
Vlang
A System Level Verification Perspective

Puneet Goel <puneet@coverify.com>

CoverifyoCC

<puneet@coverify.com>

© Accellera Systems Initiative

In this section…

Runtime Efficiency

Multi UVM Root

Coverification

Top Down Verification

Modeling

Open Source

2

© Accellera Systems Initiative

Testbenches for System Level

▶ State-of-the-art HVLs like SystemVerilog
were drafted with RTL simulation in mind

▶ SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

▶ SV DPI overhead adds to testbench
performance woes

ESL Testbenches need to be…

▶ Faster by at least an order of magnitude
▶ ABI Compatible with C/C++

RT
L

TE
ST

BE
N

CH

SIMULATION
RUN TIMES

3

© Accellera Systems Initiative

Testbenches for System Level

▶ State-of-the-art HVLs like SystemVerilog
were drafted with RTL simulation in mind

▶ SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

▶ SV DPI overhead adds to testbench
performance woes

ESL Testbenches need to be…

▶ Faster by at least an order of magnitude
▶ ABI Compatible with C/C++

RT
L

TE
ST

BE
N

CH

VP
/E

M
U

 P
LA

TF
O

RM

SIMULATION
RUN TIMES

3

© Accellera Systems Initiative

Testbenches for System Level

▶ State-of-the-art HVLs like SystemVerilog
were drafted with RTL simulation in mind

▶ SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

▶ SV DPI overhead adds to testbench
performance woes

ESL Testbenches need to be…

▶ Faster by at least an order of magnitude
▶ ABI Compatible with C/C++

RT
L

TE
ST

BE
N

CH

VP
/E

M
U

 P
LA

TF
O

RM

DP
I O

VE
RH

EA
D

SIMULATION
RUN TIMES

3

© Accellera Systems Initiative

Testbenches for System Level

▶ State-of-the-art HVLs like SystemVerilog
were drafted with RTL simulation in mind

▶ SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

▶ SV DPI overhead adds to testbench
performance woes

ESL Testbenches need to be…

▶ Faster by at least an order of magnitude
▶ ABI Compatible with C/C++

RT
L

ES
L

TE
ST

BE
N

CH

VP
/E

M
U

 P
LA

TF
O

RM

DP
I O

VE
RH

EA
D

SIMULATION
RUN TIMES

3

© Accellera Systems Initiative

Testbenches for System Level

▶ State-of-the-art HVLs like SystemVerilog
were drafted with RTL simulation in mind

▶ SV performance becomes a bottleneck
when testbenching Emulation/ESL
Platforms

▶ SV DPI overhead adds to testbench
performance woes

ESL Testbenches need to be…

▶ Faster by at least an order of magnitude
▶ ABI Compatible with C/C++

RT
L

ES
L

TE
ST

BE
N

CH

VP
/E

M
U

 P
LA

TF
O

RM

DP
I O

VE
RH

EA
D

SIMULATION
RUN TIMES

3

© Accellera Systems Initiative

HVLs Are Essentially Single Threaded

▶ Both SystemVerilog and SystemC (as of now) run on a single OS thread
▶ SV/SystemC use Cooperative Threading for Fork/Spawn

▶ Testbench can be made efficient by invoking concurrent threads
▶ And evenmore efficient by running the testbench in parallel

DUT DUT Testbench

Server Run Time
Testbench

4

© Accellera Systems Initiative

HVLs Are Essentially Single Threaded

▶ Both SystemVerilog and SystemC (as of now) run on a single OS thread
▶ SV/SystemC use Cooperative Threading for Fork/Spawn

▶ Testbench can be made efficient by invoking concurrent threads
▶ And evenmore efficient by running the testbench in parallel

DUT DUT Testbench

Server Run Time
Testbench

4

© Accellera Systems Initiative

HVLs Are Essentially Single Threaded

▶ Both SystemVerilog and SystemC (as of now) run on a single OS thread
▶ SV/SystemC use Cooperative Threading for Fork/Spawn

▶ Testbench can be made efficient by invoking concurrent threads
▶ And evenmore efficient by running the testbench in parallel

Server Run Time
DUT DUT DUT DUT DUT DUT

Te
st
be
nc
h

Te
st
be
nc
h

Te
st
be
nc
h

Te
st
be
nc
h

Te
st
be
nc
h

Te
st
be
nc
h

4

© Accellera Systems Initiative

HVLs Are Essentially Single Threaded

▶ Both SystemVerilog and SystemC (as of now) run on a single OS thread
▶ SV/SystemC use Cooperative Threading for Fork/Spawn

▶ Testbench can be made efficient by invoking concurrent threads
▶ And evenmore efficient by running the testbench in parallel

Server Run Time
DUT

Testbench

4

© Accellera Systems Initiative

Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

▶ It will have minimum 60 and amaximum 72 cores
▶ Each core will run 4 threads in parallel

▶ With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

▶ KNL will also have a minimum 16GB on-chip DRAM
▶ Tomaximize potential, Go Parallel
▶ Running multiple simulations on a Multicore Server is the quickest way to hit

Memory Wall

▶ Multicore is here to Stay! Are you Ready!!

5

© Accellera Systems Initiative

Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

▶ It will have minimum 60 and amaximum 72 cores
▶ Each core will run 4 threads in parallel

▶ With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

▶ KNL will also have a minimum 16GB on-chip DRAM
▶ Tomaximize potential, Go Parallel
▶ Running multiple simulations on a Multicore Server is the quickest way to hit

Memory Wall

▶ Multicore is here to Stay! Are you Ready!!

5

© Accellera Systems Initiative

Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

▶ It will have minimum 60 and amaximum 72 cores
▶ Each core will run 4 threads in parallel

▶ With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

▶ KNL will also have a minimum 16GB on-chip DRAM
▶ Tomaximize potential, Go Parallel
▶ Running multiple simulations on a Multicore Server is the quickest way to hit

Memory Wall

▶ Multicore is here to Stay! Are you Ready!!

5

© Accellera Systems Initiative

Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

▶ It will have minimum 60 and amaximum 72 cores
▶ Each core will run 4 threads in parallel

▶ With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

▶ KNL will also have a minimum 16GB on-chip DRAM
▶ Tomaximize potential, Go Parallel
▶ Running multiple simulations on a Multicore Server is the quickest way to hit

Memory Wall

▶ Multicore is here to Stay! Are you Ready!!

5

© Accellera Systems Initiative

Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

▶ It will have minimum 60 and amaximum 72 cores
▶ Each core will run 4 threads in parallel

▶ With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

▶ KNL will also have a minimum 16GB on-chip DRAM
▶ Tomaximize potential, Go Parallel
▶ Running multiple simulations on a Multicore Server is the quickest way to hit

Memory Wall

▶ Multicore is here to Stay! Are you Ready!!

5

© Accellera Systems Initiative

Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

▶ It will have minimum 60 and amaximum 72 cores
▶ Each core will run 4 threads in parallel

▶ With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

▶ KNL will also have a minimum 16GB on-chip DRAM
▶ Tomaximize potential, Go Parallel
▶ Running multiple simulations on a Multicore Server is the quickest way to hit

Memory Wall

▶ Multicore is here to Stay! Are you Ready!!

5

© Accellera Systems Initiative

Inspired by 61 Cores!

By end of 2015, Intel’s Knights Landing (KNL)
processor would become commercially available

▶ It will have minimum 60 and amaximum 72 cores
▶ Each core will run 4 threads in parallel

▶ With up to 288 threads running in parallel, concurrency in application
programs becomes an essential aspect of coding

▶ KNL will also have a minimum 16GB on-chip DRAM
▶ Tomaximize potential, Go Parallel
▶ Running multiple simulations on a Multicore Server is the quickest way to hit

Memory Wall

▶ Multicore is here to Stay! Are you Ready!!

5

© Accellera Systems Initiative

Vlang is Multi-Core Enabled

▶ Vlang Simulator comes
fitted with a Multicore Task
Scheduler

▶ Customizing Multicore
Parallelism in Vlang is easy

Execute
ProcessesExecute

ProcessesExecute
Processes

Runnable
Processes

Exist?
Execute
Processes

Process Immediate
Notifications

Process Channel
Update Requests

Delta
Notifications

Exist?

Timed
Notifications

Exist?

Process Delta
Notifications

Process Timed
Notifications

Increment
Simulation Time

Pause
/ Next

Yes

No

Yes

Yes

No

No

No

6

© Accellera Systems Initiative

Vlang is Multi-Core Enabled

▶ Vlang Simulator comes
fitted with a Multicore Task
Scheduler

▶ Customizing Multicore
Parallelism in Vlang is easy

class TestBench: RootEntity {
uvm_root_entity!(apb_root) tb;
this(string name) {

super(name);
}

}
int main() {
TestBench test =

new TestBench(”test”);
test.multiCore(4, 0);
test.elaborate();
test.simulate();
return 0;

}

6

© Accellera Systems Initiative

Vlang UVM Innovation – Multi Core UVM

▶ Most System Level Designs have multiple (TLM) Interfaces
▶ Each (TLM) Interface requires a VIP (or a uvm_agent)

▶ Most VPIs have no interaction with other VIPs
▶ This provides the right opportunity for parallelism
▶ Vlang UVM implementation runs uvm_agent threads parallelly

Design Under Test (DUT)

uvm_component

uvm_objection
mechanism

uvm_config
object

uvm_agent

uvm_phase
mechanism

uvm_root

sc
or

eb
oa

rd
co

ve
ra

ge

shared objects
shared testbench
components

uvm_factory
object

7

© Accellera Systems Initiative

Vlang UVM Innovation – Multi Core UVM

▶ Most System Level Designs have multiple (TLM) Interfaces
▶ Each (TLM) Interface requires a VIP (or a uvm_agent)

▶ Most VPIs have no interaction with other VIPs
▶ This provides the right opportunity for parallelism
▶ Vlang UVM implementation runs uvm_agent threads parallelly

Design Under Test (DUT)

uvm_component

uvm_objection
mechanism

uvm_config
object

uvm_agent

uvm_phase
mechanism

uvm_root

sc
or

eb
oa

rd
co

ve
ra

ge

shared objects
shared testbench
components

uvm_factory
object

7

© Accellera Systems Initiative

Vlang UVM Innovation – Multi Core UVM

▶ Most System Level Designs have multiple (TLM) Interfaces
▶ Each (TLM) Interface requires a VIP (or a uvm_agent)

▶ Most VPIs have no interaction with other VIPs
▶ This provides the right opportunity for parallelism
▶ Vlang UVM implementation runs uvm_agent threads parallelly

Design Under Test (DUT)

uvm_component

uvm_objection
mechanism

uvm_config
object

uvm_agent

uvm_phase
mechanism

uvm_root

sc
or

eb
oa

rd
co

ve
ra

ge

shared objects
shared testbench
components

uvm_factory
object

7

© Accellera Systems Initiative

Vlang UVM Innovation – Multi Core UVM

▶ Most System Level Designs have multiple (TLM) Interfaces
▶ Each (TLM) Interface requires a VIP (or a uvm_agent)

▶ Most VPIs have no interaction with other VIPs
▶ This provides the right opportunity for parallelism
▶ Vlang UVM implementation runs uvm_agent threads parallelly

Design Under Test (DUT)

uvm_component

uvm_objection
mechanism

uvm_config
object

uvm_agent

uvm_phase
mechanism

uvm_root

sc
or

eb
oa

rd
co

ve
ra

ge

shared objects
shared testbench
components

uvm_factory
object

7

© Accellera Systems Initiative

Vlang UVM Innovation – Multi Core UVM

▶ Most System Level Designs have multiple (TLM) Interfaces
▶ Each (TLM) Interface requires a VIP (or a uvm_agent)

▶ Most VPIs have no interaction with other VIPs
▶ This provides the right opportunity for parallelism
▶ Vlang UVM implementation runs uvm_agent threads parallelly

Design Under Test (DUT)

uvm_component

uvm_objection
mechanism

uvm_config
object

uvm_agent

uvm_phase
mechanism

uvm_root

sc
or

eb
oa

rd
co

ve
ra

ge

shared objects
shared testbench
components

uvm_factory
object

7

© Accellera Systems Initiative

In this section…

Runtime Efficiency

Multi UVM Root

Coverification

Top Down Verification

Modeling

Open Source

8

© Accellera Systems Initiative

Vlang UVM Innovation – Multi UVM Root

▶ To conserve power many modules
are switched off when inactive

▶ When the module is activated, it
gets reset and driver is loaded

▶ UVM implementation provides
singleton phases, not good
enough for System Level
Verification

▶ Hot plugin is another use case
where singleton phasing becomes
a bottleneck

▶ Vlang allows multiple UVM Root
instances to overcome this
limitation

class TestBench: RootEntity {
uvm_root_entity!(sys1) tb1;
uvm_root_entity!(sys2) tb2;
uvm_root_entity!(sys3) tb3;
uvm_root_entity!(sys4) tb4;
this(string name) {

super(name);
}

}
int main() {

TestBench test =
new TestBench(”test”);

test.multiCore(4, 0);
test.elaborate();
test.simulate();
return 0;

9

© Accellera Systems Initiative

Vlang UVM Innovation – Multi UVM Root

▶ To conserve power many modules
are switched off when inactive

▶ When the module is activated, it
gets reset and driver is loaded

▶ UVM implementation provides
singleton phases, not good
enough for System Level
Verification

▶ Hot plugin is another use case
where singleton phasing becomes
a bottleneck

▶ Vlang allows multiple UVM Root
instances to overcome this
limitation

class TestBench: RootEntity {
uvm_root_entity!(sys1) tb1;
uvm_root_entity!(sys2) tb2;
uvm_root_entity!(sys3) tb3;
uvm_root_entity!(sys4) tb4;
this(string name) {

super(name);
}

}
int main() {

TestBench test =
new TestBench(”test”);

test.multiCore(4, 0);
test.elaborate();
test.simulate();
return 0;

9

© Accellera Systems Initiative

Vlang UVM Innovation – Multi UVM Root

▶ To conserve power many modules
are switched off when inactive

▶ When the module is activated, it
gets reset and driver is loaded

▶ UVM implementation provides
singleton phases, not good
enough for System Level
Verification

▶ Hot plugin is another use case
where singleton phasing becomes
a bottleneck

▶ Vlang allows multiple UVM Root
instances to overcome this
limitation

class TestBench: RootEntity {
uvm_root_entity!(sys1) tb1;
uvm_root_entity!(sys2) tb2;
uvm_root_entity!(sys3) tb3;
uvm_root_entity!(sys4) tb4;
this(string name) {

super(name);
}

}
int main() {

TestBench test =
new TestBench(”test”);

test.multiCore(4, 0);
test.elaborate();
test.simulate();
return 0;

9

© Accellera Systems Initiative

Vlang UVM Innovation – Multi UVM Root

▶ To conserve power many modules
are switched off when inactive

▶ When the module is activated, it
gets reset and driver is loaded

▶ UVM implementation provides
singleton phases, not good
enough for System Level
Verification

▶ Hot plugin is another use case
where singleton phasing becomes
a bottleneck

▶ Vlang allows multiple UVM Root
instances to overcome this
limitation

class TestBench: RootEntity {
uvm_root_entity!(sys1) tb1;
uvm_root_entity!(sys2) tb2;
uvm_root_entity!(sys3) tb3;
uvm_root_entity!(sys4) tb4;
this(string name) {

super(name);
}

}
int main() {

TestBench test =
new TestBench(”test”);

test.multiCore(4, 0);
test.elaborate();
test.simulate();
return 0;

9

© Accellera Systems Initiative

Vlang UVM Innovation – Multi UVM Root

▶ To conserve power many modules
are switched off when inactive

▶ When the module is activated, it
gets reset and driver is loaded

▶ UVM implementation provides
singleton phases, not good
enough for System Level
Verification

▶ Hot plugin is another use case
where singleton phasing becomes
a bottleneck

▶ Vlang allows multiple UVM Root
instances to overcome this
limitation

class TestBench: RootEntity {
uvm_root_entity!(sys1) tb1;
uvm_root_entity!(sys2) tb2;
uvm_root_entity!(sys3) tb3;
uvm_root_entity!(sys4) tb4;
this(string name) {

super(name);
}

}
int main() {

TestBench test =
new TestBench(”test”);

test.multiCore(4, 0);
test.elaborate();
test.simulate();
return 0;

9

© Accellera Systems Initiative

In this section…

Runtime Efficiency

Multi UVM Root

Coverification

Top Down Verification

Modeling

Open Source

10

© Accellera Systems Initiative

Hardware Software Coverification

▶ First Level user of an SoC is a Software
Programmer

▶ HVLs are built on top of RTL – Software
interaction is Week

▶ Vlang is built on top of D Programming
Language, A Systems Programming
Laguage

11

© Accellera Systems Initiative

Hardware Software Coverification

▶ First Level user of an SoC is a Software
Programmer

▶ HVLs are built on top of RTL – Software
interaction is Week

▶ Vlang is built on top of D Programming
Language, A Systems Programming
Laguage

RTL

SystemVerilog

UVM

System Level

DPI

Bottom
Up

So�ware

11

© Accellera Systems Initiative

Hardware Software Coverification

▶ First Level user of an SoC is a Software
Programmer

▶ HVLs are built on top of RTL – Software
interaction is Week

▶ Vlang is built on top of D Programming
Language, A Systems Programming
Laguage

RTL

SystemVerilog

UVM

System Level

DPI

Bottom
Up

So�ware

RTL

UVM

DPI / VPI / VHPI

Top
Down

So�ware

Vlang

D Language

System Level

11

© Accellera Systems Initiative

A Quick Coverification Use Case

▶ QEMU is fast becoming the platform of
choice for embedded software
development and test

▶ A convenient way to exchange data
with QEMU is via shared file descriptors

▶ Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

▶ Data coming out of DUT is reverse fed
into QEMU

Hardware DUT
Simulation

So
�w

ar
e

St
ac

k
Ru

nn
in

g
on

 Q
EM

U
 G

ue
st

Vlang Ethernet
Verification IP

HOST MACHINE

Et
he

rn
et

Ethernet

Vlang Avalon MM
Verification IP

H
AL

 L
ay

er

12

© Accellera Systems Initiative

A Quick Coverification Use Case

▶ QEMU is fast becoming the platform of
choice for embedded software
development and test

▶ A convenient way to exchange data
with QEMU is via shared file descriptors

▶ Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

▶ Data coming out of DUT is reverse fed
into QEMU

Hardware DUT
Simulation

So
�w

ar
e

St
ac

k
Ru

nn
in

g
on

 Q
EM

U
 G

ue
st

Vlang Ethernet
Verification IP

HOST MACHINE

Et
he

rn
et

Ethernet

Vlang Avalon MM
Verification IP

H
AL

 L
ay

er

12

© Accellera Systems Initiative

A Quick Coverification Use Case

▶ QEMU is fast becoming the platform of
choice for embedded software
development and test

▶ A convenient way to exchange data
with QEMU is via shared file descriptors

▶ Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

▶ Data coming out of DUT is reverse fed
into QEMU

Hardware DUT
Simulation

So
�w

ar
e

St
ac

k
Ru

nn
in

g
on

 Q
EM

U
 G

ue
st

Vlang Ethernet
Verification IP

HOST MACHINE

Et
he

rn
et

Ethernet

Vlang Avalon MM
Verification IP

H
AL

 L
ay

er

12

© Accellera Systems Initiative

A Quick Coverification Use Case

▶ QEMU is fast becoming the platform of
choice for embedded software
development and test

▶ A convenient way to exchange data
with QEMU is via shared file descriptors

▶ Vlang VIP can directly tap a file
descriptor and feed the transaction to
simulation

▶ Data coming out of DUT is reverse fed
into QEMU

Hardware DUT
Simulation

So
�w

ar
e

St
ac

k
Ru

nn
in

g
on

 Q
EM

U
 G

ue
st

Vlang Ethernet
Verification IP

HOST MACHINE

Et
he

rn
et

Ethernet

Vlang Avalon MM
Verification IP

H
AL

 L
ay

er

12

© Accellera Systems Initiative

In this section…

Runtime Efficiency

Multi UVM Root

Coverification

Top Down Verification

Modeling

Open Source

13

© Accellera Systems Initiative

Interfacing with SystemC

Pending
Activity?

Get time to
next activity

Run Simulation
till next activity

Run Vlang
for same timePause

Start
SystemC Start Vlang

Stop VlangStop
SystemC

Yes

No

Synchronize (data and time)

▶ Vlang simulator can be fully
synchronized with SystemC and
SystemVerilog

▶ With Systemc, Vlang can lock at
delta cycle level

int main(int argc, char* argv[]) {
initEsdl(); // initialize vlang
int scresult =

sc_core::sc_elab_and_sim(argc, argv);
finalizeEsdl(); // stop vlang
return 0;

}
int sc_main(int argc, char* argv[]) {

sc_set_time_resolution(1, SC_PS);
top = new SYSTEM(”top”);
sc_start(SC_ZERO_TIME);
while(sc_pending_activity()) {

sc_core::sc_time time_ =
sc_time_to_pending_activity();

// start vlang simulation for given time
esdlStartSimFor(time_.value());
sc_start(time_);
// wait for vlang to complete time step
esdlWait();

}
return 0;

}

14

© Accellera Systems Initiative

Interfacing with SystemC

Pending
Activity?

Get time to
next activity

Run Simulation
till next activity

Run Vlang
for same timePause

Start
SystemC Start Vlang

Stop VlangStop
SystemC

Yes

No

Synchronize (data and time)

▶ Vlang simulator can be fully
synchronized with SystemC and
SystemVerilog

▶ With Systemc, Vlang can lock at
delta cycle level

int main(int argc, char* argv[]) {
initEsdl(); // initialize vlang
int scresult =

sc_core::sc_elab_and_sim(argc, argv);
finalizeEsdl(); // stop vlang
return 0;

}
int sc_main(int argc, char* argv[]) {

sc_set_time_resolution(1, SC_PS);
top = new SYSTEM(”top”);
sc_start(SC_ZERO_TIME);
while(sc_pending_activity()) {

sc_core::sc_time time_ =
sc_time_to_pending_activity();

// start vlang simulation for given time
esdlStartSimFor(time_.value());
sc_start(time_);
// wait for vlang to complete time step
esdlWait();

}
return 0;

}

14

© Accellera Systems Initiative

Interfacing with SystemC

Pending
Activity?

Get time to
next activity

Run Simulation
till next activity

Run Vlang
for same timePause

Start
SystemC Start Vlang

Stop VlangStop
SystemC

Yes

No

Synchronize (data and time)

▶ Vlang simulator can be fully
synchronized with SystemC and
SystemVerilog

▶ With Systemc, Vlang can lock at
delta cycle level

int main(int argc, char* argv[]) {
initEsdl(); // initialize vlang
int scresult =

sc_core::sc_elab_and_sim(argc, argv);
finalizeEsdl(); // stop vlang
return 0;

}
int sc_main(int argc, char* argv[]) {

sc_set_time_resolution(1, SC_PS);
top = new SYSTEM(”top”);
sc_start(SC_ZERO_TIME);
while(sc_pending_activity()) {

sc_core::sc_time time_ =
sc_time_to_pending_activity();

// start vlang simulation for given time
esdlStartSimFor(time_.value());
sc_start(time_);
// wait for vlang to complete time step
esdlWait();

}
return 0;

}

14

© Accellera Systems Initiative

Interfacing with SystemC

Pending
Activity?

Get time to
next activity

Run Simulation
till next activity

Run Vlang
for same timePause

Start
SystemC Start Vlang

Stop VlangStop
SystemC

Yes

No

Synchronize (data and time)

▶ Vlang simulator can be fully
synchronized with SystemC and
SystemVerilog

▶ With Systemc, Vlang can lock at
delta cycle level

int main(int argc, char* argv[]) {
initEsdl(); // initialize vlang
int scresult =

sc_core::sc_elab_and_sim(argc, argv);
finalizeEsdl(); // stop vlang
return 0;

}
int sc_main(int argc, char* argv[]) {

sc_set_time_resolution(1, SC_PS);
top = new SYSTEM(”top”);
sc_start(SC_ZERO_TIME);
while(sc_pending_activity()) {

sc_core::sc_time time_ =
sc_time_to_pending_activity();

// start vlang simulation for given time
esdlStartSimFor(time_.value());
sc_start(time_);
// wait for vlang to complete time step
esdlWait();

}
return 0;

}

14

© Accellera Systems Initiative

Interfacing with SystemC

Pending
Activity?

Get time to
next activity

Run Simulation
till next activity

Run Vlang
for same timePause

Start
SystemC Start Vlang

Stop VlangStop
SystemC

Yes

No

Synchronize (data and time)

▶ Vlang simulator can be fully
synchronized with SystemC and
SystemVerilog

▶ With Systemc, Vlang can lock at
delta cycle level

int main(int argc, char* argv[]) {
initEsdl(); // initialize vlang
int scresult =

sc_core::sc_elab_and_sim(argc, argv);
finalizeEsdl(); // stop vlang
return 0;

}
int sc_main(int argc, char* argv[]) {

sc_set_time_resolution(1, SC_PS);
top = new SYSTEM(”top”);
sc_start(SC_ZERO_TIME);
while(sc_pending_activity()) {

sc_core::sc_time time_ =
sc_time_to_pending_activity();

// start vlang simulation for given time
esdlStartSimFor(time_.value());
sc_start(time_);
// wait for vlang to complete time step
esdlWait();

}
return 0;

}

14

© Accellera Systems Initiative

Interfacing with SystemC

Pending
Activity?

Get time to
next activity

Run Simulation
till next activity

Run Vlang
for same timePause

Start
SystemC Start Vlang

Stop VlangStop
SystemC

Yes

No

Synchronize (data and time)

▶ Vlang simulator can be fully
synchronized with SystemC and
SystemVerilog

▶ With Systemc, Vlang can lock at
delta cycle level

int main(int argc, char* argv[]) {
initEsdl(); // initialize vlang
int scresult =

sc_core::sc_elab_and_sim(argc, argv);
finalizeEsdl(); // stop vlang
return 0;

}
int sc_main(int argc, char* argv[]) {

sc_set_time_resolution(1, SC_PS);
top = new SYSTEM(”top”);
sc_start(SC_ZERO_TIME);
while(sc_pending_activity()) {

sc_core::sc_time time_ =
sc_time_to_pending_activity();

// start vlang simulation for given time
esdlStartSimFor(time_.value());
sc_start(time_);
// wait for vlang to complete time step
esdlWait();

}
return 0;

}

14

© Accellera Systems Initiative

Interfacing with SystemC

Pending
Activity?

Get time to
next activity

Run Simulation
till next activity

Run Vlang
for same timePause

Start
SystemC Start Vlang

Stop VlangStop
SystemC

Yes

No

Synchronize (data and time)

▶ Vlang simulator can be fully
synchronized with SystemC and
SystemVerilog

▶ With Systemc, Vlang can lock at
delta cycle level

int main(int argc, char* argv[]) {
initEsdl(); // initialize vlang
int scresult =

sc_core::sc_elab_and_sim(argc, argv);
finalizeEsdl(); // stop vlang
return 0;

}
int sc_main(int argc, char* argv[]) {

sc_set_time_resolution(1, SC_PS);
top = new SYSTEM(”top”);
sc_start(SC_ZERO_TIME);
while(sc_pending_activity()) {

sc_core::sc_time time_ =
sc_time_to_pending_activity();

// start vlang simulation for given time
esdlStartSimFor(time_.value());
sc_start(time_);
// wait for vlang to complete time step
esdlWait();

}
return 0;

}

14

© Accellera Systems Initiative

Interfacing with SystemC

Pending
Activity?

Get time to
next activity

Run Simulation
till next activity

Run Vlang
for same timePause

Start
SystemC Start Vlang

Stop VlangStop
SystemC

Yes

No

Synchronize (data and time)

▶ Vlang simulator can be fully
synchronized with SystemC and
SystemVerilog

▶ With Systemc, Vlang can lock at
delta cycle level

int main(int argc, char* argv[]) {
initEsdl(); // initialize vlang
int scresult =

sc_core::sc_elab_and_sim(argc, argv);
finalizeEsdl(); // stop vlang
return 0;

}
int sc_main(int argc, char* argv[]) {

sc_set_time_resolution(1, SC_PS);
top = new SYSTEM(”top”);
sc_start(SC_ZERO_TIME);
while(sc_pending_activity()) {

sc_core::sc_time time_ =
sc_time_to_pending_activity();

// start vlang simulation for given time
esdlStartSimFor(time_.value());
sc_start(time_);
// wait for vlang to complete time step
esdlWait();

}
return 0;

}

14

© Accellera Systems Initiative

Interfacing with SystemVerilog
▶ The idea is to implement the

BFM along with the design and
pass the transaction to the
BFM from Vlang

▶ Vlang implements special TLM
channels for interfacing with
external simulators

▶ Each Vlang UVM agent
communicates independently
with SV/SystemC blocking
only when the transaction
FIFO channel is full/empty

▶ SystemVerilog BFM pulls
transactions from the channel
using DPI-C interface

Testcase

Generator

Transactor

Driver Snooper

Design
Under Test

DUT Snooper

Self Check Checker

Si
gn

al
La

ye
r

Co
m

m
an

d
La

ye
r

Fu
nc

tio
na

l
La

ye
r

Sc
en

ar
io

La
ye

r
Te

st
La

ye
r

Fu
nc

tio
na

l C
ov

er
ag

e

15

© Accellera Systems Initiative

Interfacing with SystemVerilog

▶ The idea is to implement the
BFM along with the design and
pass the transaction to the
BFM from Vlang

▶ Vlang implements special TLM
channels for interfacing with
external simulators

▶ Each Vlang UVM agent
communicates independently
with SV/SystemC blocking
only when the transaction
FIFO channel is full/empty

▶ SystemVerilog BFM pulls
transactions from the channel
using DPI-C interface

class my_root: uvm_root {
mixin uvm_component_utils;
env my_env;
uvm_tlm_fifo_egress!bus_req fifo;
uvm_get_port!bus_req data_in;
override void initial() {
fifo = new

uvm_tlm_fifo_egress!bus_req(”fifo”,null,10);
run_test();

}
override void connect_phase(uvm_phase phase) {
my_env.drv.data_out.connect(fifo.put_export);
data_in.connect(fifo.get_export);

}
}
uvm_root_entity!my_root root;
extern(C) void dpi_pull_req(int* addr,int* data) {

bus_req req;
root.data_in.get(req);
// get the addr and data from transaction

}
void main() {

root = uvm_fork!(my_root, ”test”)(0);
root.get_uvm_root.wait_for_end_of_elaboration();
root.join();

}
15

© Accellera Systems Initiative

Interfacing with SystemVerilog

▶ The idea is to implement the
BFM along with the design and
pass the transaction to the
BFM from Vlang

▶ Vlang implements special TLM
channels for interfacing with
external simulators

▶ Each Vlang UVM agent
communicates independently
with SV/SystemC blocking
only when the transaction
FIFO channel is full/empty

▶ SystemVerilog BFM pulls
transactions from the channel
using DPI-C interface

class my_root: uvm_root {
mixin uvm_component_utils;
env my_env;
uvm_tlm_fifo_egress!bus_req fifo;
uvm_get_port!bus_req data_in;
override void initial() {
fifo = new

uvm_tlm_fifo_egress!bus_req(”fifo”,null,10);
run_test();

}
override void connect_phase(uvm_phase phase) {
my_env.drv.data_out.connect(fifo.put_export);
data_in.connect(fifo.get_export);

}
}
uvm_root_entity!my_root root;
extern(C) void dpi_pull_req(int* addr,int* data) {

bus_req req;
root.data_in.get(req);
// get the addr and data from transaction

}
void main() {

root = uvm_fork!(my_root, ”test”)(0);
root.get_uvm_root.wait_for_end_of_elaboration();
root.join();

}
15

© Accellera Systems Initiative

Interfacing with SystemVerilog

▶ The idea is to implement the
BFM along with the design and
pass the transaction to the
BFM from Vlang

▶ Vlang implements special TLM
channels for interfacing with
external simulators

▶ Each Vlang UVM agent
communicates independently
with SV/SystemC blocking
only when the transaction
FIFO channel is full/empty

▶ SystemVerilog BFM pulls
transactions from the channel
using DPI-C interface

class my_root: uvm_root {
mixin uvm_component_utils;
env my_env;
uvm_tlm_fifo_egress!bus_req fifo;
uvm_get_port!bus_req data_in;
override void initial() {
fifo = new

uvm_tlm_fifo_egress!bus_req(”fifo”,null,10);
run_test();

}
override void connect_phase(uvm_phase phase) {
my_env.drv.data_out.connect(fifo.put_export);
data_in.connect(fifo.get_export);

}
}
uvm_root_entity!my_root root;
extern(C) void dpi_pull_req(int* addr,int* data) {

bus_req req;
root.data_in.get(req);
// get the addr and data from transaction

}
void main() {

root = uvm_fork!(my_root, ”test”)(0);
root.get_uvm_root.wait_for_end_of_elaboration();
root.join();

}
15

© Accellera Systems Initiative

In this section…

Runtime Efficiency

Multi UVM Root

Coverification

Top Down Verification

Modeling

Open Source

16

© Accellera Systems Initiative

Modelling Hardware and Software

▶ How do you code an Array
of Associative Arrays in
C++?

▶ Here is how you do it in D
…

#include <vector>
#include <map>
#include <string>

void foo () {
std::vector

<std::map
<std::string, int> > myVect;

std::map<std::string,int> entry1;
std::map<std::string,int> entry2;
entry1[”ABC”] = 1;
entry1[”DEF”] = 2;
myVect.push_back(entry1);
entry2[”ABC”] = 5;
entry2[”RKD”] = 9;
myVect.push_back(entry2);

}

17

© Accellera Systems Initiative

Modelling Hardware and Software

▶ How do you code an Array
of Associative Arrays in
C++?

▶ Here is how you do it in D
…

void foo() {
int[string][] myVect =

[[”ABC”: 1, ”DEF”: 2],
[”ABC”: 5, ”RKD”: 9]];

}

17

© Accellera Systems Initiative

Modelling Hardware and Software
▶ It is way too cumbersome to

extend C++
▶ The result is RAWMacro based

code, SC_MODULE like

▶ CRAVE is a modern Constrained
Randomization Library in C++

▶ No User Defined Attributes, No
Reflections in C++, and
Virtually no CTFE

▶ CRAVE uses wrapper templates
to create Random Variables

▶ A Random Integer in Crave
takes > 50 bytes!!

▶ Vlang has support for
multi-dimensional array
randomization andmuchmore

18

© Accellera Systems Initiative

Modelling Hardware and Software
▶ It is way too cumbersome to

extend C++
▶ The result is RAWMacro based

code, SC_MODULE like

▶ CRAVE is a modern Constrained
Randomization Library in C++

▶ No User Defined Attributes, No
Reflections in C++, and
Virtually no CTFE

▶ CRAVE uses wrapper templates
to create Random Variables

▶ A Random Integer in Crave
takes > 50 bytes!!

▶ Vlang has support for
multi-dimensional array
randomization andmuchmore

18

© Accellera Systems Initiative

Modelling Hardware and Software
▶ It is way too cumbersome to

extend C++
▶ The result is RAWMacro based

code, SC_MODULE like

▶ CRAVE is a modern Constrained
Randomization Library in C++

▶ No User Defined Attributes, No
Reflections in C++, and
Virtually no CTFE

▶ CRAVE uses wrapper templates
to create Random Variables

▶ A Random Integer in Crave
takes > 50 bytes!!

▶ Vlang has support for
multi-dimensional array
randomization andmuchmore

struct packet2 : public packet {
rand<int> foo;
rand_vec<unsigned int> bar;

packet2() : foo(this), bar(this) {
constraint(foo() > 4 &&

foo() < 64);
constraint(bar().size() % 4 == 0

&& bar().size() < 100);
constraint.foreach(bar, i,

IF_THEN(i == 0,
10 <= bar()[i] &&
bar()[i] <= 20));

constraint.foreach(bar, i,
IF_THEN(i != 0,

40 <= bar()[i] &&
bar()[i] <= 100));

};
}

18

© Accellera Systems Initiative

Modelling Hardware and Software
▶ It is way too cumbersome to

extend C++
▶ The result is RAWMacro based

code, SC_MODULE like

▶ CRAVE is a modern Constrained
Randomization Library in C++

▶ No User Defined Attributes, No
Reflections in C++, and
Virtually no CTFE

▶ CRAVE uses wrapper templates
to create Random Variables

▶ A Random Integer in Crave
takes > 50 bytes!!

▶ Vlang has support for
multi-dimensional array
randomization andmuchmore

class packet2 : packet {
mixin Randomization;
@rand int foo;
@rand!(8, 8) ubyte[][] bar;
Constraint !q{

foo > 4 && foo < 64;
} foo_cst;
Constraint !q{

bar.length % 4 == 0;
foreach(f; bar) {

f.length > 4;
foreach(i, e; f) {

if(i > 4) e <= i;
}

}
} bar_cst;

}

18

© Accellera Systems Initiative

On Choosing the right Verification Language

One way to achieve high confidence is for verification engineers to
transform specifications into an implementation model in a language
different from the design language. This language is called verification
language…– Hardware Design Verification, William K. Lams

19

© Accellera Systems Initiative

In this section…

Runtime Efficiency

Multi UVM Root

Coverification

Top Down Verification

Modeling

Open Source

20

© Accellera Systems Initiative

Fork me on Github

Being Open Source is an essential element of system Level…
▶ Toomany flows andmethodologies require flexibility that only open source

can provide
Home Page http://vlang.org
Repository (Vlang) https://github.com/coverify/vlang
Repository (Vlang UVM) https://github.com/coverify/vlang-uvm
Compiler DMD Version 2.068 (available at http://dlang.org)
License (Vlang) Boost Software License, Version 1.0
Lincese (Vlang UVM) Apache 2.0 License
Maintainer Puneet Goel <puneet@coverify.com>

21

http://vlang.org
https://github.com/coverify/vlang
https://github.com/coverify/vlang-uvm
http://dlang.org
<puneet@coverify.com>

Questions?

22

	Runtime Efficiency
	Multi UVM Root
	Coverification
	Top Down Verification
	Modeling
	Open Source

