
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Why not “Connect” using UVM Connect: Mixed Language

communication got easier with UVMC

Vishal Baskar

Siemens Industry Software, 46871 Bayside Parkway, Fremont, CA 94538 Vishal.Baskar@siemens.com

INTRODUCTION

Today's world deals with a lot of designs involving mixed

languages like SV and SC. This paper describes an easy method

of integrating these two languages, using TLM connections

made via UVMC. Using a UVMC example, this paper will

demonstrate how to build, connect and execute a verification

simulation with SV and SC.

With the increasing use of mixed language in today’s

semiconductor and design industry, the question arises of how to

effectively verify such complex designs. The strength of each

language can be used to provide random verification for your

model. And you can leverage the speed and capacity of SC for

verifying untimed or loosely timed system-level environments.

In this paper, we will discuss two examples, one is a simple

example dealing with TLM-1.0 and a complex example with TLM-

2.0. TLM uses transaction-based methods which can be used for

communication between modules.

DIAGRAM OF THE EXAMPLE

EXAMPLE OF SIMPLE PORT CONNECTION

In this example, packets of data are being transferred from the

SV side to the SC side via TLM 1.0 blocking transport port

using the UVM connections, and unpacking is done on the SC

side, and the bits are then sent back to the SV side, ensuring no

loss of data. To communicate, the datatype for the connections

should look the same regardless of the types. During elaboration,

in the SV side, UVMC will connect the ports whose registered

“lookup” strings match. In the example below,

“transport_port_sv_out” is the lookup string and the same look

up string will be used from the SC side.

COMPLEX EXAMPLE USING CONVERTERS

When the data types other than the generic payload are required,

one can define a conversion algorithm for all connections of a

transaction type or design a custom-made conversion algorithm

for each connection using TLM-2.0 libraries. Although both the

component agrees with the same content of the transaction, this

time their transaction definitions are of different types. A

converter can adapt different transaction definitions and at the

same time serialize the data. In the SV side, a conversion

algorithm is declared within transaction class itself which is

derived from uvm_sequence_item.

CHALLENGES AND THE FUTURE

• Earlier, the objects on the SC side should have equivalent

data types and fields with that of the SV side. This was

resolved by using a converter or an adapter that translates

between the transaction types irrespective of the data types

and sizes.

• Earlier versions of the UVMC library “do_pack” and

“do_unpack” functions implemented as methods of

transactions had their shortcomings in payload length

limiting it to not more than 4K Bytes. But with the latest

UVMC library 2.3.1, they have not only removed fixed

limitations on the data payload sizes but have also added the

support for “fast packer converters” which greatly improves

the performance.

• UVMC bridges both language boundaries by providing TLM-

1.0 and TLM-2.0 connectivity between components. The

UVMC libraries and SV UVM components can be used to

independently design and communicate without

referencing each other and can further be integrated into both

native and mixed-language environments without

modifications, making them reusable. With the increasingly

complex designs that are emerging in today's world, it is safe

to say that UVMC has the flexibility to connect different UVM

components involving SV and SC models with ease.

Abbreviations

SC: SystemC

SV: SystemVerilog

TLM: Transaction Level Modelling

UVMC: Universal Verification Methodology Connect

A consumer class with a transport port in the SC side, is created

to receive the packet on the “put” port (sv_out) and send it back

to the analysis port (sv_in) on the SV side.

A comparator function checks the transaction queues “out_q”

and “in_q” and then checks for the size of the bits in the

transactions, on the SV side.

In the connect phase, we register the producer's output port for

the UVMC connection using the search string "stimulus". The

SC side registers its consumer’s port with the same search string.

UVMC will match these two strings and complete the cross-

language connection, i.e. SV producer’s <out> port will be bound

to the SC consumer’s <in> export

SV Side:

Ideally, we would have this mirror the transaction types on the

SV-side. Or we can choose a nominal way to write our custom

converter. We will define a converter for this packet, then

connect an instance of the consumer with an SV-side producer

using a blocking transport interface conveying that transaction.

SC Side - Custom Converter:

This paper discusses two examples. One is a simple example of

data transfer by port connection and the other is data transfer

of different transaction types and sizes on both the SV and

SC side.

SV Side:

SC Side:

Producer:

Consumer:

A generic producer is parameterized on the transaction type. The

packets that are sent from the SV side are checked with the

ones that are received from the SC side and are checked for

inverted data and addresses ensuring no loss in packets during

the process.

