
What Just Happened? Behavioral 
Coverage Tracking in PSS

Tom Fitzpatrick, Wael Mahmoud, Mohamed Nafea



Authors

Wael MahmoudTom Fitzpatrick Mohamed Nafea



Agenda

• Motivation

• PSS behavioral coverage in Brief 

• Measuring behavioral coverage and scenarios’ quality framework

• Use-Cases

• Use Case I: Simple use-case

• Use Case II: DMA VIP

• Conclusion



Motivation
• Complex SoCs require testing various scenarios to ensure critical functionality.

• PSS 3.0 introduces Behavioral Coverage to measure defined scenario coverage.

• Randomized solvers in PSS generate varied scenarios, making it hard to predict 
coverage beforehand.

• Behavioral Coverage allows users to monitor solver decisions, inferred actions, 
and chosen paths during scenario generation.

• There is no native construct in PSS to track the number of unique generated 
scenarios.

• Identifying coverage holes helps refine models and constraints to meet coverage 
goals.

• A methodology is proposed to evaluate coverage, identify missed scenarios, and 
improve overall test quality.



PSS Behavioral Coverage in Brief

Data Coverage (like SV/UVM)

• Covergroups capture data values

• Including cross-coverage

• Sampled at end of action 
traversal by default

• “Transaction coverage,” i.e.:

• size of packet produced by 
send_packet action

• addr region of DMA destination

• channel used for DMA action

Behavioral Coverage

• Capture key action ordering

• Including data values

• Monitors describe scenarios

• Cover directives capture 
described scenarios

• “Scenario coverage,” i.e.:

• Did B follow A?

• Was B.x < 10?

• Did C and D overlap?



PSS Behavioral Coverage in Brief

• Monitor activity captures behaviors of interest

• Sequential traversals

• Including concatenation and eventuality

• Overlapping traversals

• The monitor equivalent of parallel

• Selection of traversals

• Either A or B

• Arbitrary combinations of these

• Includes constraints of action/flow object fields



Tracking Behavioral Coverage

• Some coverage could be tracked at compile time

• If it’s not subject to scenario randomization

• Generally not very compelling, but a possible process optimization

• Coverage must really be based on runtime behavior

• Consider parallel actions in a single-CPU multi-threaded system

• Required to analyze coverage of reactive scenarios



Measuring Behavioral Coverage
• PSS model defines critical verification intent

• Optionally debug model in Questa Portable Stimulus 
Visualizer

• Simulate PSS model in Questa using runtime QPS 
solver

• QPS Coverage extracts traversed actions post-sim

• QPS Coverage reports
• Trends and coverage of traversed scenarios

• Number of occurrences of each unique scenario

• Trend graphs to measure distribution of generated 
scenarios



Use Case I: Simple use-case

• Description:

• 4 simple atomic actions (A, B, C, and D), traversed 
inside the top_act compound action, with each 
pair of actions traversed inside a select activity 
statement

• Results:

• There are four possible traversals of the activity

• {sequence {A}; {C};}

• {sequence {A}; {D};}

• {sequence {B}; {C};}

• {sequence {B}; {D};}

component pss_top {

action A { }
action B { }
action C { }
action D { }

action top_act {
activity {

repeat (150) {
select {do A; do B;}

select {do C; do D;}
}

}
}

}



Use Case I: Simple use-case (Cont.)
• Description:

• Modified version of the previous example by adding a schedule statement

• Results:
• There are 12 possible traversals of the activity, as shown below:

1. sequence {parallel {A; C;}}

2. sequence {parallel {A; D;}}

3. sequence {parallel {B; C;}}

4. sequence {parallel {B; D;}}

5. sequence {sequence {A; C;}}

6. sequence {sequence {A; D;}}

7. sequence {sequence {B; C;}}

8. sequence {sequence {B; D;}}

9. sequence {sequence {C; A;}}

10. sequence {sequence {C; B;}}

11. sequence {sequence {D; A;}}

12. sequence {sequence {D; B;}}

• All possible scenarios were randomly traversed within the 150 loop iterations

component pss_top {
action A { }
action B { }
action C { }
action D { }
action top_act {

activity {
repeat (150) {

schedule {
select {do A; do B;}
select {do C; do D;}

}
}

}
}

}



Turning Stimulus Into Coverage

Sequential Behavior

• Stimulus Activity

sequence {do A;do C;}

• Monitor Activity

sequence {do A;do C;}

concat {do A;do C;}

eventually {do A;do C;}

• In this example, the three 
monitor activities are the same

Parallel Behavior

• Stimulus Activity

parallel {do A; do C;}

• Monitor Activity

overlap {do A; do C;}

• overlap indicates either

• C starts before A ends, OR

• A starts before C ends

A C

A

C

A

C

A

C



Defining a PSS Scenario

m::fill

mbuf

m::m2m

mbuf

mbuf

m::dump

mbuf

m::dump

mbuf

m::m2m

mbuf

m::p2m

mbuf

pstr

m::m2p pstr

mbuf

m::mcpy

mbuf

mbuf

p::p2mpstr

pbuf

p::dump

pbuf

p::load

pbuf

p::m2p

pbuf

pstr

p::p2mpstr

pbuf

m::p2m pstr

m::m2p pstr

mbuf

p::m2p

pbuf

pstrm::m2m

mbuf

mbuf

m::mcpy

mbuf

mbuf

m::fill

mbuf

An activity defines the

schedule of action execution

m::m2m

mbuf

mbuf

m::fill

mbuf

constraint mdump.ibuf.step == 3;

activity {

repeat (4) {

select {

p2m with {obuf == mdump.ibuf;};

m2m with {obuf == mdump.ibuf;};

}

mdump;

}

}

step=3

step=2

step=1

step=0

step=2

step=1

step=0



Analyzing the Possibilities

m::dump

mbuf

m::m2m

mbuf

m::mcpy

mbuf

An activity defines the

schedule of action execution

constraint mdump.ibuf.step == 2;

activity {

repeat (4) {

select {

p2m with {obuf == mdump.ibuf;};

m2m with {obuf == mdump.ibuf;};

}

mdump;

}

}

m::p2m pstr p::p2mpstr

pbuf

p::m2p

pbuf

pstrx3

mbuf

m::m2p pstr

mbuf

m::fill

mbuf

m::m2m

mbuf

mbuf

m::fill

mbuf

m::m2m

mbuf

mbuf

m::mcpy

mbuf

m::fill

mbuf

m::p2m pstr p::p2mpstr

pbuf

p::load

pbuf

{m2m;dump}:7



Analyzing the Possibilities

m::dump

mbuf

constraint mdump.ibuf.step == 2;

activity {

repeat (4) {

select {

p2m with {obuf == mdump.ibuf;};

m2m with {obuf == mdump.ibuf;};

}

mdump;

}

}

m::p2m

mbuf

pstr p::p2mpstr

pbuf

p::m2p

pbuf

pstrm::m2p pstr

mbuf

m::fill

mbuf

m::m2m

mbuf

mbuf

m::mcpy

mbuf

m::fill

mbuf

m::p2m pstr p::p2mpstr

pbuf

p::load

pbuf

{p2m;dump}:3



Use Case II: DMA VIP (Results)
• Behavioral Coverage

c1: cover {
activity {
sequence {
do cb_mem_c::cb_mem_mcpy; 
do cb_mem_c::cb_mem_m2m;

}
}

}

m::dump

mbuf

m::m2m

mbuf

m::mcpy

mbuf

mbuf

m::fill

mbuf

m::m2m

mbuf

mbuf

m::dump

mbuf

m::m2m

mbuf

m::mcpy

mbuf

mbuf

m::fill

mbuf

m::mcpy

mbuf

mbuf

m::dump

mbuf

m::m2m

mbuf

m::m2m

mbuf

mbuf

m::fill

mbuf

m::mcpy

mbuf

mbuf

c2: cover {
activity {
concat {
do cb_mem_c::cb_mem_mcpy; 
do cb_mem_c::cb_mem_m2m;

}
}

}

m::m2m

m::mcpy

m::m2m

m::mcpy

m::m2m

m::mcpy

m::m2m

m::mcpy

m::m2m

m::mcpy



Conclusion

• As SoCs get more complex, PSS models are getting bigger

• Scenario coverage is applicable at block, sub-system, and full system

• Post-processing allows scenario coverage to be extracted 

• Questa measures all generated PSS scenarios with a variety of metrics

• Total number of unique scenarios

• Distribution of generated scenarios

• Two use cases used to explain the proposed framework



Questions


