

Verifying the I/O peripherals of OpenTitan

SOC using the Portable Stimulus Standard

Mahesh R, Bidisha Das and Raj S Mitra, Ph.D.,

Cisma Consultants Pvt Ltd, Bangalore

Loganath Ramachandran Ph.D., Viraphol Chaiyakul Ph.D.

Accelver Systems Inc, Sunnyvale, CA

Abstract: The integration of complex design blocks (IPs) into modern SoCs has increased its verification challenges,

thus decreasing the possibility of meeting time to market goals. Verification teams are yearning for more automated
solutions to tackle this complexity better. Portable Stimulus Standard (PSS [1]) was introduced by Accellera as a
standard language to capture verification intent with the potential to automate test case generation across various
platforms. In this paper we explore the potential of PSS to generate “C” testcase scenarios for an open-source
complex SOC design, and propose a systematic approach to implement a set of SoC data transfer tests across its
peripheral blocks.

I. INTRODUCTION

Typical SOCs are comprised of many design blocks (or IPs) that communicate with each other over one or more

central (and standard) buses. Although each IP is assumed to be verified in terms of functionality, the SoC verification

tasks by itself can still be very daunting. Interconnect verification, register validation, data transfer validation, and

power validation are some examples of SOC level verification tasks. These tasks require the creation of complex

scenarios where each scenario targets a given verification goal. In this paper we propose a systematic approach using

PSS to plan and implement a set of SoC data transfer tests across the peripheral blocks. An example of a complex SoC

is the OpenTitan [2], an SOC developed by Google with the tagline “OpenTitan is the first open-source project

building a transparent high quality reference design and integration guidelines for silicon root-of-trust chips”.

Open Titan’s Earl Grey chip is a low power secure microcontroller that is designed specifically for hardware security

applications. The functional specification and the details of the IP are provided at the OpenTitan website. The block

diagram shows the (a) the high-level architecture, (b) the different IPs that are integrated into the SOC and (c) the

interconnection architecture.

OpenTitan is based on RISC-V Ibex core [3] which has a 3-stage pipeline. The platform includes a RISC-V

compliant JTAG debug module and a platform level interrupt controller. The security features of the design include

memory scrambling on the icache level. There are 2 banks of FlashRAM and 128kB of sRAM, in addition to a 4KB

retention SRAM. The boot code is stored in a 32Kb ROM.

The focus of this paper is the I/O peripherals in the design. The SOC contains (a) 32-bit GPIO, (b) four UART

peripherals, (c) three i2C peripherals with host and device modes. (d) SPI device controller and (e) USB interface. We

will also focus on bare-metal applications and application tests, although the approach can be easily extended if we

have to work with a setup where the operating system is also involved.

2. DATA TRANSFER TESTS

The SOC platform is the first physical platform where different IPs are stitched together. Hence it is the first platform

where data transfer across the peripherals can be observed. Let us take a simple scenario where we would like to send

a piece of data into the SOC from the GPIO peripheral and output the same data onto a UART peripheral. The overall

approach to these tests is summarized in the following figure. Here the “C” testcase initializes the peripheral

components and configures them with a specific configuration parameter. For example, the baudrate of the UART can

be set in the configuration phase. Then the data transfer begins where the test waits to receive data from the GPIO

peripheral and stores it in some location in memory. Then the same data is sent out on the UART peripheral.

3. OVERVIEW OF DATA TRANSFER TEST INTENT

Based on the above simple example we can write several data transfer tests that carry data from one peripheral to

another.

1) Test cases are written in “C” and compiled using the RISC-V tool suite. The compiled elf/vmem files will be

loaded onto the FlashRAM.

2) Once the simulation is started the CPU starts with the boot code in the ROM and then starts executing the

instructions in the FlashRAM.

3) Although these tests can be written from scratch, it is always preferable to create an abstraction layer called

Hardware Abstraction Layer which are a set of APIs for each peripheral. For example, dif_gpio_configure()

configures the gpio peripheral based on the parameters.

4) Data transfer tests typically would read data coming in on peripheral A, store the incoming data into memory

and then write the same data on peripheral B.

5) A VIP or virtual peripheral can be used to generate data on peripheral A and read the output data from peripheral

B.

6) A scoreboard or checking mechanism can be connected to the VIPs to ensure that data correctness is met.

7) A large number of testcases can be written by selecting the following

a. Select peripheral A and select peripheral B from the list of available peripherals. There are several

combinations in the OpenTitan itself.

b. Select the size of the data for the test.

c. Select the configuration parameters of the peripheral from a list of legal parameters.

d. Select the memory location to store the incoming data and send it out on the outgoing peripheral B.

In summary a large number of scenarios need to be created to get sufficient confidence in the SOC. However, this

is a labor-intensive process as each of these test cases, have to be written by hand, compiled, debugged and run on the

SOC [7]. Hence any automation in this area would be extremely beneficial. Enter PSS!

4. PORTABLE STIMULUS STANDARD (PSS)

Portable Stimulus Standard was created by Accellera to capture the verification intent. It is a Domain Specific

Language intended to capture the verification intent. The PSS model also generates different outputs based on the

platforms that are being targeted. PSS serves as an ideal in this project where a large variety of test cases need to be

created. Some of the main advantages of PSS include:

a) The constraint specification in PSS is on par with SystemVerilog [4] . It can be used to generate constrained

random scenarios with ease.

b) PSS actions support inheritance (OOP) and extensions (Aspect-Oriented programming). This makes it easy to

extend PSS components for newer projects where the peripherals may have additional legal configurations.

c) PSS is the one of the few languages that provides control-flow randomization. Multiple random traversals

through an activity graph in PSS produces widely varying scenarios.

d) PSS also provides flow-object (data) binding. This capability allows us to specify constraints such that the

output data of one action is bound to the input data of another action, providing data transfer capabilities that

can be randomized.

e) PSS provides target language portability. Although we are using it only to generate “C” code for this project

we may think about different flavors of “C” (based on the compilers) and different HAL layer functions being

used for simulation vs emulation.

We have relied heavily on the Tutorials provided by Accellera [5] [6] when designing this methodology.

5. OUR SOLUTION OUTLINE

Using PSS for SOC level “C” test generation is a very useful methodology and can be applied to any Sock We focus

on the OpenTitan project because of two reasons (a) it has a well-defined HAL layer for each of the peripherals and

(b) the SOC is available in open-source and it is easy to compile and run our tests on the SOC.

A. Device Interface functions (HAL layer)

Each peripheral in OpenTitan has a good set of well-defined and well documented APIs which makes it easy to

build our solution. Some examples of such basic functions are shown here. Using PSS for SOC level “C” test

generation is a very useful methodology and can be applied to any SoC. The following figure shows some of the

functions available for the UART peripheral.

B. Creating PSS Actions

The basic building block in PSS is called an action. We group the C-APIs based on functionality and wrap them

into actions. For example, the

vk_uart_configure_a action shown in

the following figure demonstrates the

action needed to configure the uart.

PSS can have properties that are

randomizable. For the uart we declare

two such random variables (i.e,

clock_frequency and baud_rate), When

a PSS Action is randomized, these

variables will assume new values based

on the constraints applied. Here we

show two dynamic constraints for both

these variables.

PSS actions can have an exec body

section which specifies the code to be

generated when the action is traversed.

The code is written within a moustache

notation and contain references to PSS variables which are dynamically solved. The above action generates the

uart HAL functions for dif_uart_init and dif_uart_configure. The baudrate and clock_freq variables are internal

PSS variables whose values may be used in the exec_body to customize the generation. These actions are called

Atomic Actions in PSS.

dif_uart_result_t dif_uart_bytes_send (const dif_uart_t *uart,)

dif_uart_result_t dif_uart_byte_send_polled (const dif_uart_t *uart,)

dif_uart_result_t dif_uart_bytes_receive (const dif_uart_t *uart,)

dif_uart_result_t dif_uart_byte_receive_polled (const dif_uart_t *uart,)

action vk_uart_configure_a {

 rand int baudrate;

 rand int clk_fz;

 dynamic constraint default_baud { baudrate == 2697;}

 dynamic constraint default_clk { clk_fz == 240;}

...............

 exec body C = “””

 CHECK(dif_uart_configure(&uart, (dif_uart_config_t)

 {.baudrate = {{baudrate}}, .clk_freq_hz = {{clk_fz}},

 .parity_enable = kDifUartToggleDisabled,

 .parity = kDifUartParityEven,

 }) == kDifUartConfigOk, "UART config failed!");

“””;

}

C. Creating PSS components

All PSS actions for a given peripheral is encapsulated into a PSS component. The PSS component for UART

will contain all the actions necessary for scenario creation

with the UART peripherals. At a very high one can view

this component like a reusable VIP and can be moved to

other UART related projects within the OpenTitan family

of SOCs. The following figure illustrates the UART PSS

component.

D. Top Level SOC component

At the SOC level it is necessary to carry out global actions that may span one or more peripherals. These actions

are introduced at the SOC level component.

In the following figure we implement a

system wide action called

vk_configure_all_peripherals_a.

In this action we instantiation all the actions

from all the other components and traverse

these actions in a given order. This type of

action is called a compound action as it

invokes one or more other actions using

control flow ordering. In these compound

actions, customized parameter values for the

action instances are provided with inline

constraints using the “with” keyword. The

default constraints which are dynamic in

nature will be enabled by passing the

constraint label as inline constraint.

component vk_uart_c {

 action vk_uart_configure_a {

 exec body C = “””...........””” ;

 }

 action vk_uart_rand_data_send_a { }

 action vk_uart_rand_data_receive_a { }

 action vk_uart_read_and_send_a {

input addr_buf buf_i ;

 }

 action vk_uart_receive_and_store_a { }

}

component vk_top_earlgrey_c {

 vk_uart_c uart_c_inst ;

 vk_usb_c usb_c_inst ;

 vk_spi_c spi_c_inst ;

.....................

 action vk_configure_all_peripherals_a {

 vk_uart_c::vk_uart_configure_a uart_conf_inst;

 vk_usb_c::vk_usb_configure_a usb_conf_inst;

 vk_spi_c::vk_spi_configure_a spi_conf_inst;

 activity {

 uart_conf_inst with { default_baud; clk_fz == 3625; };

 usb_conf_inst with { };

 spi_conf_inst with { };

..........

 }

}

E. Modeling Data Movement with a PSS activity

Data movement functionality across peripherals is represented by a compound PSS action. These actions

internally traverse other

actions that may move data

from one part of the SOC to

another. In the figure shown

the compound action reads

some data from internal

memory and transfers it to

the TX ports of the UART

block.

The first action instance in

the activity does the

configuration by considering

the default configuration

values. An action instance of

a memory-management is

used to load the provided

data into a given address, the

values are passed using the

(inline) with-constraints. At

the last there will be a

traversal of the UART action

to which reads the data of a specified size from the given memory address. The read data will be written into the

UART write-fifo to transmit the same.

F. Creating SOC level scenarios

We construct a PSS model to represent a given scenario. The PSS model is created using the following steps:

(a) Component instances are created for all the peripherals in the SOC.

(b) A PSS buffer vk_data_buf is declared. An object of this type is bound to the send and receive actions.

(c) A PSS pool data_p is used to hold the buffer objects. This pool is made visible to all the PSS components

and actions.

(d) Action instances are created as required for constructing this scenario.

(e) Initially, a PSS action to configure all the peripherals is traversed. Constraints can be added during this

traversal using the “with” statement.

(f) A select statement is used to choose a source peripheral randomly. This peripheral is used for receiving the

data from the external ports and storing the data in memory.

(g) Size of the data is determined by randomizing the data-flow object (vk_data_buf type). This object is mapped

to the output port of the receive action.

(h) A select statement is used to choose a target peripheral randomly. This peripheral is used for sending the

data (read from memory) to the external ports. The same data flow object (mentioned in g) is mapped to the

port of this action

component pss_top {

 vk_mmio_c mmio_c_inst;

 vk_uart_c uart_c_inst;

// scenario of UART sending data loaded in memory

 action uart_mem_data_send {

 vk_uart_c::vk_uart_configure_a uart_conf_inst;

 vk_mmio_c::vk_load_mmio_a mem_ld_inst;

 vk_uart_c::vk_uart_mem_data_send_a uart_send_inst;

 rand int data_addr;

 rand string data;

 int size;

 activity {

 uart_conf_inst with {default_baud; default_clk; }

 mem_ld_inst with { start_addr == data_addr; info == data; };

 uart_send_inst with { mem_addr == data_addr; data_size == size};

 }

 }

}

(i) The pre_text_a and post_text_a will take care of adding header and trailer codes to each of the generated

testcases. This is required to complete the automated scenarios.

For example, UART [0]→mem

[2098]→UART [1] could be one of the

generated tests from this scenario. Other

scenarios can be created using inference a

unique feature of PSS. By inferring a mem-to-

mem transfer action, the following scenario can

be automatically created.

UART [0]→mem [2098]→mem [1094] →

UART [1]

But for this paper we did not enable the

inferencing feature of PSS.

The above PSS scenario was processed by an

internal tool to produce a control flow graph

shown in the next figure

.

7. SUMMARY/ RESULTS

The scenario generator can generate all combinations of data transfer across peripherals. The select construct

enables control flow randomization to produce all possible data transfers making the PSS approach compact.

Also, it is scalable as new peripherals are added to the mix. Here is an example of a generated testcase which

compiles and runs on the OpentTitan RTL:

component pss_top {

 vk_top_earlgrey_c top_eg_inst ;

 vk_uart_c uart_c_inst ;

 vk_gpio_c gpio_c_inst ;

 vk_spi_c spi_c_inst ;

 buffer vk_data_buf { rand int data_size; }

 pool vk_data_buf data_p;

 bind data_p * ;

 // scenario

 action top {

 vk_top_earlgrey_c::vk_configure_all_peripheral_a all_conf_a;

 vk_gpio_c::vk_gpio_read_and_send_a gpio_rd_tx_a;

 vk_gpio_c::vk_gpio_receive_and_store_a gpio_rx_ld_a;

 vk_uart_c::vk_uart_read_and_send_a uart_rd_tx_a;

 vk_uart_c::vk_uart_receive_and_store_a uart_rx_ld_a;

 vk_spi_c::vk_spi_read_and_send_a spi_rd_tx_a;

 vk_spi_c::vk_spi_receive_and_store_a spi_rx_ld_a;

 vk_pre_text_generator_a pre_text_a;

 vk_post_text_generator_a post_text_a;

 activity {

 pre_text_a;

 all_conf_a;

 select {

 uart_rx_ld_a;

 gpio_rx_ld_a;

 spi_rx_ld_a;

 }

 select {

 gpio_rd_tx_a;

 uart_rd_tx_a;

 spi_rd_tx_a;

 }

 post_text_a;

 }

 }

}

7. REFERENCES

1) Portable Test and Stimulus Standard - Accellera Systems Initiative- https://www.accellera.org/downloads/standards/portable-stimulus

2) OpenTitan project, https://www.opentitan.org

3) Ibex core project, https://github.com/lowRISC/ibex

4) IEEE Standard for SystemVerilog – Unified Hardware Design Specification, and Verification Language, IEEE Std 1800-2017,

https://ieeexplore.ieee.org/document/8299595

5) Accellera Tutorial presented at DVCON US 2020, Portable Stimulus : What’s coming in 1.1 and what it means for you. https://

ww.accellera.org/resources/videos/portable-stimulus-tutorial-2020

6) Accellera Tutorial presented at DVCON US 2018, Portable Test and Stimulus: The next level of verification productivity is here,

https:/www.accellera.org/resources/videos/pss-tutorial-2018

7) Mahesh R, Shamanth HK, “Verification of the PULPino SoC platform using UVM” presented at RISC-V Workshop at IIT Chennai, 2018

bool test_main(void) {
 dif_uart_t uart;

 CHECK(dif_uart_init((dif_uart_params_t)

 {
 .base_addr = mmio_region_from_addr(TOP_EARLGREY_UART0_BASE_ADDR),

 }, &uart) == kDifUartOk);

 CHECK(dif_uart_configure(&uart,

 (dif_uart_config_t){

 .baudrate = kUartBaudrate,
 .clk_freq_hz = kClockFreqPeripheralHz,

 .parity_enable = kDifUartToggleDisabled,

 .parity = kDifUartParityEven,
 }) == kDifUartConfigOk,

 "UART config failed!");

 CHECK(dif_uart_fifo_reset(&uart, kDifUartFifoResetAll) == kDifUartOk);

 static const uint32_t kGpioMask = 0x0000FFFF;

 dif_gpio_t gpio;
 CHECK(dif_gpio_init(

 (dif_gpio_params_t){

 .base_addr = mmio_region_from_addr(TOP_EARLGREY_GPIO_BASE_ADDR),
 },

 &gpio) == kDifGpioOk);

 CHECK(dif_gpio_output_set_enabled_all(&gpio, kGpioMask) == kDifGpioOk);

 static uint8_t kData[10];

 for (int i = 0; i < 10; ++i) {

 uint8_t receive_byte;

 CHECK(dif_uart_byte_receive_polled(&uart, &receive_byte) == kDifUartOk);

 kData[i] = receive_byte;

 }

 for (int i = 0; i < 10; ++i) {

 CHECK(dif_gpio_write_all(&gpio, kData[i]) == kDifGpioOk);
 }

 return true;
}

https://www.accellera.org/downloads/standards/portable-stimulus
https://www.opentitan.org/
https://github.com/lowRISC/ibex
https://ieeexplore.ieee.org/document/8299595

