Vlang

A System Level Verification Perspective

Puneet Goel <puneet@coverify.com>

(ODVERIFY

015

2
accellera DV

SYSTEMS INITIATIVE™


<puneet@coverify.com>

S
In this section ...

Runtime Efficiency

2015
awe/l‘_".r/a © Accellera Systems Initiative 2 RM&E%
[_INDIA

SYSTEMS INITIATIVE



S

Testbenches for System Level

> State-of-the-art HVLs like SystemVerilog ] SIMULATION
were drafted with RTL simulation in mind RUN TIMES

» SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

» SV DPI overhead adds to testbench
performance woes

RTL

|
[ | TESTBENCH

ESL Testbenches need to be ...

> Faster by at least an order of magnitude
> ABI Compatible with C/C++

.......................

a@ DV LI

© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE



S

Testbenches for System Level

> State-of-the-art HVLs like SystemVerilog ] SIMULATION
were drafted with RTL simulation in mind RUN TIMES

» SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

» SV DPI overhead adds to testbench
performance woes

RTL

|
[ | TESTBENCH

ESL Testbenches need to be ...

> Faster by at least an order of magnitude
> ABI Compatible with C/C++

. VP/EMU PLATFORM

.......................

a@ DV LI

© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE



S

Testbenches for System Level

> State-of-the-art HVLs like SystemVerilog ] SIMULATION
were drafted with RTL simulation in mind RUN TIMES

» SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

RTL

|
[ | TESTBENCH

» SV DPI overhead adds to testbench
performance woes

ESL Testbenches need to be ...

DPI OVERHEAD

> Faster by at least an order of magnitude
> ABI Compatible with C/C++

. VP/EMU PLATFORM

(]

.......................

a@ DV LI

© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE



S

Testbenches for System Level

> State-of-the-art HVLs like SystemVerilog ] SIMULATION
were drafted with RTL simulation in mind RUN TIMES

» SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

» SV DPI overhead adds to testbench
performance woes

RTL

DPI OVERHEAD

T
O
=
[N}
m
l_
ok
ESL Testbenches need to be ... F
[%2]
> Faster by at least an order of magnitude "
» ABI Compatible with C/C++ é

l VP/EMU PLATFORM

(]

.......................

a@ DV LI

© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE



S

Testbenches for System Level

> State-of-the-art HVLs like SystemVerilog ] SIMULATION
were drafted with RTL simulation in mind RUN TIMES

» SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

» SV DPI overhead adds to testbench
performance woes

RTL

T
O
=
[N}
m
l_
ok
ESL Testbenches need to be ... F
[%2]
> Faster by at least an order of magnitude "
» ABI Compatible with C/C++ é

l VP/EMU PLATFORM

NNNNNNNNNNNNNNNNNNNNNNN

a@ DV LI

© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE



HVLs Are Essentially Single Threaded

> Both SystemVerilog and SystemC (as of now) run on a single OS thread
» SV/SystemC use Cooperative Threading for Fork/Spawn

» Testbench can be made efficient by invoking concurrent threads

» And even more efficient by running the testbench in parallel

DUT Testbench DUT Testbench
Server Run Time

DESIGN AND VERIFICATION™

a@ BVE TN

© Accellera Systems Initiative 4 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



HVLs Are Essentially Single Threaded

» Both SystemVerilog and SystemC (as of now) run on a single OS thread
» SV/SystemC use Cooperative Threading for Fork/Spawn

» Testbench can be made efficient by invoking concurrent threads

» And even more efficient by running the testbench in parallel

DUT Testbench DUT Testbench
Server Run Time

DESIGN AND VERIFICATION™

a@ DV LI

© Accellera Systems Initiative 4 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



S

HVLs Are Essentially Single Threaded

» Both SystemVerilog and SystemC (as of now) run on a single OS thread
> SV/SystemC use Cooperative Threading for Fork/Spawn

» Testbench can be made efficient by invoking concurrent threads

» And even more efficient by running the testbench in parallel

L= L= = ES RS =
O O O o O O _

j o c c c c c

[ [ (9] [ (9] (9]
—a Q- a7 —Qa Q- —a

- - -~ - - -~
=e SR EeE EEn Den Eae

= = = = = [

DUT DUT DUT DUT DUT DUT

Server Run Time

DESIGN AND VERIFICATION™

a@ DV LI

© Accellera Systems Initiative 4 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



HVLs Are Essentially Single Threaded

> Both SystemVerilog and SystemC (as of now) run on a single OS thread
» SV/SystemC use Cooperative Threading for Fork/Spawn

» Testbench can be made efficient by invoking concurrent threads

» And even more efficient by running the testbench in parallel

(S

Server Run Time

DESIGN AND VERIFICATION™

© Accellera Systems Initiative 4 CONFERENCE AND EXHIBITION

a@ DV LI

SYSTEMS INITIATIVE



Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

v

It will have minimum 60 and a maximum 72 cores

v

Each core will run 4 threads in parallel

» With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

v

KNL will also have a minimum 16GB on-chip DRAM

» To maximize potential, Go Parallel
» Running multiple simulations on a Multicore Server is the quickest way to hit
Memory Wall

» Multicore is here to Stay! Are you Ready!!

DESIGN AND VERIFICATION™

© Accellera Systems Initiative 5 CONFERENCE AND EXHIBITION

a@ DV LI

SYSTEMS INITIATIVE



Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

v

It will have minimum 60 and a maximum 72 cores

v

Each core will run 4 threads in parallel

> With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

v

KNL will also have a minimum 16GB on-chip DRAM

» To maximize potential, Go Parallel
» Running multiple simulations on a Multicore Server is the quickest way to hit
Memory Wall

» Multicore is here to Stay! Are you Ready!!

DESIGN AND VERIFICATION™

© Accellera Systems Initiative 5 CONFERENCE AND EXHIBITION

a@ BVE TN

SYSTEMS INITIATIVE



Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

v

It will have minimum 60 and a maximum 72 cores

v

Each core will run 4 threads in parallel

> With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

v

KNL will also have a minimum 16GB on-chip DRAM

» To maximize potential, Go Parallel
» Running multiple simulations on a Multicore Server is the quickest way to hit
Memory Wall

» Multicore is here to Stay! Are you Ready!!

DESIGN AND VERIFICATION™

© Accellera Systems Initiative 5 CONFERENCE AND EXHIBITION

a@ BVE TN

SYSTEMS INITIATIVE



Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

v

It will have minimum 60 and a maximum 72 cores

v

Each core will run 4 threads in parallel

» With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

v

KNL will also have a minimum 16GB on-chip DRAM

» To maximize potential, Go Parallel
» Running multiple simulations on a Multicore Server is the quickest way to hit
Memory Wall

» Multicore is here to Stay! Are you Ready!!

DESIGN AND VERIFICATION™

© Accellera Systems Initiative 5 CONFERENCE AND EXHIBITION

a@ BVE TN

SYSTEMS INITIATIVE



Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

v

It will have minimum 60 and a maximum 72 cores

v

Each core will run 4 threads in parallel

» With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

v

KNL will also have a minimum 16GB on-chip DRAM

» To maximize potential, Go Parallel
» Running multiple simulations on a Multicore Server is the quickest way to hit
Memory Wall

» Multicore is here to Stay! Are you Ready!!

DESIGN AND VERIFICATION™

© Accellera Systems Initiative 5 CONFERENCE AND EXHIBITION

a@ DV LI

SYSTEMS INITIATIVE



Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

v

It will have minimum 60 and a maximum 72 cores

v

Each core will run 4 threads in parallel

» With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

v

KNL will also have a minimum 16GB on-chip DRAM

» To maximize potential, Go Parallel
» Running multiple simulations on a Multicore Server is the quickest way to hit
Memory Wall

» Multicore is here to Stay! Are you Ready!!

DESIGN AND VERIFICATION™

© Accellera Systems Initiative 5 CONFERENCE AND EXHIBITION

a@ DV LI

SYSTEMS INITIATIVE



Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

v

It will have minimum 60 and a maximum 72 cores

v

Each core will run 4 threads in parallel

» With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

v

KNL will also have a minimum 16GB on-chip DRAM

» To maximize potential, Go Parallel
» Running multiple simulations on a Multicore Server is the quickest way to hit
Memory Wall

» Multicore is here to Stay! Are you Ready!!

DESIGN AND VERIFICATION™

© Accellera Systems Initiative 5 CONFERENCE AND EXHIBITION

a@ DV LI

SYSTEMS INITIATIVE



Vlang is Multi-Core Enabled

Runnable
Processes
ist?

es II
7
Processes
R

<]

» Vlang Simulator comes Pase I No
fitted with a Multicore Task |
Scheduler

Process Immediate

Process Channel
Update Requests

—¢
Process Delta
Notifications

» Customizing Multicore

Delta Yes Process Timed
Parallelism in Vlang is easy Exist
meed Yes JAN

Exist?

2015
DESIGN AND VERIFICATION ™
accellera . DVCOIN
© Accellera Systems Initiative 6 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



Vlang is Multi-Core Enabled

class TestBench: RootEntity {
uvm_root_entity! (apb_root) tb;
this(string name) {

» Vlang Simulator comes super (name) ;
fitted with a Multicore Task ) ’
Scheduler int main() {

. . TestBench test =
» Customizing Multicore new TestBench(”test”);

Parallelism in Vlang is easy test.multiCore(4, 0);
test.elaborate();
test.simulate();
return 0;

DESIGN AND VERIFICATION™

SYSTEMS INITIATIVE

© Accellera Systems Initiative 6 CONFERENCE AND EXHIBITION



Vlang UVM Innovation - Multi Core UVM

» Most System Level Designs have multiple (TLM) Interfaces

» Each (TLM) Interface requires a VIP (orauvm_agent)
» Most VPIs have no interaction with other VIPs
» This provides the right opportunity for parallelism
» Vlang UVM implementation runs uvm_agent threads parallelly

hared object:
uvm_ root STared objects shared testbench
e P
uvm_phase uvm_objection uvm_config uvm_factory
mechanism mechanism object object
uvm_agent uvm_component
/y\;

scoreboard

At

R RGN = e

Design Under Test (DUT)

1111
[T

=)

SYSTEMS INITIATIVE

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 7



Vlang UVM Innovation - Multi Core UVM

» Most System Level Designs have multiple (TLM) Interfaces
» Each (TLM) Interface requires a VIP (orauvm_agent)

» Most VPIs have no interaction with other VIPs
» This provides the right opportunity for parallelism
» Vlang UVM implementation runs uvm_agent threads parallelly

hared object:
uvm_ root STared objects shared testbench
e P
uvm_phase uvm_objection uvm_config uvm_factory
mechanism mechanism object object
uvm_agent uvm_component
/y\;

scoreboard

R IR IR RS S =a s

Design Under Test (DUT)

1111
[T

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 7

SYSTEMS INITIATIVE



Vlang UVM Innovation - Multi Core UVM

» Most System Level Designs have multiple (TLM) Interfaces

» Each (TLM) Interface requires a VIP (orauvm_agent)
> Most VPIs have no interaction with other VIPs
» This provides the right opportunity for parallelism
» Vlang UVM implementation runs uvm_agent threads parallelly

hared object:
uvm_ root STared objects shared testbench
e P
uvm_phase uvm_objection uvm_config uvm_factory
mechanism mechanism object object
uvm_agent uvm_component
/y\;

scoreboard

At

R RGN = e

Design Under Test (DUT)

1111
[T

=)

SYSTEMS INITIATIVE

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 7



Vlang UVM Innovation - Multi Core UVM

» Most System Level Designs have multiple (TLM) Interfaces

» Each (TLM) Interface requires a VIP (orauvm_agent)
» Most VPIs have no interaction with other VIPs
» This provides the right opportunity for parallelism
» Vlang UVM implementation runs uvm_agent threads parallelly

hared object:
uvm_ root STared objects shared testbench
e P
uvm_phase uvm_objection uvm_config uvm_factory
mechanism mechanism object object
uvm_agent uvm_component
/y\;

scoreboard

At

R RGN = e

Design Under Test (DUT)

1111
[T

=)

SYSTEMS INITIATIVE

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 7



Vlang UVM Innovation - Multi Core UVM

» Most System Level Designs have multiple (TLM) Interfaces

» Each (TLM) Interface requires a VIP (orauvm_agent)
» Most VPIs have no interaction with other VIPs
» This provides the right opportunity for parallelism
» Vlang UVM implementation runs uvm_agent threads parallelly

hared object:
uvm_ root STared objects shared testbench
e P
uvm_phase uvm_objection uvm_config uvm_factory
mechanism mechanism object object
uvm_agent uvm_component
/y\;

scoreboard

At

R RGN = e

Design Under Test (DUT)

1111
[T

=)

SYSTEMS INITIATIVE

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 7



S
In this section ...

Multi UVM Root

2015
awe/l‘_".r/a © Accellera Systems Initiative 8 RM&E%
[_INDIA

SYSTEMS INITIATIVE



Vlang UVM Innovation - Multi UVM Root

» To conserve power many modules

are switched off when inactive

. . . class TestBench: RootEntity {
» When the module is activated, it uvm_root_entity! (sysl) thi;
gets reset and driver is loaded uvm_root_entity! (sys2) tb2;
uvm_root_entity! (sys3) tb3;

» UVM implementation provides uvm_root_entity! (sys4) tb4;

singleton phases, not good this(string name) {
enough for System Level ) TG
Verification }
L. int main() {
» Hot plugin is another use case TestBench test =
where singleton phasing becomes new TestBench(”test”);

test.multiCore(4, 0);

a bottleneck test.elaborate();

» Vlang allows multiple UVM Root test.simulate();
. . return 0;
instances to overcome this
limitation

DESIGN AND VERIFICATION™

a@ DV LI

© Accellera Systems Initiative 9 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



Vlang UVM Innovation - Multi UVM Root

» To conserve power many modules

are switched off when inactive

. . . class TestBench: RootEntity {
» When the module is activated, it uvm_root_entity! (sysl) thi;
gets reset and driver is loaded uvm_root_entity! (sys2) tb2;
uvm_root_entity! (sys3) tb3;

» UVM implementation provides uvm_root_entity! (sys4) tb4;

singleton phases, not good this(string name) {
enough for System Level ) TG
Verification }
L. int main() {
» Hot plugin is another use case TestBench test =
where singleton phasing becomes new TestBench(”test”);

test.multiCore(4, 0);

a bottleneck test.elaborate();

» Vlang allows multiple UVM Root test.simulate();
. . return 0;
instances to overcome this
limitation

DESIGN AND VERIFICATION™

a@ DV LI

© Accellera Systems Initiative 9 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



Vlang UVM Innovation - Multi UVM Root

» To conserve power many modules

are switched off when inactive

. . . class TestBench: RootEntity {
» When the module is activated, it uvm_root_entity! (sysl) thi;
gets reset and driver is loaded uvm_root_entity! (sys2) tb2;
uvm_root_entity! (sys3) tb3;

» UVM implementation provides uvm_root_entity! (sys4) tb4;

singleton phases, not good this(string name) {
enough for System Level ) TG
Verification }
L. int main() {
» Hot plugin is another use case TestBench test =
where singleton phasing becomes new TestBench(”test”);

test.multiCore(4, 0);

a bottleneck test.elaborate();

» Vlang allows multiple UVM Root test.simulate();
. . return 0;
instances to overcome this
limitation

DESIGN AND VERIFICATION™

a@ DV LI

© Accellera Systems Initiative 9 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



Vlang UVM Innovation - Multi UVM Root

» To conserve power many modules

are switched off when inactive

. . . class TestBench: RootEntity {
» When the module is activated, it uvm_root_entity! (sysl) thi;
gets reset and driver is loaded uvm_root_entity! (sys2) tb2;
uvm_root_entity! (sys3) tb3;

» UVM implementation provides uvm_root_entity! (sys4) tb4;

singleton phases, not good this(string name) {
enough for System Level ) TG
Verification }
L. int main() {
» Hot plugin is another use case TestBench test =
where singleton phasing becomes new TestBench(”test”);

test.multiCore(4, 0);

a bottleneck test.elaborate();

» Vlang allows multiple UVM Root test.simulate();
. . return 0;
instances to overcome this
limitation

DESIGN AND VERIFICATION™

a@ DV LI

© Accellera Systems Initiative 9 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



Vlang UVM Innovation - Multi UVM Root

» To conserve power many modules

are switched off when inactive

class TestBench: RootEntity {

» When the module is activated, it uvm_root_entity! (sysl) thi;

gets reset and driver is loaded uvm_root_entity! (sys2) tb2;
. . . uvm_root_entity! (sys3) tb3;
» UVM implementation provides uvm_root_entity! (sys4) tb4;
singleton phases, not good this(string name) {
super (name) ;
enough for System Level ) ? ’
Verification }
L. int main() {
» Hot plugin is another use case TestBench test =
where singleton phasing becomes new TestBench(”test”);

test.multiCore(4, 0);

a bottleneck test.elaborate();

» Vlang allows multiple UVM Root test.simulate();
. . return 0;
instances to overcome this
limitation

DESIGN AND VERIFICATION™

a@ DV LI

© Accellera Systems Initiative 9 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE



D
In this section ...

Coverification

2015
acﬂelle!/'a © Accellera Systems Initiative 10 RM&EM’
| _INDIA |

SYSTEMS INITIATIVE



T
Hardware Software Coverification

» First Level user of an SoC is a Software
Programmer

» HVLs are built on top of RTL - Software
interaction is Week

» Vlangis built on top of D Programming
Language, A Systems Programming
Laguage

© Accellera Systems Initiative 11 CONFERENCEANDEXHIBITION

a@ DV

SYSTEMS INITIATIVE



Hardware Software Coverification

» First Level user of an SoC is a Software
Programmer

» HVLs are built on top of RTL - Software
interaction is Week

» Vlangis built on top of D Programming
Language, A Systems Programming
Laguage

© Accellera Systems Initiative 11

SYSTEMS INITIATIVE

Software

System Level

DPI

UvMm

SystemVerilog Bottom

RTL up

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION



Hardware Software Coverification

» First Level user of an SoC is a Software
Programmer

» HVLs are built on top of RTL - Software
interaction is Week

» Vlangis built on top of D Programming
Language, A Systems Programming
Laguage

SYSTEMS INITIATIVE

© Accellera Systems Initiative 11

Software

System Level

DPI

UvMm

SystemVerilog

RTL

Software

D Language

Vlang

System Level

UvM

DPI/VPI / VHPI

RTL

Bottom
Up

Top
Down

DESIGN AND VERIFICATION™

ON

CONFERENCE AND EXHIBITION



A Quick Coverification Use Case

» QEMU is fast becoming the platform of
choice for embedded software
development and test

» A convenient way to exchange data
with QEMU is via shared file descriptors

» Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

» Data coming out of DUT is reverse fed
into QEMU

© Accellera Systems Initiative

accellera 5

SYSTEMS INITIATIVE

HOST MACHINE

—

Vlang Ethernet
Verification IP

il

Hardware DUT
Simulation

I T

Vlang Avalon MM
Verification IP

L

HAL Layer

Software Stack Running on QEMU Guest

DESIGN AND VERIFICATION™

COIN

CONFERENCE AND EXHIBITION



A Quick Coverification Use Case

» QEMU is fast becoming the platform of
choice for embedded software
development and test

» A convenient way to exchange data
with QEMU is via shared file descriptors

» Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

» Data coming out of DUT is reverse fed
into QEMU

© Accellera Systems Initiative

accellera 5

SYSTEMS INITIATIVE

HOST MACHINE

—

Vlang Ethernet
Verification IP

il

Hardware DUT
Simulation

I T

Vlang Avalon MM
Verification IP

L

HAL Layer

Software Stack Running on QEMU Guest

DESIGN AND VERIFICATION™

COIN

CONFERENCE AND EXHIBITION



A Quick Coverification Use Case

» QEMU is fast becoming the platform of
choice for embedded software
development and test

» A convenient way to exchange data
with QEMU is via shared file descriptors

> Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

» Data coming out of DUT is reverse fed
into QEMU

© Accellera Systems Initiative

accellera 5

SYSTEMS INITIATIVE

HOST MACHINE

—

Vlang Ethernet
Verification IP

il

Hardware DUT
Simulation

I T

Vlang Avalon MM
Verification IP

L

HAL Layer

Software Stack Running on QEMU Guest

DESIGN AND VERIFICATION™

COIN

CONFERENCE AND EXHIBITION



A Quick Coverification Use Case

» QEMU is fast becoming the platform of
choice for embedded software
development and test

» A convenient way to exchange data
with QEMU is via shared file descriptors

» Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

> Data coming out of DUT is reverse fed
into QEMU

© Accellera Systems Initiative

accellera 5

SYSTEMS INITIATIVE

HOST MACHINE

—

Vlang Ethernet
Verification IP

il

Hardware DUT
Simulation

I T

Vlang Avalon MM
Verification IP

L

HAL Layer

Software Stack Running on QEMU Guest

DESIGN AND VERIFICATION™

COIN

CONFERENCE AND EXHIBITION



S
In this section ...

Top Down Verification

2015
~ DESIGN AND VERIEICATION -
acﬂe/l?l/'a © Accellera Systems Initiative 13 RM&E‘!’#‘
[_INDIA

SYSTEMS INITIATIVE



Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
~ return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & g sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlstartSimFor (time_.value());

Syst Veril sc_start(time_);
ystemverilog // wait for vlang to complete time st

\V/ H
1 Run Simulation] [RunVian i i H

| Pause till next activity | | i | finalizeEsdl(); 1 S V)
\

» With Systemc, Vlang can lock at ) GEELEREL)
delta cycle level return 0;
}
ﬂﬂce//erﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE



Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
~ return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & g sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlstartSimFor (time_.value());

Syst Veril sc_start(time_);
ystemverilog // wait for vlang to complete time st

\V/ H

1 Run Simulation] [RunVian i i H

| Pause till next activity | | i | finalizeEsdl(); /7 Biap Ui
\

» With Systemc, Vlang can lock at ) GEELEREL)
delta cycle level return 0;
}
ﬂﬂce//efﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE



Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
~ return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & g sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlstartSimFor (time_.value());

Syst Veril sc_start(time_);
ystemverilog // wait for vlang to complete time st

\V/ H
1 Run Simulation] [RunVian i i H

| Pause till next activity | | i | finalizeEsdl(); /7 Biap Ui
\

» With Systemc, Vlang can lock at ) GEELEREL)
delta cycle level return 0;
}
ﬂﬂce//efﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE



Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
~ return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & g sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlstartSimFor (time_.value());

Syst Veril sc_start(time_);
ystemverilog // wait for vlang to complete time st

\V/ H
1 Run Simulation] [RunVian i i H

| Pause till next activity | | i | finalizeEsdl(); /7 Biap Ui
\

» With Systemc, Vlang can lock at ) GEELEREL)
delta cycle level return 0;
}
ﬂﬂce//efﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE



Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
N return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & g sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlstartSimFor (time_.value());

Syst Veril sc_start(time_);
ystemverilog // wait for vlang to complete time st

\V/ H
1 Run Simulation] [RunVian i i H

| Pause till next activity | | ;i | finalizeEsdl(); /7 Biap Ui
\

» With Systemc, Vlang can lock at ) GEELEREL)
delta cycle level return 0;
}
ﬂﬂce//efﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE



Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
~ return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & g sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlStartSimFor (time_.value());

SvstemVerilo sc_start(time_);
Yy Iog // wait for vlang to complete time st

N, :
Run Simulation | [Run Vlan i i 8

| Pause [ | next activity | | ¢ | finalizeEsdl(); // stop viang
7N

» With Systemc, Vlang can lock at ) GEELEREL)
delta cycle level return 0;
}
ﬂﬂce//efﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE



Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
~ return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & g sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlstartSimFor (time_.value());

Syst Veril sc_start(time_);
ystemverilog // wait for vlang to complete time st

\V/ H
1 Run Simulation] [RunVian i i H

| Pause till next activity | | i | finalizeEsdl(); /7 Biap Ui
\

» With Systemc, Vlang can lock at ) GEEILEE L)
delta cycle level return 0;
}
ﬂﬂce//efﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE



Interfacing with SystemC

int main(int argc, charx argv[]) {
initEsdl(); // initialize vlang
int scresult =
sc_core::sc_elab_and_sim(argc, argv);

for same time
~ return 0;

}

int sc_main( int argc, charx argv[]) {
sc_set_time_resolution(l, SC_PS);
top = new SYSTEM(”top”);
sc_start( SC_ZERO_TIME );

\V/

Stop while(sc_pending_activity()) {
.............................. [>{Stop Vlan

SystemC & 2 sc_core::sc_time time_ =

. sc_time_to_pending_activity();
> Vlang5|mUIatorcan be fu“y // start vlang simulation for given t

synchronized with SystemC and esdlstartSimFor (time_.value());

Syst Veril sc_start(time_);
ystemverilog // wait for vlang to complete time st

\V/ H
1 Run Simulation] [RunVian i i H

|Pause till next activity | | i | finalizeEsdl(); i
\

» With Systemc, Vlang can lock at ) GEELEREL)
delta cycle level return 0;
}
ﬂﬂce//efﬂ © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE



Interfacing with SystemVerilog

» Theideaisto implement the

BFM along with the design and

pass the transaction to the
BFM from Vlang

» Vlang implements special TLM
channels for interfacing with
external simulators

» EachVlang UVM agent
communicates independently
with SV/SystemC blocking
only when the transaction
FIFO channelis full/empty

> SystemVerilog BFM pulls
transactions from the channel
using DPI-Cinterface

© Accellera Systems Initiative

SYSTEMS INITIATIVE

==

Generator

Functional Coverage

DUT Snooper

Design
Under Test

DESIGN AND VERIFICATION™

DVLCOIN

15 CONFERENCE AND EXHISITION



Interfacing with SystemVerilog

class my_root: uvm_root {

. . . mixin uvm_component_utils;
> Theideaisto implement the T

BFM along with the design and uvm_tlm_fifo_egress!bus_req fifo;

. uvm_get_port!bus_req data_in;
pass the transaction to the override void initial()

BFM from Vlang fifo = new
) ) uvm_tlm_fifo_egress!bus_req(”fifo”,null
» Vlangimplements special TLM run_test();
channels for interfacing with 3

override void connect_phase(uvm_phase phase
my_env.drv.data_out.connect(fifo.put_expo
data_in.connect(fifo.get_export);

3

external simulators

» EachVlang UVM agent
communicates independently 4

with SV/Systen1C blocking uvm_root_entity!my_root root;
. extern(C) void dpi_pull_req(intx addr,intx da
only when the transaction ST cr—
FIFO channelis full/empty root.data_in.get(req);
. // get the addr and data from transaction
» SystemVerilog BFM pulls 1

transactions from the channel Vveid main() {
root = uvm_fork! (my_root, “test”)(0);

USingIDPl‘Cinterface root.get_uvm_root.wait_for_end_of_elaborati
accellera ropt.join();
}

© Accellera Systems Initiative
SYSTEMS INITIATIVE



Interfacing with SystemVerilog

class my_root: uvm_root {

. . . mixin uvm_component_utils;
> Theideaisto implement the T

BFM along with the design and uvm_tlm_fifo_egress!bus_req fifo;

. uvm_get_port!bus_req data_in;
pass the transaction to the override void initial()

BFM from Vlang fifo = new
. A uvm_tlm_fifo_egress!bus_req(”fifo”,null
» Vlangimplements special TLM run_test();
channels for interfacing with 3

override void connect_phase(uvm_phase phase
my_env.drv.data_out.connect(fifo.put_expo
data_in.connect(fifo.get_export);

3

external simulators

» Each Vlang UVM agent
communicates independently 4

with SV/Systen1C blocking uvm_root_entity!my_root root;
. extern(C) void dpi_pull_req(intx addr,intx da
only when the transaction ST cr—
FIFO channelis full/empty root.data_in.get(req);
. // get the addr and data from transaction
» SystemVerilog BFM pulls 1

transactions from the channel Vveid main() {
root = uvm_fork! (my_root, “test”)(0);

USingIDPl‘Cinterface root.get_uvm_root.wait_for_end_of_elaborati
accellera ropt.join();
}

© Accellera Systems Initiative
SYSTEMS INITIATIVE



Interfacing with SystemVerilog

class my_root: uvm_root {

. . . mixin uvm_component_utils;
> Theideaisto implement the T

BFM along with the design and uvm_tlm_fifo_egress!bus_req fifo;

. uvm_get_port!bus_req data_in;
pass the transaction to the override void initial()

BFM from Vlang fifo = new
. A uvm_tlm_fifo_egress!bus_req(”fifo”,null
» Vlangimplements special TLM run_test();
channels for interfacing with 3

override void connect_phase(uvm_phase phase
my_env.drv.data_out.connect(fifo.put_expo
data_in.connect(fifo.get_export);

3

external simulators

» EachVlang UVM agent
communicates independently 4

with SV/Systen1C blocking uvm_root_entity!my_root root;
. extern(C) void dpi_pull_req(int* addr,int*x da
only when the transaction ST e
FIFO channelis full/empty root.data_in.get(req);
. // get the addr and data from transaction
» SystemVerilog BFM pulls }

transactions from the channel Vveid main() {
root = uvm_fork! (my_root, “test”)(0);

USing DPI-Cinterface root.get_uvm_root.wait_for_end_of_elaborati
accellera ropt.join();
}

© Accellera Systems Initiative
SYSTEMS INITIATIVE



D
In this section ...

Modeling

2015
accellefa © Accellera Systems Initiative 16 RM&‘E&M
| _INDIA |

SYSTEMS INITIATIVE



e
Modelling Hardware and Software

» How do you code an Array
of Associative Arrays in
C++?

» HereishowyoudoitinD

SYSTEMS INITIATIVE

© Accellera Systems Initiative

17

#include <vector>
#include <map>
#include <string>

void foo () {

std::vector

<std::map

<std::string, int> > myVect;
std::map<std::string,int> entryl;
std::map<std::string,int> entry2;
entryl[”ABC”] = 1;
entryl[”DEF”] = 2;
myVect.push_back(entryl);
entry2[”ABC”] = 5;
entry2[”RKD”] = 9;
myVect.push_back(entry2);

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION



S
Modelling Hardware and Software

» How do you code an Array
of Associative Arrays in void foo() {

5 int[string][] myVect =

C++? [[”ABC”: 1, ”DEF”: 2],

. .. » ». ” ». 5
» HereishowyoudoitinD ["ABC”: 5, "RKD”: 9113

DESIGN AND VERIFICATION ™
DVLCOIN
aﬂ'ﬂﬂlle’a © Accellera Systems Initiative 17 T —

SYSTEMS INITIATIVE



S
Modelling Hardware and Software

> Itisway too cumbersome to
extend C++
» The result is RAW Macro based
code, SC_MODULE like

» CRAVE is a modern Constrained
Randomization Library in C++
» No User Defined Attributes, No
Reflections in C++, and
Virtually no CTFE
> CRAVE uses wrapper templates
to create Random Variables
» ARandom Integerin Crave
takes > 50 bytes!!

» Vlang has support for
multi-dimensional array
randomization and much more

DESIGN AND VERIFICATION™

CON

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 18

SYSTEMS INITIATIVE



S
Modelling Hardware and Software

» Itisway too cumbersome to
extend C++
» The result is RAW Macro based
code, SC_MODULE like

» CRAVE is a modern Constrained
Randomization Library in C++
» No User Defined Attributes, No
Reflections in C++, and
Virtually no CTFE
> CRAVE uses wrapper templates
to create Random Variables
» ARandom Integerin Crave
takes > 50 bytes!!

» Vlang has support for
multi-dimensional array
randomization and much more

DESIGN AND VERIFICATION™

CON

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 18

SYSTEMS INITIATIVE



Modelling Hardware and Software

> Itis way too cumbersome to

extend C++ struct packet2 : public packet {
» The result is RAW Macro based rand<int> foo;
code. SC MODULE like rand_vec<unsigned int> bar;
» CRAVE is a modern Constrained packet2() : foo(this), bar(this) {

constraint( foo() > 4 &&

Randomization Library in C++
foo() < 64 );
» No User Defined Attributes, No constraint( bar().size() % 4 == 0
Reflections in C++, and && bar().size() < 100 );

constraint.foreach(bar, i,

Virtually no CTFE .
IF_THEN( i == o,

» CRAVE uses wrapper templates 10 <= bar()[1] &&
to create Random Variables bar()[i] <= 20));
» ARandom Integerin Crave constraint.foreach( bar, 1,

IF_THEN( i != 0,
40 <= bar()[i] &&
bar()[i] <= 100));

takes > 50 bytes!!

» Vlang has support for
multi-dimensional array !
randomization and much more

};

DESIGN AND VERIFICATION™

accellera 18 DyvCOnN

© Accellera Systems Initiative
SYSTEMS INITIATIVE



Modelling Hardware and Software

» Itisway too cumbersome to
extend C++
» The result is RAW Macro based
code, SC_MODULE like

» CRAVE is a modern Constrained
Randomization Library in C++

» No User Defined Attributes, No
Reflections in C++, and
Virtually no CTFE

» CRAVE uses wrapper templates
to create Random Variables

» ARandom Integerin Crave
takes > 50 bytes!!

» Vlang has support for
multi-dimensional array
randomization and much more

SYSTEMS INITIATIVE

© Accellera Systems Initiative

class packet2 :

packet {

mixin Randomization;

@rand 1int foo;

@rand! (8, 8) ubyte[][] bar;

Constraint !q{
foo > 4 && foo < 64;

} foo_cst;

Constraint !qf{
bar.length % 4 == 0;
foreach(f; bar) {

f.length > 4;
foreach(i, e; f) {
if(i > 4) e <= 1;
}
}

} bar_cst;

DESIGN AND VERIFICATION™

COIN

CONFERENCE AND EXHIBITION



S
On Choosing the right Verification Language

One way to achieve high confidence is for verification engineers to
transform specifications into an implementation model in a language
different from the design language. This language is called verification
language...- Hardware Design Verification, William K. Lams

© Accellera Systems Initiative 19  CONFERENCEANDEXHIBITION

a@ DV

SYSTEMS INITIATIVE



D
In this section ...

Open Source

2015
acﬂelle!/'a © Accellera Systems Initiative 20 RM&EM’
| _INDIA |

SYSTEMS INITIATIVE



S

Fork me on Github

Being Open Source is an essential element of system Level...

» Too many flows and methodologies require flexibility that only open source

can provide
Home Page http://vlang.org
Repository (Vlang) https://github.com/coverify/vlang
Repository (Vlang UVYM)  https://github.com/coverify/vlang-uvm
Compiler DMD Version 2.068 (available at http://dlang.org)
License (Vlang) Boost Software License, Version 1.0
Lincese (Vlang UVM) Apache 2.0 License
Maintainer Puneet Goel <puneet@coverify.com>

NNNNNNNNNNNNNNNNNNNNNNN

a@ DV LI

© Accellera Systems Initiative 21 CONFERENCEANDEXHIBITON
SYSTEMS INITIATIVE


http://vlang.org
https://github.com/coverify/vlang
https://github.com/coverify/vlang-uvm
http://dlang.org
<puneet@coverify.com>

Questions?

DESIGN AND VER2lFi|Ocl1§c>Nm
accellera DVCOIN
22

SYSTEMS INITIATIVE™



	Runtime Efficiency
	Multi UVM Root
	Coverification
	Top Down Verification
	Modeling
	Open Source

