
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

A Complete SystemC Process Instrumentation Interface

and Its Application to Simulation Performance Analysis
Bishnupriya Bhattacharya, Chandra Sekhar Katuri, Vincent Motel

Cadence Design Systems

Abstract

In the Electronic System Level domain, the SystemC language

uses non-preemptive processes to simulate hardware parallelism

in C++. Processes are a fundamental construct of the language,

which makes modeling of hardware easier than in plain C++.

Since processes are a key design element of SystemC, there are

various application domains (e.g. debugging, performance

analysis) where a generic mechanism to associate user-defined

callbacks with process state changes will prove to be beneficial.

We propose such a generic interface for registering user-defined

callbacks triggered at SystemC process state changes. We also

present an application case study for such an interface for

simulation performance profiling in a virtual platform and in an

approximately-timed memory controller model.

Application to Simulation Performance Analysis

SystemC processes

SystemC Process Instrumentation Interface Comparison to Sample-based Profiling

Conclusion

p1

p4

p0

top

m1

m2

m3

m4

m5

Hierarchical view of the simulation

p3

p2

Simulation time

t = 0 t = 1 ns t = 2 ns t = 10 ns

Elapsed time / CPU usage

top.m1.p1

top.m1.p2

top.m2.p0

top.m3.m5.p3

top.m2.m4.p4

SystemC kernel

t = 0 t = 1ns

Elapsed time / CPU usage

top.m1.p1

top.m1.p2

top.m2.p0

top.m3.m5.p3

top.m2.m4.p4

SystemC kernel

sc_process_callback::process_created()

sc_process_callback::process_activated()

sc_process_callback::process_halted()

sc_process_callback::process_activated()

sc_process_callback::process_halted()

Callback registration

p1

p4

p0

top

m1

m2

m3

m4

m5 p3

p2

All processes of the design
bool sc_add_process_callback_all(
sc_process_callback *callback
);
bool sc_remove_process_callback_all(
sc_process_callback *callback
);

All processes in a module
bool sc_add_process_callback_module(
sc_module* mod, sc_process_callback *callback
);
bool sc_remove_process_callback_module(
sc_module* mod, sc_process_callback *callback
);

A specific process
bool sc_add_process_callback(
sc_process_handle process,
sc_process_callback *callback,
sc_descendant_inclusion_info = SC_NO_DESCENDANTS
);
bool sc_remove_process_callback(
sc_process_handle process,
sc_process_callback *callback,
sc_descendant_inclusion_info = SC_NO_DESCENDANTS
);

p1

p4

p0

top

m1

m2

m3

m4

m5 p3

p2

p1

p4

p0

top

m1

m2

m3

m4

m5 p3

p2

+ one method for dynamic processes
bool sc_spawn_options::add_process_callback(sc_process_callback *);

Implementation of the process
instrumentation interface

• A subset of the process callback interface has been implemented in
the Cadence Incisive® simulator
 In the 15.10 release

 Some constructs for advanced use models are not implemented yet:
process_control_construct_invoked() and reset_signal_changed(),
sc_spawn_options::add_process_callback(), callback registration for individual process
handle

 No performance degradation when process callbacks are not registered

• The natural next step is to propose the specification of this interface
to Accellera System Initiative for future language standardization
 It would allow to make models and applications relying on the callbacks

compatible with other simulators.

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &exec_start_ts);

Elapsed time / CPU usage

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &exec_end_ts);
double exec_time = 1e-9 * (exec_end_ts.tv_nsec - exec_start_ts.tv_nsec) + (exec_end_ts.tv_sec - exec_start_ts.tv_sec);

process1

process2

process3

exec. time exec. time exec. time++ = total exec time
(process1)

In process_activated() callback:

In process_halted(), process_terminated() callbacks:

#include <time.h>
timespec exec_start_ts;
timespec exec_end_ts;

Profiling the virtual platform
of Xilinx Zynq®-7000
“All Programmable SoC”,
running MRI image processing in
hardware and software

bp

A9 A9

Linux
OS

MRI Image
processing
application

Zynq-7000

Profiling the TLM model
(approximately-timed)
of a memory controller

Comparison to sample-based profiling
A very different way of measuring process time

process1

process2

process3

6.22 + 5.14 + 7.79 = 19.15 in process1

3.19 + 3.23

3.89

= 6.42 in process2

= 3.89 in process3

Direct
measurement

through
callbacks

Sample-based
profiling,
at regular
intervals

process1

process2

process3

kernel

6/12

2/12

1/12

3/12

Comparison to sample-based profiling,
on memory controller model: top process

3.4 x lower dispersion
=> Higher accuracy

Comparison to sample-based profiling,
on memory controller model: top 8 processes

Dispersion is consistently lower with
direct measurement by process callbacks
=> Useful for incremental optimization of
simulation performance

Class sc_process_callback

sc_process_callback

virtual void process_created(sc_process_handle process)
virtual void process_activated(sc_process_handle process)
virtual void process_halted(sc_process_handle process)
virtual void process_terminated(sc_process_handle process)
virtual void process_control_construct_invoked(sc_process_handle,
process_control_construct_t)
virtual void reset_signal_changed(sc_process_handle, const char*, reset_active_t)

users_callback_class

We have proposed a complete interface that allows user’s

application code to be notified of all the state changes that occur

in a SystemC process’s lifetime, and execute a user-defined

callback action, without a need for the user to modify the

SystemC kernel. This interface is very generic and enables

diverse and useful application areas, which we have

demonstrated on a profiling case study.

In the simulation performance analysis domain, profiling solutions

based on this process interface can produce very accurate

results, which are useful for incremental optimization of model

performance.

©2016 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, Incisive and the Cadence logo are trademarks of Cadence Design Systems, Inc.

All other trademarks and logos are the property of their respective holders. Any information related to proposed future Cadence product functionality or features

is provided for informational purposes only and does not represent a commitment to deliver any of the features or functionality discussed in the materials.

• Non-preemptive processes simulate hardware parallelism

 This models the parallel nature of electronic systems

• From the start of the simulation to the end of the simulation,

all executable code is initiated from one or more processes

• But the simulation execution is sequential

• Process execution follows a co-routine semantics: processes

voluntarily yield control, the SystemC scheduler never

preempts a process forcefully

• Two kinds of processes
• SC_METHOD: executes completely from beginning to end in each

execution, and does not maintain any local state

• SC_THREAD: maintains its own local state, and on execution can

voluntarily suspend itself using the wait() construct

• Static processes are created in the initial phases

• Dynamic processes are created during the simulation

The process instrumentation interface can be used to make

accurate simulation performance analysis, by measuring the

exact CPU time spent in each process execution.

The CPU time usage can be accumulated in simple per-process

statistical bins, so that at the end of the simulation, the total CPU

time usage of each process instance can be reported. In

combination with process activation counts, the average CPU

time of the activation of each process can be computed directly.

We applied this performance analysis application to two designs.

Performance report on the Zynq Virtual platform (top 20 processes).

Process corresponding to the processor model is highlighted in blue, it largely dominates the activity.

Process corresponding to the hardware accelerator is in green, its impact on simulation performance is very low.

Performance report on the memory controller architectural model (complete).

We propose a SystemC language extension to register user-

defined callbacks triggered at process state changes.

We ran the exact same

simulation multiple times, with

both profiling methods enabled

on each run for a reliable

comparison, and we computed

the dispersion of the results.

