

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 24-27, 2025

What Just Happened? Behavioral Coverage Tracking in PSS

Tom Fitzpatrick, Wael Mahmoud, Mohamed Nafea

SIEMENS

Authors

Tom Fitzpatrick

Wael Mahmoud

Mohamed Nafea

Agenda

- Motivation
- PSS behavioral coverage in Brief
- Measuring behavioral coverage and scenarios' quality framework
- Use-Cases
 - Use Case I: Simple use-case
 - Use Case II: DMA VIP
- Conclusion

Motivation

- Complex SoCs require testing various scenarios to ensure critical functionality.
- PSS 3.0 introduces Behavioral Coverage to measure defined scenario coverage.
- Randomized solvers in PSS generate varied scenarios, making it hard to predict coverage beforehand.
- Behavioral Coverage allows users to monitor solver decisions, inferred actions, and chosen paths during scenario generation.
- There is no native construct in PSS to track the number of unique generated scenarios.
- Identifying coverage holes helps refine models and constraints to meet coverage goals.
- A methodology is proposed to evaluate coverage, identify missed scenarios, and improve overall test quality.

PSS Behavioral Coverage in Brief

Data Coverage (like SV/UVM)

- Covergroups capture data values
 - Including cross-coverage
- Sampled at end of action traversal by default
- "Transaction coverage," i.e.:
 - size of packet produced by send_packet action
 - addr region of DMA destination
 - channel used for DMA action

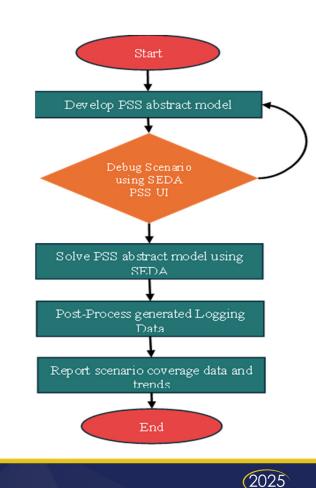
Behavioral Coverage

- Capture key action ordering
 - Including data values
- Monitors describe scenarios
- Cover directives capture described scenarios
- "Scenario coverage," i.e.:
 - Did B follow A?
 - Was B.x < 10?
 - Did C and D overlap?

PSS Behavioral Coverage in Brief

- Monitor activity captures behaviors of interest
 - Sequential traversals
 - Including concatenation and eventuality
 - Overlapping traversals
 - The monitor equivalent of parallel
 - Selection of traversals
 - Either A or B
 - Arbitrary combinations of these
- Includes constraints of action/flow object fields

Tracking Behavioral Coverage


- Some coverage *could* be tracked at compile time
 - If it's not subject to scenario randomization
 - Generally not very compelling, but a possible process optimization
- Coverage must really be based on runtime behavior
 - Consider parallel actions in a single-CPU multi-threaded system
 - Required to analyze coverage of reactive scenarios

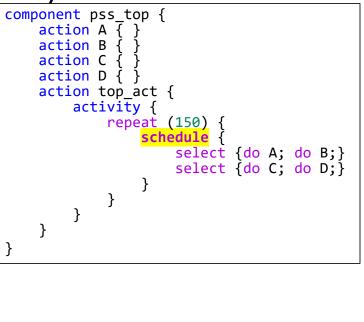
Measuring Behavioral Coverage

- PSS model defines critical verification intent
 - Optionally debug model in Questa Portable Stimulus Visualizer
- Simulate PSS model in Questa using runtime QPS solver
- QPS Coverage extracts traversed actions post-sim
- QPS Coverage reports
 - Trends and coverage of traversed scenarios
 - Number of occurrences of each unique scenario
 - Trend graphs to measure distribution of generated scenarios

Use Case I: Simple use-case

- Description:
 - 4 simple atomic actions (A, B, C, and D), traversed inside the top_act compound action, with each pair of actions traversed inside a select activity statement
- Results:
 - There are four possible traversals of the activity
 - {sequence {A}; {C};}
 - {sequence {A}; {D};}
 - {sequence {B}; {C};}
 - {sequence {B}; {D};}

com	act	ent p ion ion	Α {	}	{						
action C { }											
action D { }											
	act	ion	top_	_act	{						
		act	ivi	ty {							
			rep	beat	(150)) {					
					sele	ect	{do	A;	do	B;}	
					sele	ect	{do	C;	do	D;}	
			}								
		}	-								
	}	-									
}											
}											


Use Case I: Simple use-case (Cont.)

• Description:

• Modified version of the previous example by adding a **schedule** statement

• Results:

- There are 12 possible traversals of the activity, as shown below:
 - sequence {parallel {A; C;}}
 sequence {parallel {A; D;}}
 - sequence {parallel {B; C;}}
 sequence {parallel {B; C;}}
 - 4. sequence {parallel {B; D;}}
 - 5. sequence {sequence {A; C;}}6. sequence {sequence {A; D;}}
 - o. sequence {sequence {A; D; }}7. sequence {sequence {B; C; }}
 - 8. sequence {sequence {B; D;}}
 - 9. sequence {sequence $\{C; A;\}$ }
 - 10. sequence {sequence {C; B;}}
 - sequence {sequence {D; A;}}
 sequence {sequence {D; B;}}
- Scenario Distribution 20.0 17.5 15.0 ence 12.5 Occur 10.0 7.5 5.0 2.5 0.0 52 3 S 5 50 5 30 520 527 522 5 3 Scenario Mapping

• All possible scenarios were randomly traversed within the 150 loop iterations

Turning Stimulus Into Coverage

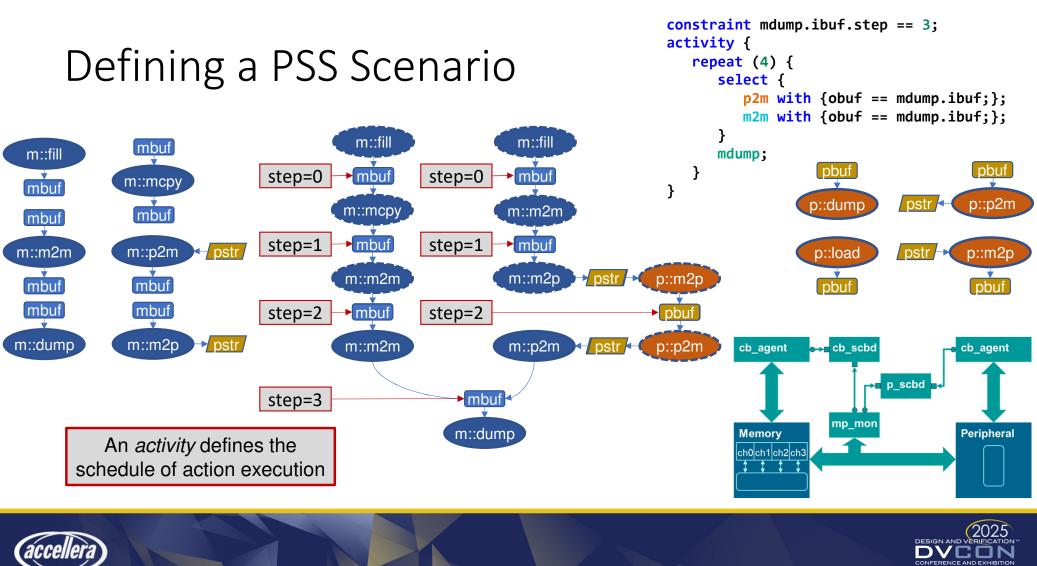
Sequential Behavior


Α

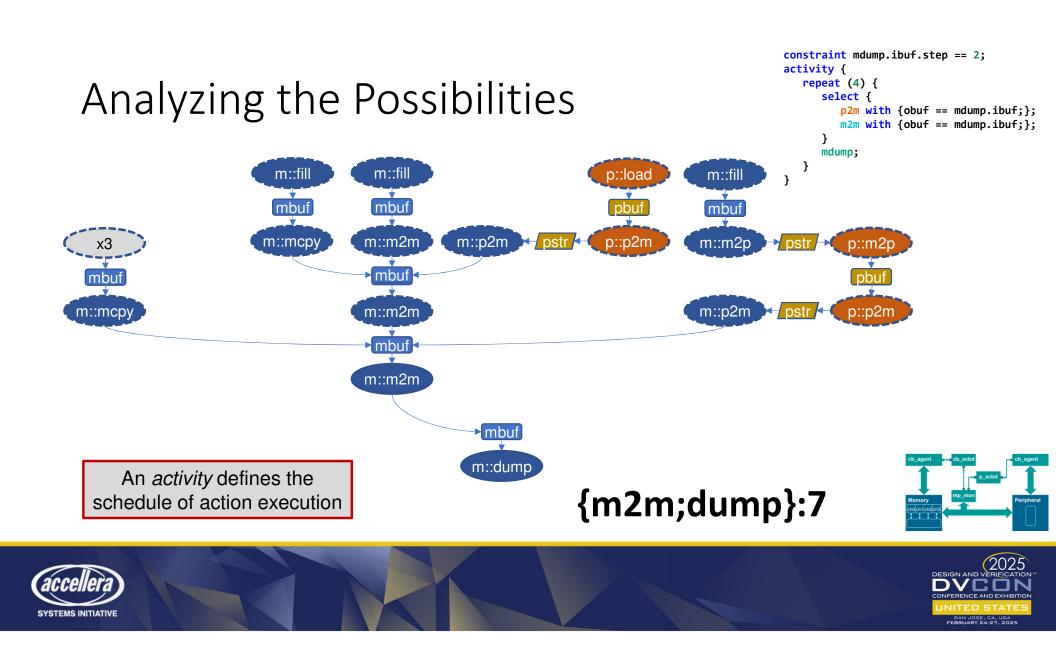
- Stimulus Activity sequence {do A;do C;}
- Monitor Activity
 sequence {do A;do C;}
 concat {do A;do C;}
 eventually {do A;do C;}
- In this example, the three monitor activities are the same

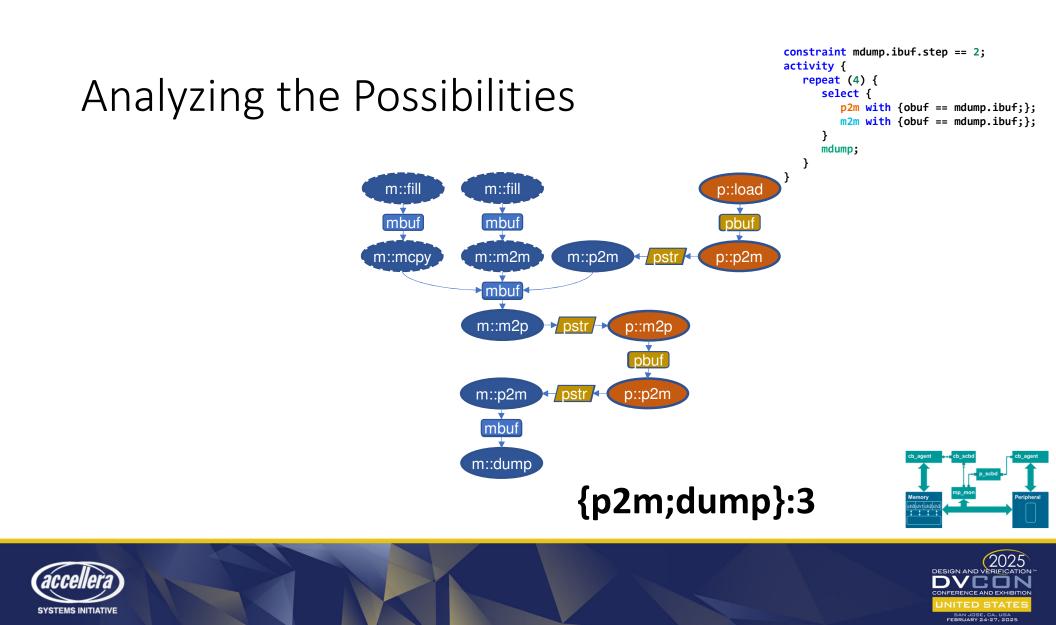
C

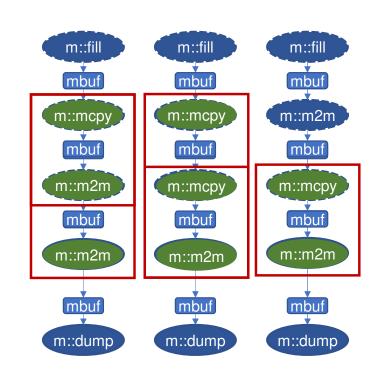
Parallel Behavior


- Stimulus Activity
 parallel {do A; do C;}
- Monitor Activity
 overlap {do A; do C;}
- overlap indicates either
 - C starts before A ends, OR
 - A starts before C ends

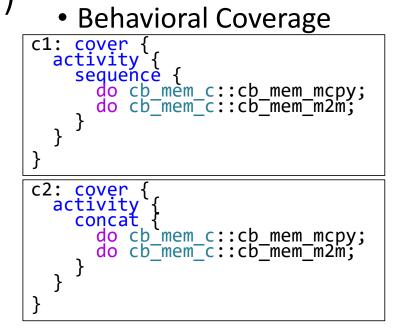
Α


С

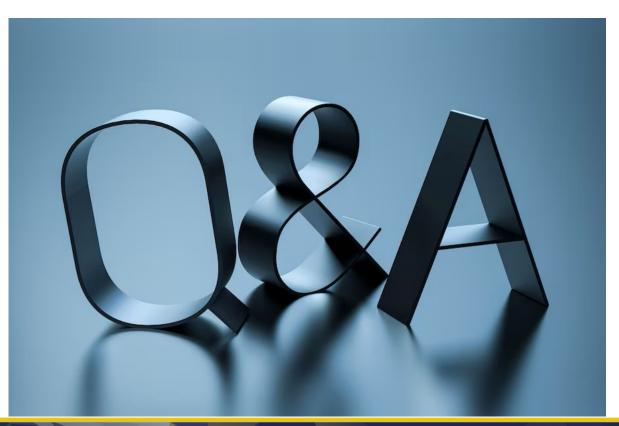




SAN JOSE, CA, USA FEBRUARY 24-27, 2029


SYSTEMS INITIATIVE

Use Case II: DMA VIP (Results)


Conclusion

- As SoCs get more complex, PSS models are getting bigger
- Scenario coverage is applicable at block, sub-system, and full system
- Post-processing allows scenario coverage to be extracted
- Questa measures all generated PSS scenarios with a variety of metrics
 - Total number of unique scenarios
 - Distribution of generated scenarios
- Two use cases used to explain the proposed framework

Questions

