
Virtual ECUs with QEMU and SystemC TLM-2.0
Lukas Jünger1, Jan Henrik Weinstock1, Munish Jassi2, Megumi Yoshinaga3, 

Hitoshi Hamio3, Koichi Sato3

1MachineWare GmbH, Aachen, Germany
2Renesas Electronics Europe GmbH, Düsseldorf, Germany

3Renesas Electronics Corporation, Tokyo, Japan



Motivation



Motivation

● SW complexity is rising

○ Car: >100 Mio. lines of code

● Security & safety critical

● Quality is key

● Bad software is dangerous and expensive

○ Accidents, recalls, liability for hacks, maintenance

● Problem: Testing is

○ Hard to automate, hard to scale, limited by hardware resources

https://informationisbeautiful.net/visualizations/million-lines-of-code/



Virtual Platform / Level 4 vECU

• Virtual Platform: Full System Simulation

• Executes unmodified target binary

• Advantages over physical prototypes

• Available earlier (shift-left methodology)

• Full flexibility, deep introspection

• Non-intrusive debug

• Near endlessly scalable



vECU Architecture

• Goal: Fast VP for SW verification

• QEMU + SystemC co-simulation

• QEMU for fast CPU subsystem

• SystemC TLM-2.0 peripherals for 

maximum reuse (VCML-based)

• Host network integration
Simulation Host Machine

Network
Controller

PeripheralPeripheralRAM

Interconnect

CAN
Controller

CPU
Core

CPU
Core
CPU
Core
CPU
Core

QEMU

vECU

TLM

TLM

TLM

TLM

TLM

TLM

C
A

N
 b

rid
ge

ETH
 b

rid
ge



• Open-Source Full System 

(Sim-)/(Em-)ulator and Virtualization tool

• Fast’ish CPU and many peripheral models

• GPLv2 license

• Monolithic architecture

• No standard interfaces, global memory view, …

• Written in C :(

Simulation Host Machine

Network
Controller

PeripheralPeripheralRAM

Interconnect

CAN
Controller

CPU
Core

CPU
Core
CPU
Core
CPU
Core

QEMU

vECU

TLM

TLM

TLM

TLM

TLM

TLM

C
A

N
 b

rid
ge

ETH
 b

rid
ge



QEMU SystemC Integration

• QEMU in a SystemC Box

• QEMU + SystemC Co-Simulation

• Modularize QEMU models for 

reuse in Virtual Platform

• Add standard TLM-2.0 interfaces

• Integrates in MW VCML
Simulation Host Machine

Network
Controller

PeripheralPeripheralRAM

Interconnect

CAN
Controller

CPU
Core

CPU
Core
CPU
Core
CPU
Core

QEMU

vECU

TLM

TLM

TLM

TLM

TLM

TLM

C
A

N
 b

rid
ge

ETH
 b

rid
ge



External Communication Interfaces

• Send / Receive data from host

• Integrate with Linux SocketCAN

• Attach physical CAN device, restbus 

simulation, …

• Integrate with SLiRP, TAP devices

• Access host network

• Open-Source bridges from VCML
Simulation Host Machine

Network
Controller

PeripheralPeripheralRAM

Interconnect

CAN
Controller

CPU
Core

CPU
Core
CPU
Core
CPU
Core

QEMU

vECU

TLM

TLM

TLM

TLM

TLM

TLM

C
A

N
 b

rid
ge

ETH
 b

rid
ge



Benchmark Results



Open-Source / Free Software

• Disclaimer: I am not a lawyer and this is not legal advice

• QEMU is (mostly considered) GPLv2 license

• Free as in freedom, not free of charge

• GPLv2 license requires source code access for SW user on request

• User can publish, modify, copy, redistribute program under GPLv2

• GPLv2 is infectious -> simulator must be GPLv2 compatible



Summary

• QEMU CPU models deliver decent 

performance

• QEMU - SystemC integration is a 

challenge

• VCML enables modularization of 

SystemC and QEMU models

• License needs to be considered
Simulation Host Machine

Network
Controller

PeripheralPeripheralRAM

Interconnect

CAN
Controller

CPU
Core

CPU
Core
CPU
Core
CPU
Core

QEMU

vECU

TLM

TLM

TLM

TLM

TLM

TLM

C
A

N
 b

rid
ge

ETH
 b

rid
ge


