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Abstract—Memory Wall and Power Wall are redefining the
hardware and software design paradigms. The impact on Hard-
ware Verification is two fold. System Level Verification and
Coverification of Hardware and Software are gradually becoming
mainstream. On the other hand changing profile of servers that
run simulations makes it imperative that we take a re-look at
the contemporary simulation and verification tools that were
essentially designed with single server core and with RTL in
mind. In this paper we take a look at how opensource verification
language Vlang intends to fill the void.

I. INTRODUCTION

With the ever increasing verification gap (Fig 1), the focus
of functional verification is gradually shifting to System Level
Verification. Most System-on-Chip (SoC) designs have one or
more processor cores integrated on the device. Often, when the
chip comes back from the foundry, more effort is required in
bootstrapping the integrated processor cores and loading the
software drivers than in analyzing the hardware waveforms.
Obviously, pre-silicon coverification of software along with a
model of the hardware would infuse more confidence in the
team responsible for verifying the SoC design as well as the
team developing and testing the systems software.
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Fig. 1. Verification Gap (adapted from [1])

There are other factors as well that need our attention.
After over four decades of relentless run, the Moore’s Law
(Fig 2) has hit bottlenecks, that are widely known as Power
Wall and the Memory Wall [2]. As the clock frequency of the
processors quadrupled every three years, the power consumed
by the chips increased at an alarming rate. Over the last one
decade, practical constraints imposed by heat dissipation of

the computing engines has put a hard limit on the frequency
these processors can operate at.
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Fig. 2. Server CPU Trends (adapted from [3])

The Memory Wall has its implications too. Over the years,
the memory systems failed to keep up with the rise of clock
frequency of processor cores. During the last decade, as
processor companies pack more and more cores on the same
processor, the problem has compounded as these processor
cores get to share the memory system’s bandwidth [4].

A. The Path Ahead

A generational shift is underway in the way software and
hardware are designed. Constraints on the CPU frequency has
led the designers to package multiple processor cores on the
same device. Software design paradigms are also undergoing a
transformation. Researchers are looking at ways to limit access
to memory by reducing the number of bits required to perform
a computation, even if it requires slightly more compute cycles
[5].

In the past, frequency scaling of newer generation pro-
cessors helped software to handle increasing need for high
performance computing.

Data Processing on FPGA [2] is another trend to help
compensate for the performance deacceleration imposed by
Power Wall. In future, application software would be able to
take advantage of application specific computation accelerators
in form of highly configurable FPGAs packaged along with
the processors [6].



B. The Future of Design Verification

The profile of the systems being designed is changing.
Fig 3 illustrates how Ethernet bandwidth is increasing over
time. In the past network communication stack were mostly
handled by software running on network processors, with the
role of hardware remaining limited to Layer 2 and below.
With network bandwidths exceeding the compute capacity of
the processors by an order of magnitude, today, hardware
accellerators are often deployed to handle network protocols
even at Layer 3 and 4. As the hardware penetrates domains
that were earlier exclusively handled by software, the stimulus
generation for hardware verification becomes correspondingly
more complex. The intricate interaction between hardware and
software also needs to be tested, making hardware software
coverification absolutely essential.
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Fig. 3. Ethernet Timeline and Growth of network bandwidth (Diagram Source
[7])

There is bound to be a significant impact on the Hardware
Verification tools as well. Over the past decade, SystemVer-
ilog Hardware Verification Language (HVL) [8] has become
the de-facto standard for functional verification of chips. A
majority of FPGA and chip designers use Verilog language to
code RTL and a SystemVerilog based testbench integrates well
into the simulator without any runtime overhead. On the other
hand, any foreign language or tool would incur significant
runtime penalty due to inefficacy of integrating the tool via
Verilog Programming Language Interface (PLI). Ironically, the
inventors of Verilog had functional verification in mind when
they first introduced PLI.

Until a decade back, the increase in complexity of verifi-
cation due to rising number of transistors was partly offset
by faster server machines running simulations. But with the
advent of multicore servers, the verification tools have failed
to keep up with the shift in compute server technology. The
loss is not obvious when pertaining to the RTL verification
domain. But as we shall see in the next section, it becomes a
severe impediment in the System Level Verification arena.

II. MULTICORE TESTBENCHES

Multicore parallelism is exceptionally useful when verifying
system level designs. At RTL level, more often the discrete
event simulation of the RTL design itself consumes more

server resources compared to the resources utilized by the
testbench. An RTL simulation runs very slow (often processing
just about 1-10 transactions in a second). Making the test-
bench faster would not gain much for RTL simulations. In
contrast, a system level simulation, whether it runs on a virtual
platform or on an emulation platform, typically processes
over a hundred times transactions when compared to RTL
simulations. Using multiple threads to generate transactions
parallelly therefor makes much more sense when running
system level simulations.

Fig 4 illustrates the impact of testbench execution time on
a simulation that runs on a simulator that uses a single thread.
Since only a single thread is available to the simulator, when
the Design Under Test (DUT) seeks a transaction from the
testbench, the testbench takes a significant period of execution
time to prepare the transaction and make it available to the
DUT.

Design

Testbench

Design

Testbench

Server Run Time

Fig. 4. A non-multicore testbench driven design simulation running on a
single thread

Fig 5 illustrates the same testbench running on a simulator
that has multicore testbenching capabilities. As the design
simulates for a transaction cycle, the testbench simultaneously
kicks in. When the design seeks a transaction on the testbench,
it simply has to pull it from the testbench and moves on. Par-
allelly, on a set of concurrently running threads, the testbench
too moves on to build the next set of transactions for the next
cycle.
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Fig. 5. A multicore enabled testbench driven design simulation running on
multiple threads

A common abuse of multicore parallelism is apparent in
running multiple simulations together on a processor as is
widely done in the verification regression farms. This practice
is a direct affront to the Memory Wall. Each of the running
regression job has its own memory footprint. All the cores
of the processors share the same access to the main memory



of the server and in many cases, the cores share the Level
3 cache as well. When multiple single threaded processes are
executed on the same processor, together the jobs result in that
much bigger memory footprint, and that much more constraint
on the external memory access and level 3 cache. In contrast,
a multithreaded concurrent simulation job would harness the
power of multiple processor cores and since all the threads
operate on the shared memory map, it does not translate to
any extra load on the memory subsystem of the server.

A. Multicore Testbench Enablers

At the core of a Vlang Multicore testbench is a discrete
event simulator capable of running multiple simulation tasks in
parallel. There are a number of multicore programming strate-
gies. Of these, Vlang chose the shared memory approach for
its wide acceptability especially in the systems programming
domain.
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Fig. 6. Vlang’s multicore simulator executes multiple tasks parallelly on
multiple threads

Normally, a discrete event simulator would list the tasks
that are triggered by a particular event or on a given time.
The tasks are then activated one by one using cooperative
threading. Cooperative threading in a normal simulator would
execute all the tasks on one CPU thread. A multicore enabled
simulator, would run the tasks to be executed, on a number
of CPU threads. When multiple threads are used in such a
way, a number of issues related to parallel programming crop
up and need to be addressed. A good multicore programming

approach is to address these issues at the library level and
provide a normal interface to the end user.

Vlang’s approach is to group all the tasks that might share
data into a separate group and run this group entirely on the
same thread. As illustrated in Fig 7, in a UVM based verifi-
cation environment there is very little shared data between
various uvm_agents (a uvm_component that generally
corresponds to the abstraction of a Verification IP). Vlang
automatically forms a group of tasks (UVM component level
run_phases) that belong to a given UVM agent. A user
defined attribute is available to the end-user to customize the
task grouping, when required.
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Fig. 7. Vlang’s multicore simulator executes multiple tasks parallelly on
multiple threads

When multiple threads are run concurrently, care has to
be taken to maintain random stability. If a common random
generator is used by all the threads, it would lead to a race
condition where concurrently running threads could invoke the
random generator in an undetermined order. This would lead to
generation of different random stimulus in a repeat simulation
run. Vlang takes care of this issue by seeding each thread
with its own random generator. The seeding is done at the
time of creation of threads. The threads are created by the
scheduler, which executes on a single thread, and therefor in
a determinitic fashion, thus maintaining random stability.

III. HARDWARE SOFTWARE COVERIFICATION

As discussed in Section I, an embedded software engineer
is often the first level user of an SoC. It is also a fact that due
to Power Wall, processor frequency is no longer increasing
with passage of time as it used to a decade back. As a result
hardware is being used more often in systems to accelerate
processing of transactions. The integration of hardware and
software in a system has therefor become more intricate than
ever before. It has become difficult to test software and verify
hardware in isolation.

In this section we take a look at essential enablers of
coverification.



A. C ABI Compatibility

Inspite of system prefix, SystemVerilog has failed to provide
any features that enable hardware software coverification. In
Section I-B, we saw how SystemVerilog benefitted from provi-
sioning the same compiler for RTL design and for verification.
In contrast, stand-alone verification languages have to depend
on PLI layer to communicate with the simulator.

When it comes to System Level Verification, things turn
upside down. System level design platforms often involve vir-
tual platforms and emulation platforms, which almost always
provide API in C language. A language like SystemVerilog
would require either PLI or DPI interface to integrate with
system level platforms, thus incurring avoidable runtime over-
head.

UVM connect [9] is a popular package created for the
purpose of integrating SystemVerilog based verification with
system level designs coded in SystemC. Under the hood,
when a transaction generated in SystemVerilog is passed on
to SystemC, UVM connect packs the transaction into a byte
array and passes the array to SystemC (essentially C++).
Any transaction based response from the SystemC world also
goes through a similar transformation. On top of packing and
unpacking, some runtime overhead due to DPI interface is also
incurred.

Bitfields and packed structures are often used by C/C++
programmers to map array buffers directly into various fields
of a transaction. Packed structures and arrays are also possible
in SystemVerilog, but lack of low level pointer operations
and casting capabilities in SystemVerilog make such packed
constructs inefficient, thus forfeiting the purpose of their
existence.

Vlang is build on top of D language, which maintains a
complete ABI compatibility with C programming language. D
programming language also maintains almost complete back
compatibility with C. Any function written in C can be directly
called in the D language code without incurring runtime or
memory overhead.

B. Native Compilation

Vlang (and the underlying C Language) compiles to native
assembly code and therefor it can be accessed from any envi-
ronment that runs natively on the server. Native compilation
is a useful property for maximizing the runtime efficiency of
the testbench. D programming language also allows you to
integrate assembly language code into your application to fix
any run-time bottlenecks.

C. Systems Programming

Wikipedia defines a systems programming language as. . .
A system programming language usually refers to
a programming language used for system program-
ming; such languages are designed for writing sys-
tem software, which usually requires different devel-
opment approaches when compared with application
software.

It is imperative that a systems programming language would
be used for developing software at system level. Any language
that supports hardware software coverification has to intrinsi-
cally integrate with the software. It should also be possible
that certain chunks of code otherwise belonging to systems
software are required to be coded in the verification language.

IV. A COVERIFICATION USECASE

In this section we take a look at a quick use-case of
coverification.

One of the oft-used platform for embedded software devel-
opment is QEMU. The tool lets software developer compile
and run software for the target processor in a caged emulation
setup at a reasonably fast speed.

While some hardware modules are still under development,
it is often desired that the hardware simulation is tested
along with the software that is being concurrently developed.
In many cases the software’s interaction with the hardware
module is limited to the Hardware Abstraction Layer (HAL).
A Coverification setup in such cases boosts the confidence
of the software team responsible for developing the software
driver code. In some other cases, the software is part of the
data plane and could be sending/receiving transactions to a
hardware module. In such cases, both hardware and software
designers tend to gain confidence by successfully simulating
and verifying hardware and software together.
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Fig. 8. Coverification setup integrating QEMU based SDK with Vlang
verification platform

For our coverification setup (Fig 8), we assume that the
software is running in a QEMU based caged environment
on a host machine that also runs simulation for one or
more hardware modules. The system software running on the
QEMU based virtual machine generates transactions and needs
to communicate these transactions to the hardware simulation.
The hardware model being simulated, is required to send a
response after processing the transaction.

One of the fastest channels of communication between
QEMU and the host machine can be setup using a Virtual
Ethernet Tap. Unlike a wired Ethernet port, a virtual tap can be
configured to enable read/write access to a particular linux user



or group. Thus, except at the time of creation of a virtual tap,
no superuser permissions are required to access the tap port
from a simulation environment. It is trivial to create a set of
tap ports as part of an init script on the servers commissioned
for running simulations.

The Vlang Verification IP for Ethernet comes packaged with
ability to read/write packed Ethernet frames from a virtual
tap. The verification IP forks out a linux posix thread for
listening on the port. When it sniffs a packet, it pushes the
packet into a UVM fifo specifically designed to interface
with Vlang simulator on one end and asynchronous software
on the other. Note that the posix thread spawned by Vlang
for sniffing on the virtual tap, is quite unlike normal Vlang
tasks. A normal Vlang task uses cooperative threading and is
controlled by Vlang’s scheduler. The posix thread is like any
other independent posix thread controlled by the Linux Kernel
scheduler.

Vlang simulator’s interface with regular asynchronous soft-
ware is defined by a pair of Fifo architectures specifi-
cally sculpted for this purpose. The Fifo designed for re-
ceiving transactions from the software has been nomen-
clated as uvm_tlm_fifo_ingress. Its counterpart for
transferring data to the software world has been named as
uvm_tlm_fifo_egress. A normal tlm fifo in UVM uses
simulator events to block read/write methods. These Vlang
Fifo’s created specifically for interfacing with software use
events on UVM end and software semaphores to block on the
software end.

The rest of the Vlang Ethernet VIP works like any other
Ethernet VIP architected in UVM. A virtual sequencer is used
to route the transactions sniffed on the virtual tap to the driver.
When configured as a stand-alone tool, the VIP is capable of
generating constrained randomized Ethernet packets that can
be used to cover the corner cases.

V. WHY D? (OR WHY NOT C++)?

As mentioned above, SystemVerilog fails to meet the chal-
lenging requirements of System Level verification. In author’s
view, any new functional verification language, that must sup-
port system level testing, should fulfil the following criteria:

1) Must be a modern System Programming Language.
This is an obvious criterion given the need of suitable
solutions in the hardware/software co-verification space.

2) Must be Open Source, and available under a license that
allows commercial use.

3) Must allow language extension at library level.
4) Must provide ABI compatibility with C/C++. There is

a very vast amount of C/C++ code in the wild and
SystemVerilog DPI experience [10] shows that data
conversion while passing function parameters becomes
a runtime bottleneck.

Fortunately, the very first of the above mentioned criteria,
brings down the choice to only four contemporary program-
ming languages [11]: C++, D [12], Go [13] and Rust [14]. Of
these, Rust is in nascent state of development and Go does

not meet criteria 3 and 4. Thus our options get limited to only
C++ and D.

While C++ has the obvious advantage of a large user base,
it is difficult to build a DSL on top of it without having to
overly depend on the C pre-processor. In Comparison, D, as we
shall see in Section V-A, provides a multitude of features that
make extending the language a lot convenient. Additionally, in
that section we shall also see that D also provides features that
make it more suitable for hardware modelling and verification.

A. Motivation for Selecting D as Base Language
The D Programming Language is an evolution of C++. D

has multiple features that make the language more suitable
for building a Design Specific Language on top of it. These
include:

1) Reflections: D allows a programmer to introspect the
structure of code and make changes to its runtime behaviour.
Vlang uses reflections to generate UVM util functions and
to give out compile time error, when the end-user fails to
provide necessary attributes. Reflections in D are compile-time
and therefore do not have any undesired effect on runtime
performance or memory footprint of the application.

2) User Defined Property (UDP): A D user can add UDPs
to any declaration in the code. These UDPs are then made
visible at compile time. This is a convenient feature that allows
modification in the code behaviour on basis of presence or
absence of certain attributes. Vlang uses this feature to provide
@rand attribute that tags class elements that are required to
exhibit randomization behavior. Note that UDP is a compile-
time feature and does not add to runtime application memory
footprint.

3) Compile Time Function Evaluation (CTFE): CTFE in D
is very powerful. There are very few D constructs that are not
allowed to be evaluated at compile-time. Vlang uses CTFE to
implement a parser for constraint blocks.

4) Mixins: A mixin enables change in behaviour of a class
by allowing addition of code at compile time. D allows string
as well as template mixins. Vlang’s constraint engine converts
the parsed constraint into BDD equations at compile time and
uses string mixins to insert the BDD equations.

Additionally, the D Programming Language has multiple
features that make it more attractive to hardware verification
engineers:

5) Automatic Garbage Collection: An automatic GC takes
away the pain of memory management away from the end-
user. [15] notes that modern garbage collectors are not a source
of inefficiency. Also, when required, D allows a user to take
control of memory management by allowing him to shut down
the GC on certain portions of the code.

6) First Class Arrays: Unlike C/C++, a D array object is
a fat pointer that stores both the address and the length of an
array. D also has support for dynamic arrays, slices and array
operators that make vector operations in D very convenient.

7) Associative Arrays: D supports associative arrays as a
language feature. This basically means that the user does not
have to rely on a library and that D enables a convenient/read-
able syntax for associative arrays.



8) Class Objects are References: Like Java, class objects
in D are references by default. The keyword struct is still
available for creating value type objects and plain old data
type objects that are compatible with C/C++.

9) Unittest: The unittest construct in D makes it con-
venient to add localized test blocks to D code. These tests can
be used to verify the test-bench. Unit level test support is not
native to SystemVerilog and verification engineers have to rely
on non-native library support such as [16].

10) A Pointer-less Programming Experience: Most of D
code (thanks to first class arrays and automatic garbage
collection), is devoid of pointers. Pointers are still available
to enable low level memory and IO access.

11) Application Binary Interface (ABI) Compatibility and
C/C++ interface: D allows native calls to any C/C++ global
and namespace scoped functions. D also allows the user to
directly call a virtual member function of a C++ class object.
Unlike SystemVerilog DPI, there is no runtime overhead while
calling C/C++ functions from inside D or vice versa.

12) Generic Programming: D has extensive support for
generic programming and meta-programming. It ships with a
powerful library of data structures, algorithms and other utility
modules.

VI. FUTURE WORK

The future and future work of Vlang is very interesting and
we want to place a brief update on that.

A. Software Engineering Based Methodology

One of the very important reason for D to be the base
language of Vlang is that D makes Vlang a SW domain
language which provides a clean and extremely pleasurable
coding experience to user. Every methodology in verification
is a direct import of test concepts in SW engineering domain.
Hence, work towards Vlang methodology will be directly
attributed towards exporting SW engineering concepts on
Vlang level directly so that Vlang can be a playground of
verification concepts.

B. Support for Emulation Platform

As a verification language with full and native support for
systems programming language Vlang is the most suitable ini-
tiator in emulation platform development and hence a library
can be developed on the top of Vlang to support emulation.

C. Verification IPs

We are in the process of creating a set of standard VIPs
that will also integrate seamlessly with software development
tools.

Vlang as an open source verification language provides
an immediate working platform to academia and enthusiast
and expects itself to be exploited in academic and industrial
research environment and result of these activities will greatly
decide the future direction Vlang development.
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