has been carefully fine-tuned, and demonstrates no performance degradation in the common case when process 

callbacks are not registered. 

 

IV.   APPLICATIONS OF THE PROCESS INSTRUMENTATION INTERFACE 

 

A. Overview of possible applications 

Access to process activity details should enable many applications, mainly in the debugging domain (recording 

and visualization of process execution sequence) and in the performance analysis domain. 

An application may collect only statistics on process execution, without recording the details. Using the process 

callback interface, it is very simple to make counts such as the number of activations of each process. 

The application may also keep a record of the process activations in a database. That information can be enriched 

with SystemC simulation time, which allows display in a waveform viewer along with other simulation traces. 

Knowing the details of process activity can help to answer very specific questions too. For example in [7], when 

the authors needed to measure the number of runnable process of each delta cycle to evaluate parallelization 

possibilities, they had to modify the ASI implementation of the SystemC kernel. By using the SystemC process 

instrumentation interface, it would be possible to count the number of processes actually executed at each delta 

cycle without any modification of the kernel, which gives an upper bound of the number of runnable process. 
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B. Application to simulation performance analysis 

We have used the process instrumentation interface to make accurate simulation performance measurements. An 

example application monitors the host CPU time usage of each process activation: it records the current CPU time 

usage of the simulation from the process_activated() callback, and records it again from the process_halted() or 

process_terminated() callbacks. The difference corresponds to the amount of CPU time used by the process. As we 

want to analyze the complete design, we have used the function sc_add_process_callback_all() to register these 

callbacks for all processes in the design. 

On the Linux host platform, we have computed the CPU time measurement using the function clock_gettime() of 

time.h, with clock id set to CLOCK_PROCESS_CPUTIME_ID. This clock setting is very appropriate for simulation 

performance analysis because it counts only the CPU time used by the simulation, which makes the time 

measurement independent of the load of the host CPU (unlike measurements based on elapsed time). In addition, it 

has a nanosecond resolution. Although its actual accuracy is certainly not at that level and probably closer to the 

microsecond, it is better than a clock at microsecond resolution, because it avoids the abrupt accuracy loss for 

execution times close to the microsecond, which is quite common for many process executions in typical 

simulations. 

The CPU time usage can be accumulated in simple per-process statistical bins, so that at the end of the simulation, 

the total CPU time usage of each process instance can be reported. In combination with the process activation counts 

described above, the average CPU time of the activation of each process can be computed directly. By adding a few 

variables for each process instance, min and max CPU time can be reported too. 

 

 

C. Case studies 

We applied our performance analysis application to two designs: a complete virtual platform running an OS, and 

the approximately-timed model of a memory controller. 

 

The virtual platform [8] is a model of the Xilinx Zynq®-7000 “All Programmable SoC” [9], containing an ARM 

FastModel of the main processor (dual core ARM® Cortex™-A9) and many peripherals, modeled according to the 

loosely-timed coding style [1]. The platform first boots the Linux OS, and then launches an application processing 

an MRI image, using the model of a hardware accelerator. 

The report generated from our performance analysis tool is shown in Fig. 1. We can see that the SystemC process 

corresponding to the processor model largely dominates the activity of the virtual platform. This is often observed 

when the TLM [1] peripherals are highly optimized. Note that in case of a performance bug, such a bug can be 

easily detected in our report by too many activations of a process, or by unexpectedly large average time of each 

activation (denoting non-optimal design). In this simulation, the time spent in the hardware accelerator model is 

small, accounting for approximately 0.2% of the total CPU usage. 

 

The second example is a four-way memory controller model used for system architecture exploration, enabling 

estimation of system performance metrics such as throughput and latency. The multiple stages of the architecture 

(FIFOs, arbitration, reordering queue) are modeled in TLM approximately-timed coding style, using the non-

blocking transport interface [1]. Incoming traffic is created by four initiator models using SCV constrained 

randomization [10], and these processes are called “TOP.im_N.generate_traffic” in the report. 

We can see in Fig. 2 that in this design, the execution time is more balanced between the SystemC processes. Also 

the processes have quite different average activation times, depending on the amount of computation in each 

process. The modeling engineer can evaluate for each process if it is expected or not, depending on the actual code 

content of the process. 
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Figure 1. Performance report on the Zynq Virtual platform (top 20 processes). 

SystemC process corresponding to the processor model is highlighted in blue, and the hardware accelerator process is in green. 

 

Figure 2. Performance report on the memory controller model (complete). 

-- summary 
  total CPU usage        =   279.423191s 
  total non-process time =     5.329797s 
  total process time     =   274.093394s 
  number of process activations = 1516532, average 180.736967 us/activation 
--list of contributions 
    1.90743 %     5.329797 s                          3.514 us/activation - total non-process time (kernel, profiling itself) 
   -- processes sorted by total exec time -- 
   95.26493 %   266.192300 s  517404 activations    514.477 us/activation - zynq.zynq_ps.armfm_core.ARMCortexA9MPx2CT32.run 
    1.99865 %     5.584694 s   12000 activations    465.391 us/activation - zynq.ui.run 
    0.28222 %     0.788582 s  859786 activations      0.917 us/activation - zynq.zynq_ps.usb1.start_schedule_th 
    0.20792 %     0.580972 s    1281 activations    453.530 us/activation - zynq.bp.run 
    0.11588 %     0.323805 s       2 activations 161902.519 us/activation - zynq.term_1.xterm_thread 
    0.07198 %     0.201141 s   68698 activations      2.928 us/activation - zynq.term_0.xterm_thread 
    0.05826 %     0.162791 s       1 activation  162790.992 us/activation - zynq.ddr_ram.reset_process 
    0.03854 %     0.107692 s       3 activations  35897.204 us/activation - zynq.loader.reset_thread 
    0.02024 %     0.056542 s   14120 activations      4.004 us/activation - zynq.term_0.rx_fifo_method 
    0.00714 %     0.019961 s    2400 activations      8.317 us/activation - zynq.fb_ram.run 
    0.00567 %     0.015841 s   17395 activations      0.911 us/activation - zynq.zynq_ps.armfm_core.run_standbywfi0 
    0.00531 %     0.014839 s    4819 activations      3.079 us/activation - zynq.term_1.rx_fifo_method 
    0.00349 %     0.009750 s    1112 activations      8.768 us/activation - zynq.zynq_ps.slirp_wrapper.poll_slirp 
    0.00316 %     0.008818 s   11414 activations      0.773 us/activation - zynq.zynq_ps.armfm_core.run_standbywfi1 
    0.00163 %     0.004544 s    1133 activations      4.011 us/activation - zynq.zynq_ps.armfm_core.bridge_ints27.signal 
    0.00141 %     0.003935 s       1 activation    3934.544 us/activation - zynq.smc_sram_1.reset_process 
    0.00140 %     0.003910 s       1 activation    3910.188 us/activation - zynq.smc_sram_0.reset_process 
    0.00082 %     0.002304 s     595 activations      3.872 us/activation - zynq.zynq_ps.armfm_core.bridge_ints44.signal 
    0.00078 %     0.002178 s       1 activation    2177.840 us/activation - zynq.logiCVCML.run 
    0.00046 %     0.001298 s    1133 activations      1.146 us/activation - zynq.zynq_ps.armfm_core__ints27_s2w_convert 

-- summary 
  total CPU usage        =    19.445972s 
  total non-process time =     3.196789s 
  total process time     =    16.249182s 
  number of process activations = 3372820, average 4.817684 us/activation 
--list of contributions 
   16.43934 %     3.196789 s                          0.948 us/activation - total non-process time (kernel, profiling itself) 
   -- processes sorted by total exec time -- 
   39.31143 %     7.644490 s  259107 activations     29.503 us/activation - TOP.mem_controller_0.smart_mem_q.send_transaction 
   10.11653 %     1.967258 s  178498 activations     11.021 us/activation - TOP.im_2.generate_traffic 
    9.33906 %     1.816071 s  171553 activations     10.586 us/activation - TOP.im_0.generate_traffic 
    5.33261 %     1.036977 s   96177 activations     10.782 us/activation - TOP.im_3.generate_traffic 
    2.66017 %     0.517297 s  242127 activations      2.136 us/activation - TOP.mem_controller_0.r_arb.transmit_responses 
    2.17587 %     0.423119 s  501250 activations      0.844 us/activation - TOP.mem_controller_0.smart_mem_q.accept_requests 
    1.97593 %     0.384239 s   38695 activations      9.930 us/activation - TOP.im_1.generate_traffic 
    1.97324 %     0.383717 s  585061 activations      0.656 us/activation - TOP.mem_controller_0.r_arb.arbitrate_and send_trans 
    1.93752 %     0.376769 s   89170 activations      4.225 us/activation - TOP.mem_controller_0.fifo_2.transmit_responses 
    1.88048 %     0.365678 s   85658 activations      4.269 us/activation - TOP.mem_controller_0.fifo_0.transmit_responses 
    1.06135 %     0.206390 s   48073 activations      4.293 us/activation - TOP.mem_controller_0.fifo_3.transmit_responses 
    1.00635 %     0.195694 s  242126 activations      0.808 us/activation - TOP.memory_0.end_of_busy_state_method 
    0.83354 %     0.162090 s  126331 activations      1.283 us/activation - TOP.mem_controller_0.fifo_2.send_requests 
    0.81893 %     0.159249 s  120481 activations      1.322 us/activation - TOP.mem_controller_0.fifo_0.send_requests 
    0.77634 %     0.150966 s  179744 activations      0.840 us/activation - TOP.mem_controller_0.fifo_2.accept_requests 
    0.74205 %     0.144300 s  171597 activations      0.841 us/activation - TOP.mem_controller_0.fifo_0.accept_requests 
    0.43911 %     0.085389 s   58443 activations      1.461 us/activation - TOP.mem_controller_0.fifo_3.send_requests 
    0.43163 %     0.083935 s   97895 activations      0.857 us/activation - TOP.mem_controller_0.fifo_3.accept_requests 
    0.41969 %     0.081612 s   19229 activations      4.244 us/activation - TOP.mem_controller_0.fifo_1.transmit_responses 
    0.16556 %     0.032194 s   22471 activations      1.433 us/activation - TOP.mem_controller_0.fifo_1.send_requests 
    0.16043 %     0.031198 s   38457 activations      0.811 us/activation - TOP.mem_controller_0.fifo_1.accept_requests 
    0.00128 %     0.000248 s     241 activations      1.031 us/activation - TOP.im_1.sync_process 
    0.00086 %     0.000168 s     241 activations      0.696 us/activation - TOP.im_0.sync_process 
    0.00058 %     0.000113 s     161 activations      0.701 us/activation - TOP.im_2.sync_process 
    0.00011 %     0.000021 s      34 activations      0.627 us/activation - TOP.im_3.sync_process 
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D. Comparison to sample-based profiling 

Cadence Incisive Simulator already provides a way to measure time spent in each process, by using statistical 

sample-based profiling, combined with SystemC awareness. 

The sample-based profiling of Incisive has numerous advantages: it can support multiple HDL languages, as well 

as mixed-languages simulations, and it is tightly integrated in the simulator, with a TCL control for ease-of-use and 

flexibility. Also its impact on performance is low and regular. But to provide accurate results, that method requires a 

high number of samples, so that the statistics can start to converge on the actual profile of the simulation. It can be 

difficult to get a good estimation of the time spent in processes whose total execution time is very short, which is a 

general limitation of statistical sampling, as explained in [11]. 

We compared the results of both approaches on our test cases. We ran the exact same simulation multiple times, 

with both profiling methods enabled on each of the 10 runs, so that the comparison is more reliable (separating the 

two types of profiling in different runs would add the unavoidable variability between runs), and we computed the 

dispersion of the results. 

 

Table 1 shows in details the profiling data collected on 10 runs using the two profiling methods on the top 

contributor process in the memory controller design (TOP.mem_controller_0.smart_mem_q.send_transaction): 

- Sample-based profiling, built-in in Incisive, reports a number of “hits” of the process. The equivalent time 

estimation is computed by dividing the number of hits by the frequency of the samples (333 hits/s). 

- Time measured directly by the process activation and termination callbacks, accumulated from all the 

activations of the process. 

 

We can notice that the estimated average time is lower for the callbacks-based method: this is a systematic bias, 

related to the profiling itself. The callbacks measure the time of the process execution only, while the sample-based 

profiling currently considers the callbacks as part of the process execution. 

The dispersion is estimated by the coefficient of variation: the ratio of the standard deviation to the average. It is 

interesting to observe that the dispersion is 3.4x lower for the callbacks-based results, which tends to confirm that 

the direct time measurement from the callbacks is more accurate in this case. 

 
TABLE I 

MAIN CONTRIBUTOR PROCESS OF MEMORY CONTROLLER SIMULATION, ON 10 RUNS 

 
Sample-based Time from 

callbacks 

 
# hits equiv. time 

Sim run 1 2619 7.865 7.681326 

Sim run 2 2571 7.721 7.601298 

Sim run 3 2685 8.063 7.704177 

Sim run 4 2589 7.775 7.614316 

Sim run 5 2619 7.865 7.666795 

Sim run 6 2620 7.868 7.701617 

Sim run 7 2595 7.793 7.670353 

Sim run 8 2678 8.042 7.668937 

Sim run 9 2702 8.114 7.69941 

Sim run 10 2573 7.727 7.599858 

Average 2625.1 7.883 7.661 

Std. dev. 47.435 0.142 0.041 

Dispersion 1.81 % 1.81 % 0.53 % 
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The same analysis was made on the top 8 processes of the 10 runs of the memory controller design. Table 2 shows 

a summary of the average values found by each method, as well as the standard deviation and dispersion.  

 
TABLE 2 

TOP 8 PROCESSES OF MEMORY CONTROLLER SIMULATION, ON 10 RUNS 

 

Sample-based Time measured by callbacks 

Process average std. dev. dispersion average std. dev. dispersion 

mem_controller_0.smart_mem_q.send_transaction 7.883183 0.142448 1.81 % 7.6608087 0.0409176 0.53 % 

im_2.generate_traffic 2.180781 0.036418 1.67 % 1.9783610 0.0251477 1.27 % 

im_0.generate_traffic 1.967868 0.045213 2.30 % 1.8125638 0.0248937 1.37 % 

im_3.generate_traffic 1.109910 0.071067 6.40 % 1.0332264 0.0122282 1.18 % 

mem_controller_0.r_arb.transmit_responses 0.723123 0.048850 6.76 % 0.5104633 0.0082844 1.62 % 

mem_controller_0.smart_mem_q.accept_requests 0.803303 0.050115 6.24 % 0.4081642 0.0070231 1.72 % 

im_1.generate_traffic 0.406607 0.018195 4.47 % 0.3849621 0.0043943 1.14 % 

mem_controller_0.r_arb.arbitrate_and_send_trans 0.769069 0.035148 4.57 % 0.3731437 0.0071083 1.90 % 

 

The table shows that the observations on the top process are confirmed for the other processes of the simulation: 

- Average time measured by the callbacks is lower, because it does not account for the profiling time itself, 

whose overhead increases with the number of activations (like in the case of the 8th process). The sample-

based method can find closer values in case the callback-based profiling is not used, which confirms that 

results from both methods are reliable. 

- The dispersion of the results is significantly lower in the results from the callbacks, especially for the 

processes with lower contribution, which are more difficult to evaluate accurately with sample-based 

profiling. 

 

Overall, the lower dispersion of the callback-based profiling method can be very useful. Users are first interested 

in a view of the top processes that use a lot of their simulation time, but a rough estimate of the contribution is 

usually sufficient. However, when they start to optimize a simulation, or modify it for any reason, it is important to 

be able to compare one simulation run to another. Then the lower dispersion is precious, because it allows to 

measure modest incremental improvements, which are not lost in the noise of the measurement uncertainty. 

 

V.   CONCLUSION AND FUTURE WORK 

 

In this paper we have proposed a complete interface that allows user’s application code to be notified of all the 

state changes that occur in a SystemC process’s lifetime, and execute a user-defined callback action, without a need 

for the user to modify the SystemC kernel. This interface is very generic and enables diverse and useful application 

areas, which we have demonstrated on a profiling case study. 

In the simulation performance analysis domain, profiling solutions based on this process interface can produce 

very accurate results, which are useful for incremental optimization of model performance. 

The natural next step is to propose the specification of this interface to Accellera System Initiative for future 

language standardization. Standardization of the process callback interfaces would allow to make models and 

applications relying on the callbacks compatible with other simulators. 
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