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Agenda

• Verification target

• Setting up strategy and exploring solutions

• Creating the model

• A typical processing example

• Q&A



Planning
Verification target, goals, possible solutions



Our verification target: AXI cache controller

• Complex behavior with throughput maximization
• AXI interfaces (with response re-ordering, multiple request 

acceptance etc.)

• Pipelined operation with buffers

• Typical cache controller operations
• Hit/Miss check in the cache memory

• Refill of the data from the external memory in case of a 
missing cache line

• Eviction of an occupied dirty cache line back to the external 
memory

• Bypass non-cacheable accesses

AXI cache

AXI_S

TAG_MEM_IF

D_MEM_IF

AXI_M

AHB_S



Verification goals

• The verification focus is mainly on checking data 
consistency and throughput
• Point2point scoreboards

• Functional reference model is needed
• Should be as abstract as possible

• Keep it modular to be able to easily follow the future 
functional IP CRs

• Strong debug support to speed up the verification cycles

• Using state of the art techniques also from the OOP 
world
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How to model it?

• Formal approach?
• Requires to have the exact microarchitecture specification

• We lose our goal to be as abstract as possible

• Dynamic approach?
• Standard modelling is not enough to support the pipelined 

functionality

• It can be abstract, modular and more re-usable



Multi thread 
reference model

Multi thread model

• Multi thread model
• Able to accept and process all concurrent input 

triggers

• One request, multiple threads
• Every request on slave port spawns several threads

• Multiple threads run in parallel

• Emulate concurrency and pipelining inside the IP

• One thread, one main action
• Response/allocation/eviction handling on IP ports
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Thread evolution

• Every thread executes its job step by step
• Every step requires different actions to perform

• Steps can change dynamically

• The OOP State pattern can be applied here
• One step, one state
• Every state implements a different behavior

• One state machine is used for each main action/thread



Using the State pattern

• State transitions are controlled dynamically

• The state needs information to
• Set the next state

• When to trigger the state change

• Every state consumes/produces 
information from/for
• Other states

• Model components

• IP interfaces
*[Refactoring.Guru]



Exchanging information

• Many state machines in many threads can produce high 
amount of information

• The OOP Observer pattern can be applied
• Communication based on notifications

• A publisher object notifies its subscribers about a context
• A context in our case is a processing thread object

• Subscriber objects execute some tasks upon notification

• (Un)Subscription is dynamically controlled



Using the Observer pattern

• Every state
• Can delegate several subscribers to 

perform specific tasks upon 
notifications

• May trigger a publisher for 
notification to its subscribers
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Observer pattern  limitations

• The pattern implementation is not enough to cover all 
needs in our model

• Using multiple threads in the model requires sometimes
• Postponed notifications

• When the notification is produced before a subscription

• To maintain a priority order for the multiple calls to the 
notify method of the same publisher



Using the Decorator pattern

• We needed a solution to modify the behavior 
of the notifications before being deployed to 
subscribers
• The OOP Decorator pattern gave us the 

solution

• It allowed 
• To dynamically wrap publishers in a transparent 

way for the subscribers

• To attach 1 or more decorations for the 
notifications

*[Refactoring.Guru]



Let's create the model!
Put things together



Process item

• The central object type in our model is a thread object what we 
called: Process item

• Every AXI request on slave port generates one or more of these 
items

• A process item 
• Carries all the information related to the processing of a request

• Information is dynamically produced and consumed all along its execution

• It is the context item shared and exchanged among threads, states, 
publishers, subscribers and so on



Process item structure
Process item

State machines

State XState XState 

IDs, type, database ID etc.

Flags and variables

Monitored IF accesses

Predictions objects

• Executes any number of state machines
• Each state machine is running concurrent 

in separate threads

• Each cache operation type has a 
corresponding process item type

• All the process relevant interface events and 
accesses are stored in the process item

• The predicted scoreboard items are stored 
here



Reference model structure
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Process database

• All the process items are stored here

• Reference model components can 
access it

• Provides queries to get process items

• Multiple storages for different 
processing types

• Implements history queues to keep 
process items for debug
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Process arbiter

• It starts the process items in expected order

• Uses the same arbitration scheme as the 
RTL

Reference Model

Process Arbiter



Interface handlers

• Connection points to the external VIP 
interface agents

• Creates new process items
• In the cache controller model the AXI 

slave handler only

• Updates the process objects with the 
monitored information

• Handles predictions for expected 
scoreboard items Reference Model
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Interface schedulers

• Connection points to the external TB 
check components

• Sends out the predicted model output 
information to 
• Scoreboards

• Registers

• Timing checks are supported
• E.g.: for performance

Reference Model
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Interface Scheduler
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Interface Scheduler



Model in operation
A typical processing example



A typical processing example

• AXI Cacheable write
• The write beats have random latency

• The accessed area is NOT in the cache memory
• Refill operation is performed

• The read beats have random latency

• The refilled data needs to be merged with the written data
• Synch is needed between AXI slave and AXI master data

• After successful processing a write response is generated
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Benefits and possible future usages

• High modularity allows to easily add new functionality in the 
future

• State libraries are reusable for future IP derivatives or extensions

• The model approach allows to verify performance features beside 
simple data consistency checks

• The multi thread reference model approach can be applied for 
pipelined designs
• E.g.: Digital signal processors or Memory controllers etc.



Questions
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