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Testbenches for System Level

> State-of-the-art HVLs like SystemVerilog ] SIMULATION
were drafted with RTL simulation in mind RUN TIMES

» SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

» SV DPI overhead adds to testbench
performance woes

RTL

|
[ | TESTBENCH

ESL Testbenches need to be ...

> Faster by at least an order of magnitude
> ABI Compatible with C/C++
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HVLs Are Essentially Single Threaded

> Both SystemVerilog and SystemC (as of now) run on a single OS thread
» SV/SystemC use Cooperative Threading for Fork/Spawn

» Testbench can be made efficient by invoking concurrent threads

» And even more efficient by running the testbench in parallel

DUT Testbench DUT Testbench
Server Run Time

DESIGN AND VERIFICATION™
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Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

v

It will have minimum 60 and a maximum 72 cores

v

Each core will run 4 threads in parallel

» With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

v

KNL will also have a minimum 16GB on-chip DRAM

» To maximize potential, Go Parallel
» Running multiple simulations on a Multicore Server is the quickest way to hit
Memory Wall

» Multicore is here to Stay! Are you Ready!!
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Vlang is Multi-Core Enabled

Runnable
Processes
ist?

es II
7
Processes
R

<]

» Vlang Simulator comes Pase I No
fitted with a Multicore Task |
Scheduler

Process Immediate

Process Channel
Update Requests

—¢
Process Delta
Notifications

» Customizing Multicore

Delta Yes Process Timed
Parallelism in Vlang is easy Exist
meed Yes JAN

Exist?
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Vlang is Multi-Core Enabled

class TestBench: RootEntity {
uvm_root_entity! (apb_root) tb;
this(string name) {

» Vlang Simulator comes super (name) ;
fitted with a Multicore Task ) ’
Scheduler int main() {

. . TestBench test =
» Customizing Multicore new TestBench(”test”);

Parallelism in Vlang is easy test.multiCore(4, 0);
test.elaborate();
test.simulate();
return 0;
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Vlang UVM Innovation - Multi Core UVM

» Most System Level Designs have multiple (TLM) Interfaces

» Each (TLM) Interface requires a VIP (orauvm_agent)
» Most VPIs have no interaction with other VIPs
» This provides the right opportunity for parallelism
» Vlang UVM implementation runs uvm_agent threads parallelly

hared object:
uvm_ root STared objects shared testbench
e P
uvm_phase uvm_objection uvm_config uvm_factory
mechanism mechanism object object
uvm_agent uvm_component
/y\;

scoreboard

At

R RGN = e

Design Under Test (DUT)
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Vlang UVM Innovation - Multi UVM Root

» To conserve power many modules

are switched off when inactive

. . . class TestBench: RootEntity {
» When the module is activated, it uvm_root_entity! (sysl) thi;
gets reset and driver is loaded uvm_root_entity! (sys2) tb2;
uvm_root_entity! (sys3) tb3;

» UVM implementation provides uvm_root_entity! (sys4) tb4;

singleton phases, not good this(string name) {
enough for System Level ) TG
Verification }
L. int main() {
» Hot plugin is another use case TestBench test =
where singleton phasing becomes new TestBench(”test”);

test.multiCore(4, 0);

a bottleneck test.elaborate();

» Vlang allows multiple UVM Root test.simulate();
. . return 0;
instances to overcome this
limitation

DESIGN AND VERIFICATION™
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Hardware Software Coverification

» First Level user of an SoC is a Software
Programmer

» HVLs are built on top of RTL - Software
interaction is Week

» Vlangis built on top of D Programming
Language, A Systems Programming
Laguage

© Accellera Systems Initiative 11 CONFERENCEANDEXHIBITION

a@ DV

SYSTEMS INITIATIVE



Hardware Software Coverification

» First Level user of an SoC is a Software
Programmer

» HVLs are built on top of RTL - Software
interaction is Week

» Vlangis built on top of D Programming
Language, A Systems Programming
Laguage

© Accellera Systems Initiative 11

SYSTEMS INITIATIVE

Software

System Level

DPI

UvMm

SystemVerilog Bottom

RTL up

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION



Hardware Software Coverification

» First Level user of an SoC is a Software
Programmer

» HVLs are built on top of RTL - Software
interaction is Week

» Vlangis built on top of D Programming
Language, A Systems Programming
Laguage

SYSTEMS INITIATIVE

© Accellera Systems Initiative 11

Software

System Level

DPI

UvMm

SystemVerilog

RTL

Software

D Language

Vlang

System Level

UvM

DPI/VPI / VHPI

RTL

Bottom
Up

Top
Down

DESIGN AND VERIFICATION™

ON

CONFERENCE AND EXHIBITION



A Quick Coverification Use Case

» QEMU is fast becoming the platform of
choice for embedded software
development and test

» A convenient way to exchange data
with QEMU is via shared file descriptors

» Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

» Data coming out of DUT is reverse fed
into QEMU

© Accellera Systems Initiative
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Top Down Verification
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Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
~ return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & g sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlstartSimFor (time_.value());

Syst Veril sc_start(time_);
ystemverilog // wait for vlang to complete time st

\V/ H
1 Run Simulation] [RunVian i i H

| Pause till next activity | | i | finalizeEsdl(); 1 S V)
\

» With Systemc, Vlang can lock at ) GEELEREL)
delta cycle level return 0;
}
ﬂﬂce//erﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION
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Interfacing with SystemVerilog

» Theideaisto implement the

BFM along with the design and

pass the transaction to the
BFM from Vlang

» Vlang implements special TLM
channels for interfacing with
external simulators

» EachVlang UVM agent
communicates independently
with SV/SystemC blocking
only when the transaction
FIFO channelis full/empty

> SystemVerilog BFM pulls
transactions from the channel
using DPI-Cinterface

© Accellera Systems Initiative
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Interfacing with SystemVerilog

class my_root: uvm_root {

. . . mixin uvm_component_utils;
> Theideaisto implement the T

BFM along with the design and uvm_tlm_fifo_egress!bus_req fifo;

. uvm_get_port!bus_req data_in;
pass the transaction to the override void initial()

BFM from Vlang fifo = new
) ) uvm_tlm_fifo_egress!bus_req(”fifo”,null
» Vlangimplements special TLM run_test();
channels for interfacing with 3

override void connect_phase(uvm_phase phase
my_env.drv.data_out.connect(fifo.put_expo
data_in.connect(fifo.get_export);

3

external simulators

» EachVlang UVM agent
communicates independently 4

with SV/Systen1C blocking uvm_root_entity!my_root root;
. extern(C) void dpi_pull_req(intx addr,intx da
only when the transaction ST cr—
FIFO channelis full/empty root.data_in.get(req);
. // get the addr and data from transaction
» SystemVerilog BFM pulls 1

transactions from the channel Vveid main() {
root = uvm_fork! (my_root, “test”)(0);

USingIDPl‘Cinterface root.get_uvm_root.wait_for_end_of_elaborati
accellera ropt.join();
}

© Accellera Systems Initiative
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Modelling Hardware and Software

» How do you code an Array
of Associative Arrays in
C++?

» HereishowyoudoitinD

SYSTEMS INITIATIVE

© Accellera Systems Initiative
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#include <vector>
#include <map>
#include <string>

void foo () {

std::vector

<std::map

<std::string, int> > myVect;
std::map<std::string,int> entryl;
std::map<std::string,int> entry2;
entryl[”ABC”] = 1;
entryl[”DEF”] = 2;
myVect.push_back(entryl);
entry2[”ABC”] = 5;
entry2[”RKD”] = 9;
myVect.push_back(entry2);

DESIGN AND VERIFICATION™
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S
Modelling Hardware and Software

» How do you code an Array
of Associative Arrays in void foo() {

5 int[string][] myVect =

C++? [[”ABC”: 1, ”DEF”: 2],

. .. » ». ” ». 5
» HereishowyoudoitinD ["ABC”: 5, "RKD”: 9113

DESIGN AND VERIFICATION ™
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Modelling Hardware and Software

> Itisway too cumbersome to
extend C++
» The result is RAW Macro based
code, SC_MODULE like

» CRAVE is a modern Constrained
Randomization Library in C++
» No User Defined Attributes, No
Reflections in C++, and
Virtually no CTFE
> CRAVE uses wrapper templates
to create Random Variables
» ARandom Integerin Crave
takes > 50 bytes!!

» Vlang has support for
multi-dimensional array
randomization and much more

DESIGN AND VERIFICATION™
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Modelling Hardware and Software

> Itis way too cumbersome to

extend C++ struct packet2 : public packet {
» The result is RAW Macro based rand<int> foo;
code. SC MODULE like rand_vec<unsigned int> bar;
» CRAVE is a modern Constrained packet2() : foo(this), bar(this) {

constraint( foo() > 4 &&

Randomization Library in C++
foo() < 64 );
» No User Defined Attributes, No constraint( bar().size() % 4 == 0
Reflections in C++, and && bar().size() < 100 );

constraint.foreach(bar, i,

Virtually no CTFE .
IF_THEN( i == o,

» CRAVE uses wrapper templates 10 <= bar()[1] &&
to create Random Variables bar()[i] <= 20));
» ARandom Integerin Crave constraint.foreach( bar, 1,

IF_THEN( i != 0,
40 <= bar()[i] &&
bar()[i] <= 100));

takes > 50 bytes!!

» Vlang has support for
multi-dimensional array !
randomization and much more

};

DESIGN AND VERIFICATION™
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class packet2 :

packet {

mixin Randomization;

@rand 1int foo;

@rand! (8, 8) ubyte[][] bar;

Constraint !q{
foo > 4 && foo < 64;

} foo_cst;

Constraint !qf{
bar.length % 4 == 0;
foreach(f; bar) {

f.length > 4;
foreach(i, e; f) {
if(i > 4) e <= 1;
}
}

} bar_cst;

DESIGN AND VERIFICATION™
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On Choosing the right Verification Language

One way to achieve high confidence is for verification engineers to
transform specifications into an implementation model in a language
different from the design language. This language is called verification
language...- Hardware Design Verification, William K. Lams

© Accellera Systems Initiative 19  CONFERENCEANDEXHIBITION
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Fork me on Github

Being Open Source is an essential element of system Level...

» Too many flows and methodologies require flexibility that only open source

can provide
Home Page http://vlang.org
Repository (Vlang) https://github.com/coverify/vlang
Repository (Vlang UVYM)  https://github.com/coverify/vlang-uvm
Compiler DMD Version 2.068 (available at http://dlang.org)
License (Vlang) Boost Software License, Version 1.0
Lincese (Vlang UVM) Apache 2.0 License
Maintainer Puneet Goel <puneet@coverify.com>
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http://vlang.org
https://github.com/coverify/vlang
https://github.com/coverify/vlang-uvm
http://dlang.org
<puneet@coverify.com>

Questions?

DESIGN AND VER2lFi|Ocl1§c>Nm
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