
A 30 Minute Project Makeover Using Continuous
Integration

JL Gray
Gordon McGregor

Verilab, Inc.
Austin, Texas, USA

Abstract—You've just spent a week working on a complex
testbench change. You've regressed your changes and are ready
to check them in. First, though, you pull in updates from other
users and rerun regressions. Now you find that the testbench no
longer compiles, or perhaps fails to run a basic test. You're late
delivering your code and your manager is breathing down your
neck. But it's not your fault! A Continuous Integration (CI)
server can go a long way to preventing these situations. This
paper describes the features and setup of one CI server and how
you can apply it to your design projects, with minimal effort. We
consider both the technical and managerial challenges of using
continuous integration.

Keywords-component; Software testing; Computer simulation;
Logic design;

I. INTRODUCTION
You've just spent a week working on a complex testbench

change. You've regressed your changes and are ready to check
them in. However, you notice that there have been additional
check-ins since you last updated your work area. As a
thoughtful engineer you merge these changes and attempt to
run a regression one more time to make sure everything still
works. But you find that the testbench no longer compiles, or
perhaps fails to run a basic test. You are certain that your
changes are unrelated to the failure. To prove it you now have
to trace back though multiple check-ins in a clean work area to
root-cause the issue. Now you're late delivering your code and
your manager is breathing down your neck. But it's not your
fault!

If you're like most engineers, the above scenario has
happened to you. And you have almost certainly been the cause
of the problem for other engineers on your project. If we told
you that 30 minutes of work could bring you a huge step closer
to solving this issue, would you be interested?

In this paper, we will describe the problems that most teams
face in managing a quality code base and a solution that we
implemented on a recent project to resolve the issue. The
solution is setting up a Continuous Integration (CI) server to
monitor and test the quality of checked-in code. We picked the
Jenkins Continuous Integration server. Jenkins is a freely
available, open-source server that can execute regressions
whenever check-ins have been made to a revision control
system. Installing and managing the server requires little to no

interaction with the IT department, and the initial setup can, in
most cases, be performed in about 30 minutes. Jenkins works
with most common version control systems and can integrate
with your existing regression scripts. The basic requirements
for implementing such a system are covered and the typical
steps required to configure Jenkins will be explained.

After the initial setup, a period of tuning the CI server is
often required. Tuning parameters such as frequency of polling,
number of parallel jobs run by the CI server, and LSF or Sun
Grid Engine slots allocated to the server at different times of
the day will be discussed. There are also various modifications
that can be made to existing regression scripts to enhance the
integration with the Jenkins reporting methods, and these are
also considered in this paper.

Finally, and perhaps most importantly, there are often
management and engineering objections that arise when the
topic of implementing continuous integration techniques comes
up. For example, engineers (especially designers) often resist
the idea that they need to make atomic check-ins that actually
work.1 Often engineers will discover an issue before they
make a check-in, but assume the problem was caused by
someone else and is not something they need to be concerned
about. Managers who are unfamiliar with the concepts of CI
may be hesitant to change a team's working model. They will
also raise concerns about the number of engineers, licenses,
and compute nodes required to adequately support the CI
system. Each of these objections, and more, are covered along
with tips for addressing them.

After reading this paper, an engineer will be able to quickly
set up a CI server for use on his or her own project and address
engineering and management issues that will almost certainly
arise. The end result, based on our personal project experience,
is a robust system of checks and balances enabling speedy
progression toward tape-out of a quality code base.

II. THE NEED FOR CONTINUOUS INTEGRATION
Early in his career, one of the authors was in charge of the

weekly integration of changes made by various design and
verification commits. Engineers would verify their changes

1 Changes that require updates from multiple users before they will work
could be done on a branch, and then merged atomically to MAIN. Or just
let the rest of the team know the build will be broken temporarily while
all commits occur.

relative to the most recent, known good tag. Then at the end of
the week the integrator would check out the latest source from
CVS and attempt to run a regression. Chaos almost always
ensued, and the process frequently took 2-3 hours - and
occasionally a day or more. And this was for a team of only 15
people!

A couple of issues frequently occurred during the
integration:

• The merged build did not compile.

• One or more regression tests failed.

These problems were often caused by:

• Changes from one engineer conflicting with changes
from another engineer.

• Lack of validation that the initial check-in had actually
passed all relevant regressions.

• Missing files.

• Environmental differences between engineers' shells.

As it turns out, the longer the interval between integrations,
the larger the chance of failure for reasons such as those
described above. So the more frequent the integration, the
better the odds of catching problems at the source, before they
cascade into failures that can only be debugged by sorting
through the results of many multiple check-ins. If you take this
idea to its logical conclusion, it makes the most sense to
continually perform integration on any changes, as soon as they
happen. A change is made, the code is checked in, and tests are
run. If those tests fail, then the person who submitted the
failure knows that they've introduced a problem into the project
database. Emails are sent, alarms are triggered and everyone is
made aware of the issue, as close to when it happens as
possible. The two main advantages are then that the issue can
be addressed quickly, and also anyone who subsequently
checks out the code is aware that they have a potentially broken
version of the codebase. This removes the ambiguous situation
of trying to establish if changes you made had broken the code,
or if the problem already existed.

A. Basic Requirements
To make this work, there are a couple of fundamental

mindset shifts that may be required. First, the idea that the
HEAD2 of the build should be a working, viable copy, all of the
time, needs to be accepted. This is not the only version control
methodology, but it is a required part of making the shift to
using continuous integration. The justification is that the
benefits of a known, working HEAD outweigh the typical local
convenience of checking in broken code. With a known,
working HEAD in the design database, an engineer can be
certain that when they check out the latest version of the source
code that the design compiles and passes all of the tests in the
current Jenkins test suite. That base level of confidence enables
them to start working with more confidence than if the source
code was in an indeterminate state. Even if the HEAD is

2 The HEAD of a regression is the most up-to-date, last checked-in, version of
every file

temporarily broken and someone happens to check out the
database, they have a way to establish the health of the version
they accessed via the Jenkins server. Certainly it is initially
easier for each person to check-in code that may not play nicely
with other check-ins, but the overall cost to the project is much
higher. So, for CI to work, HEAD has to be a working build.

Second, it must become a primary goal to always keep the
HEAD healthy. It should be a priority to fix a broken test that is
in the HEAD of the build, as soon as the issue arises. A CI
server will allow you to highlight the broken state of the
HEAD, but there needs to be a cultural shift to keeping that
healthy, in a timely fashion, as the number one goal. It is okay
to break the HEAD, but it is not okay for it to stay broken for
long. Fostering the attitude of maintaining the health of the
build is something that different teams address in different
ways and will be discussed more in a later section.

Note that we only need to keep the main development
branch (or branches) clean for CI to work. Individuals can (and
should) create personal branches where they can check-in
unfinished or otherwise broken code. It is only when this code
is merged back into the mainline that it must compile and run
successfully. In general, use of CI strategies implies a “release
early, release often” philosophy for check-ins. Check-ins
should occur regularly, and private branches should quickly be
merged back into the mainline of the source code repository.
According to Martin Fowler, one of the main proponents of CI,
developers should commit to the mainline every day.[1]

B. Selecting a CI Server
One of the biggest hurdles to adopting continuous

integration can be simply selecting an appropriate CI server.
There are many options available. Some freely available
examples are:

TABLE I. FREELY AVAILABLE CI SERVERS[2]

Name Link
Cruise Control http://cruisecontrol.sourceforge.net

Jenkins http://jenkins-ci.org

Hudson http://hudson-ci.org

Integrity http://integrityapp.com

There are also commercial CI servers:

TABLE II. COMMERCIAL CI SERVERS

Name Link

Go
http://www.thoughtworks-studios.com/go-
agile-release-management

Bamboo http://www.atlassian.com/software/bamboo/
overview

Jenkins and Hudson are essentially the same - with Jenkins
arising out of a dispute that occurred after Oracle bought Sun.
We started with Hudson but switched to Jenkins after the main
developer of the tool, Kohsuke Kawaguchi, along with the

majority of developers, created the Jenkins fork and refocused
their efforts there.[3]

Why Jenkins? We had previous experience attempting to
get Cruise Control working with a block level verification
environment and found it difficult to extend beyond its Java
and Ant-centric origins. Hudson/Jenkins was suggested as a
more flexible alternative. We found it to be simpler to set up
than Cruise Control as well as more adaptable to EDA tool
management.

III. MAKING THE CASE
Hopelessness... despair... frustration... all this after pulling

yet another update from our revision control system and
realizing that the latest check-ins were broken again. This was
happening regularly – several times per week. The time being
wasted by the members of our distributed team was delaying
completion of key tasks. In the face of this, a decision was
made to attempt to get some sort of CI server up and running. If
it could be done quickly and without involvement from IT or
other engineers, we could at least have our own private way of
determining when something had gone wrong. As luck would
have it, Jenkins had some key features that allowed our
skunkworks project to take shape.

A. An Experiment
First, Jenkins was written in Java, and so only required that

a Java virtual machine be installed on the host server. We were
able to use the version of Java installed on the server, without
any modification. (Java version 1.6)

Second, while it can be used within a more robust web
server (e.g., Apache), Jenkins ships with an integrated web
server. Critically, we were able to get Jenkins up and running
in less than an hour and executing on one of the most
problematic block level testbenches - all without the
involvement of management, IT, or other engineers on the
project. All that was left to do was to sit back and wait for the
build to fail.

Each time the build failed, we were able to see this directly
on the CI server webpage (basic email support was not initially
available from the server we used to run the CI server). Then,
instead of spending time debugging why the latest code did not
work, we could just inform the responsible engineer and ask
them to resubmit a working version of their changes or any
files they had forgotten to commit (that was a frequent cause of
initial failures, new files that were not added to the repository
when newly dependent files were submitted). And while we
were at it, we could provide a link to the CI webpage
demonstrating the failure based on their check-in. After about a
week of this it became clear to additional team members and
management (who had, by now, seen results from the CI server
page) that the CI server was a beneficial to the team.
Effectively, we were able to significantly reduce debug time
and catch bad check-ins before they started to deeply impact
everyone's development efforts.

B. Additional Targets, Additional Teams
Initially we selected a few critical block level testbenches

that we had an active self-interest in maintaining under the
watchful eye of the CI server. As our confidence in CI grew,
we began to add targets for other block level environments, and
even the full chip environment. A key discovery was that some
blocks did not have self-checking testbenches. While CI is still
beneficial as it can catch compile-time or blatant run-time
errors (such as missing files or a tool seg fault), it is much more
useful if a self-checking regression is available. Even the
addition of a simple register test to a block-level testbench
provided significant protection against a non-functional
design.3 This then motivated the team to add at least some basic
level of self-checking to as many module-level benches as
possible.

Once the server had been running for a few weeks, we
discovered that Jenkins could read regression results if they
were in the JUnit XML format. We soon added the ability to
generate such information from our run scripts, allowing
Jenkins to start reporting not just a binary pass/fail, but the
percentage of tests from our small check-in regressions that
passed, the cause of failures, and historical data going back
across all previous check-ins.

IV. SETTING UP A CI SERVER
Ease of use is critical to the success of CI. Engineers should

be able to quickly add new regression targets and see results.
Failures should be widely distributed so that everyone is up-to-
date on the status of each relevant target. In this section we
discuss the components required for a successful CI rollout -
the server, testbenches and scripts, and feedback devices.

A. The Server
Basic setup and installation of Jenkins is startlingly simple.

You need a recent Java Runtime Environment. You download
one file. You run a single command.

java -jar jenkins.war

That is all that is required to get the web interface up and
running. You then point a web browser at
http://<server>:8080 and finish the rest of the configuration
in the browser. Jenkins can be used with most standard servlet
engines that support Servlet 2.4/JSP 2.0, such as Glassfish v2,
Tomcat 5. However, none of those are required for a small
project team. We were able to support a team of 10 engineers
running 38 build targets, using just the built-in Jenkins web
server. We did further integration, with a startup script that
rotates logfiles and a cron job to make sure the system is alive
and healthy, but those additions are not necessary when getting
started. Figure 1 below shows an example startup script for the
Jenkins server that also manages rotation of the log files each
time it is started. Figure 2 lists a typical configuration for the
logrotate tool.

3 How to architect your design blocks to be easily testable at the block
level is beyond the scope of this paper.

Figure 1. Jenkins Startup Script

Figure 2. Logrotate Configuration (logrotate.conf)

Once the server is running, the next task is to create the first
build target and hook into your revision control system. In our
case, we were using Perforce, a commercial Version Control
System, but Jenkins supports many version control systems
through plug-ins. These plug-ins are installed and configured
through the Jenkins GUI.

To recap:

1. Download the jenkins.war file from www.jenkins-
ci.org and optionally follow the installation
instructions4.

2. Create a “free-style software project”[4] for your
environment. Ensure integration with your revision
control system.

3. Ensure that your simulation run script appropriately
returns a non-zero value if it fails, as opposed to just
printing a message saying a failure occurred.

B. Testbench and Scripts
Installing the server is only the first step. The next thing to

do is to start adding targets for units in your design. We
recommend picking a small module first and build from there.
The next consideration is what subset of tests for that module
are appropriate for a useful sanity check. In our experience, the
tests or regression need to complete in a short period of time to
be most effective. An often-heard rule of thumb is that check-in
tests should take approximately 10 minutes to complete. We
found that most useful targets ran to completion in less than an

4 More formal and robust installation instructions can be found at
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins

hour, with the majority of those being under 10 minutes.
Longer tests may provide higher levels of protection, but one of
the main advantages of CI is in providing timely feedback to
avoid propagation of the bad check-in.

In addition, you can still use Jenkins to run longer tests and
nightly or weekly regressions. These are controlled by
providing a more complex build trigger or customizing the
polling schedule, in addition to the version control sensitive
check.

C. Reporting Test Results
There are a variety of ways a simulation can complete and

indicate success or failure. Jenkins uses the exit status of the
final shell to indicate the success/ failure of the overall test.
Typically, a return value of 0 (EXIT_SUCCESS in C) is
considered a pass and any non-zero value, usually 1
(EXIT_FAILURE in C) indicates an error condition.

For simulations in particular, some care has to be taken
when evaluating these exit status codes. A simulator can run
correctly, with no errors, in the simulator application and exit
with a successful status. However, it could be that it
successfully simulated a design which had a failing test. The
simulation executed as expected without problems, and
correctly simulated the failure. The exit status in this case
would indicate to Jenkins that no problem occurred, when
really the simulation that we are interested in failed. Some
failure cases, such as pointer errors, out of memory errors or
other fatal errors, assertions or exit calls from C DPI routines
may cause a simulator failure exit condition to occur. Build
errors and similar compilation fails will indicate a failure status
without modification, but verification environment and test
failures can often indicate the failure by a text message to a log
file, but still allow for a passing exit status to be returned.

Our solution to this problem is to post-process the
simulation logfile and search for known error strings. The
overall script that manages the test execution runs the
simulation, and then runs a post-processing script on the output
of the simulation. It then passes the exit status of the post-
processing script out to its own calling environment, which is
Jenkins. This somewhat convoluted passing of error statuses is
required to catch all potential failures. The post-processing
script checks for strings such as OVM_ERROR, but also
allows for exclusions, as for example, the string
‘OVM_ERROR’ appears correctly at the end of most OVM
tests, where it may show that there were no OVM_ERROR’s
seen. The post-processing script has to be intelligent enough to
overlook the cases where the words it is scanning for are used
for documentation purposes. As a further example., it is often
the case that errors might be injected into a test and you may
report ‘error injected’ into the log. The post-processing script
must not flag an error due to these sorts of informational
messages. We dealt with this by providing regular expression
masks for phrases that can be ignored for certain test logs.
Another common problem is when a simulation completes but
does no useful work (e.g., it stops at time 0), or some other
unknown and untrapped error occurs. We avoid this situation
by requiring certain strings to be seen in the log file (e.g., a
string such as ‘SUCCESSFUL END OF TEST REACHED’).

#!/bin/bash
Start Jenkins and rotate logs.
export JENKINS_BASE_DIR=/proj/work/jenkins-ci
export JENKINS_WAR=$JENKINS_BASE_DIR/jenkins.war
export JENKINS_LOG=$JENKINS_BASE_DIR/jenkins.log
export \
 JENKINS_HOME=$JENKINS_BASE_DIR/jenkins-work

Set up JAVA path if needed...
export JAVA=java

Rotate logs, then start Jenkins
/usr/sbin/logrotate –s
$JENKINS_BASE_DIR/logrotate/status
$JENKINS_BASE_DIR/logrotate/logrotate.conf

nohup nice $JAVA -jar $JENKINS_WAR >&
$JENKINS_LOG &

logrotate parameters. Taken from:
www.techrepublic.com/article/manage-linux-log-
files-with-logrotate/1052474#

compress
notifempty
/proj/work/jenkins-ci/logrotate/jenkins.log {
 weekly
}

If and only if this string occurs in the test log, is the test
considered to be a success.

We further enhanced the reporting of results in Jenkins by
using the xUnit plugin, written by Gregory Boissinot[5]. This
reads results in the popular java JUnit format and can report
details about all of the tests in a regression, rather than just an
overall pass/fail from a script as discussed in the previous
section.

We implemented this enhancement by extending our post-
processing script to generate an appropriately formatted XML
file. In our particular case, we used a Perl post-processing
script and the XML::Writer library from CPAN to generate
correctly structured XML. Similar libraries are available for
most scripting tools, or you can just generate the structured
XML that is required using general text processing. We would
recommend making use of an XML library, to ensure correct
formatting and to avoid wasting time debugging XML syntax
and structural documentation issues.

Figure 3 demonstrates the key parts of the JUnit format.
The XML header indicates the document type, and then the
various test suites are included within an enclosing
testsuites tag that provides the overall name for the
regression (results) as an attribute. In our results we include the
build and test outcomes as separate test suites, so it is easy to
recognize if a build failed or that individual tests failed, while
the overall build was healthy. The first build testcase
contains the results of the build step. The second testsuite,
with attribute test_regression, documents the result of
each individual test. Each test case can have an optional
<system-out> element, which contains the log messages
from the test execution. These are then viewable within
Jenkins, allowing users to explore test results within the GUI.
For tests that fail, a sub-element, <failure>, indicates the
problem and can provide further information about the type of
failure. For passing tests, nothing is required to indicate correct
completion other than the lack of a <failure> element. As
you can see, the XML is fairly straightforward and easy to
generate from a script that traverses your test results within the
regression run directories.

This additional level of integration with Jenkins is very
powerful, providing a history over time of particular test cases
and the pass rates for a given set of tests. These are viewable in
the GUI and can be graphed and interrogated to understand the
long-term health of the design. One caveat to this we found is
that particularly long log files can cause problems for the xUnit
parser. We worked around that issue by truncating the log files
to just the head and tail sections. These sections provided
information required to re-execute the simulation (command
line, switches, randomization seed, etc.) and associated error
and failure messages. The truncated log entry reduced the
overhead of providing all of the log messages in Jenkins,
particularly if a test was especially verbose. We also
implemented means to suppress log messages for correctly
passing tests, which again reduced the size of the reporting
files.

Figure 3. JUnit XML report format

D. Tuning Parameters
Build targets in Jenkins have a few options that can be used

to tune their behavior and performance. One of the most
important options is to determine how and when new build are
triggered. The two most likely choices are:

• Poll SCM

• Build periodically

Polling periods can be set in a fashion similar to a cron job.
To poll the repository every minute for changes, use:

* * * * *
To poll at 5 minutes past the hour, you use:

5 * * * *
When a polling window is reached, if one or more checkins

are detected Jenkins will initiate a new build of the target in
question. To prevent backups in Jenkins given limited compute
resources, we usually set the polling period relative to the
length of time it took to complete the regression. So targets that
took 10 minutes or less to complete might be polled every
minute. Targets that took an hour might only get polled once
per hour or two. And special, long-running targets such as
synthesis runs might only be exercised once or twice per week.

 To further reduce the load on licenses and compute
resources, Jenkins can implement a quiet period after it has
triggered, so that check-ins that occur close to each other
within a time window will not trigger multiple regressions, but
will just run the final checkin. This does reduce somewhat the
visibility into which specific checkin caused an error, but
assuming the system is tuned to a small window of a few
minutes, can avoid triggering failures due to common mistakes

<?xml version="1.0" encoding="UTF-8"?>

<testsuites name="results">
 <testsuite name="build" time="376"
tests="2" failures="1" passes="1">
 <testcase time="" name="sim build">
 <system-out>Log message
here</system-out>
 </testcase>
 </testsuite>
 <testsuite name=”test_regression"
time="376" tests="2" failures="1"
passes="1">
 <testcase time="166" name="test_0">
 <system-out>OVM Log message</system-out>
 <failure type="Fail"
message=""></failure>
 </testcase>
 <testcase time="210" name="test_1">
 <system-out>OVM Log message for test
one.
Log message elements can be the entire log
on multiple lines
 </system-out>
 </testcase>
 </testsuite>
</testsuites>

such as forgetting to add a new file to a commit then realizing
very quickly afterwards and checking it in a few minutes later.

You can also configure Jenkins to build targets regardless
of whether or not there have been changes detected in the build.
Though it is best practice to keep track of all items required to
build your design and testbench code, the reality is that some
things such as EDA tools and sometimes scripts are not
versioned in the same way as your design and verification
source. Thus Jenkins would not be able to tell, for example,
that the installed version of the simulator had changed such that
your code would no longer compile. Building periodically
allows for a safety check to ensure your environment has not
changed in a way that would cause an otherwise stable code
base to start failing. This periodic execution, without source
code changes, can also be used to run nightly and weekly
random regressions that vary the seed and explore more parts
of a design.

One other important parameter is the number of outstanding
parallel jobs Jenkins can execute at a time. Based on the
number of servers and licenses available to us, we did not allow
Jenkins to run more than four targets at a time. Note that each
target may still have used multiple compute nodes. So our
Oracle GridEngine batch processing software also came into
play when determining how our compute resources were
allocated.

E. Feedback
One of the fundamental ideas of CI is that if the build is

broken, everyone should know and do something about it. The
default Jenkins server will send emails to a notification list, or
the users that broke the build. However, something more
visible can prove to be very effective in keeping your build
healthy.

Jenkins has several customizable views that can indicate
project health for a kiosk style display. On our project, we set
up a very simple web server that displayed the build health in a
public area in our office. It was easy to see from the display if
any particular subsets of the design were in a broken state or
had failing tests. This feedback display happened to be in the
area where we had a brief daily status meeting so that any
issues could be discussed and then resolved quickly after the
meeting. Making sure that the build status was front and center
in everyone’s mind helped ensure that failures didn't stick
around for long. Placing the build status next to the coffee
machine can be a good place too! Jenkins can be configured to
display the username of the engineer who broke the build, so
that it is clear who caused the problem. There is also a 'game'
built into Jenkins that keeps a running score of who has caused
or fixed the most problems. Having that scoreboard visible can
also be a useful mechanism to promote build health.

An eXtreme Feedback Device (XFD) can be used to distill
all the available information from a Jenkins CI server down to
one single bit of healthy/non-healthy status and then provide a
quick, noticeable way for everyone on the project to know that
the build isn't healthy. It can become quite competitive to not
be the person to break the build. This single bit status can then
be displayed in a variety of different ways. Some XFD
suggestions include: klaxons, flashing sirens, real, full size

traffic light displays. Lights and sounds in general are good
options.

Jenkins provides a flexible query API for programmatic
control of the CI server. There are JSON, XML and Python
interfaces to the server[6]. One of the authors was able to
quickly write a simple Python script to interrogate the server to
ascertain the overall status of all builds and all tests. This
information was then communicated over a serial link to an
Arduino development system[7]. From there it is trivial with a
few components to control LEDs or relays to switch larger,
more visible feedback sources.

We found that keeping the feedback visible and fostering a
competitive attitude to not breaking the build helped us to
introduce CI to the project team. At first we could jokingly
chide people who had a broken test or check-in. After a short
period of time people started seeing the value of keeping the
overall projects healthy and would tend to fix things before
having to be asked. The publicly visible nature of the feedback
helped to reinforce this behavior change across the team.

V. CONCLUSION
The main contribution of running a Jenkins server is that it

provides accountability for breaking the codebase. Engineers
are held responsible for wasting the time of other engineers on
the project, when they check in broken code. You are left with
a high degree of visibility into the health of the design as it is
being developed. If your regression fails, you can more easily
establish if your changes are causing problems, or refer back to
the CI server to check if the code was already in a non-
functional state.

Introducing the Jenkins CI server on our verification effort
saved significant time that had previously been spent each
week debugging why the mainline of our source code
repository was non-functional. It also improved code quality by
encouraging engineers to create self-checking testbenches. In
the end, there were over 38 testbench targets configured for a
team of 10-15 engineers. This enabled a fine-grained coverage
of the status of each portion of the design and testbench. Some
portions of synthesis results were also checked, and some
random regressions were also controlled via Jenkins.

VI. REFERENCES
[1] M. Fowler, “Continuous Integration,” martinfowler.com, 01-May-

2006. [Online]. Available:
http://martinfowler.com/articles/continuousIntegration.html.
[Accessed: 30-Jan.-2012].

[2] “Comparison of Continuous Integration Software - Wikipedia, the
free encyclopedia,” en.wikipedia.org. [Online]. Available:
http://en.wikipedia.org/wiki/Comparison_of_continuous_integration
_software. [Accessed: 31-Jan.-2012].

[3] J. F. Smart, Jenkins: The Definitive Guide. O'Reilly Media, Inc.,
2011, p. 406.

[4] “Building a software project - Jenkins - Jenkins Wiki,” wiki.jenkins-
ci.org. [Online]. Available: https://wiki.jenkins-
ci.org/display/JENKINS/Building+a+software+project. [Accessed:
31-Jan.-2012].

[5] “xUnit Plugin - Jenkins - Jenkins Wiki,” wiki.jenkins-ci.org.
[Online]. Available: https://wiki.jenkins-
ci.org/display/JENKINS/xUnit+Plugin. [Accessed: 31-Jan.-2012].

[6] “Remote access API - Jenkins - Jenkins Wiki,” wiki.jenkins-ci.org.

[Online]. Available: https://wiki.jenkins-
ci.org/display/JENKINS/Remote+access+API. [Accessed: 31-Jan.-
2012].

[7] “Arduino - HomePage,” arduino.cc. [Online]. Available:
http://www.arduino.cc/. [Accessed: 03-Feb.-2012].

