
Verification of an AXI cache controller using multi-
thread approach based on OOP design patterns

Francesco Rua’ (STMicroelectronics)

Péter Sági (Veriest Solutions)

Agenda

• Verification target

• Setting up strategy and exploring solutions

• Creating the model

• A typical processing example

• Q&A

Planning
Verification target, goals, possible solutions

Our verification target: AXI cache controller

• Complex behavior with throughput maximization
• AXI interfaces (with response re-ordering, multiple request

acceptance etc.)

• Pipelined operation with buffers

• Typical cache controller operations
• Hit/Miss check in the cache memory

• Refill of the data from the external memory in case of a
missing cache line

• Eviction of an occupied dirty cache line back to the external
memory

• Bypass non-cacheable accesses

AXI cache

AXI_S

TAG_MEM_IF

D_MEM_IF

AXI_M

AHB_S

Verification goals

• The verification focus is mainly on checking data
consistency and throughput
• Point2point scoreboards

• Functional reference model is needed
• Should be as abstract as possible

• Keep it modular to be able to easily follow the future
functional IP CRs

• Strong debug support to speed up the verification cycles

• Using state of the art techniques also from the OOP
world

AXI cache

AXI_S

TAG_MEM_IF

D_MEM_IF

AXI_M

AHB_S

How to model it?

• Formal approach?
• Requires to have the exact microarchitecture specification

• We lose our goal to be as abstract as possible

• Dynamic approach?
• Standard modelling is not enough to support the pipelined

functionality

• It can be abstract, modular and more re-usable

Multi thread
reference model

Multi thread model

• Multi thread model
• Able to accept and process all concurrent input

triggers

• One request, multiple threads
• Every request on slave port spawns several threads

• Multiple threads run in parallel

• Emulate concurrency and pipelining inside the IP

• One thread, one main action
• Response/allocation/eviction handling on IP ports

Trigger1

Trigger2

Trigger3

Thread evolution

• Every thread executes its job step by step
• Every step requires different actions to perform

• Steps can change dynamically

• The OOP State pattern can be applied here
• One step, one state
• Every state implements a different behavior

• One state machine is used for each main action/thread

Using the State pattern

• State transitions are controlled dynamically

• The state needs information to
• Set the next state

• When to trigger the state change

• Every state consumes/produces
information from/for
• Other states

• Model components

• IP interfaces
*[Refactoring.Guru]

Exchanging information

• Many state machines in many threads can produce high
amount of information

• The OOP Observer pattern can be applied
• Communication based on notifications

• A publisher object notifies its subscribers about a context
• A context in our case is a processing thread object

• Subscriber objects execute some tasks upon notification

• (Un)Subscription is dynamically controlled

Using the Observer pattern

• Every state
• Can delegate several subscribers to

perform specific tasks upon
notifications

• May trigger a publisher for
notification to its subscribers

PUBLISHER

A

Thread X

State machine

State X

SUBSCRIBER_A

PUBLISHER

B

Please
notify me!

Something
happened!

Notify the
others

Observer pattern limitations

• The pattern implementation is not enough to cover all
needs in our model

• Using multiple threads in the model requires sometimes
• Postponed notifications

• When the notification is produced before a subscription

• To maintain a priority order for the multiple calls to the
notify method of the same publisher

Using the Decorator pattern

• We needed a solution to modify the behavior
of the notifications before being deployed to
subscribers
• The OOP Decorator pattern gave us the

solution

• It allowed
• To dynamically wrap publishers in a transparent

way for the subscribers

• To attach 1 or more decorations for the
notifications

*[Refactoring.Guru]

Let's create the model!
Put things together

Process item

• The central object type in our model is a thread object what we
called: Process item

• Every AXI request on slave port generates one or more of these
items

• A process item
• Carries all the information related to the processing of a request

• Information is dynamically produced and consumed all along its execution

• It is the context item shared and exchanged among threads, states,
publishers, subscribers and so on

Process item structure
Process item

State machines

State XState XState

IDs, type, database ID etc.

Flags and variables

Monitored IF accesses

Predictions objects

• Executes any number of state machines
• Each state machine is running concurrent

in separate threads

• Each cache operation type has a
corresponding process item type

• All the process relevant interface events and
accesses are stored in the process item

• The predicted scoreboard items are stored
here

Reference model structure

Reference Model

AXI
Interface Handler

AXI
Interface Scheduler

Publisher
pool

From AXI_S
VIP monitor

To AXI_S
Scoreboard

Memory
Interface Handler

Memory
Interface Scheduler

From Mem
VIP monitor

To Mem
Scoreboard

AXI_M
Interface Handler

AXI_M
Interface Scheduler

From AXI_M
VIP monitor

To AXI_M
Scoreboard

Register interface

Process Arbiter

PROCESS DB

Active History

P item
P item
P item

Notifications

P item
P item
P item

Process database

• All the process items are stored here

• Reference model components can
access it

• Provides queries to get process items

• Multiple storages for different
processing types

• Implements history queues to keep
process items for debug

Reference Model

PROCESS DB

Active History

P item
P item
P item

P item
P item
P item

Process arbiter

• It starts the process items in expected order

• Uses the same arbitration scheme as the
RTL

Reference Model

Process Arbiter

Interface handlers

• Connection points to the external VIP
interface agents

• Creates new process items
• In the cache controller model the AXI

slave handler only

• Updates the process objects with the
monitored information

• Handles predictions for expected
scoreboard items Reference Model

AXI_S
Interface Handler

Memory
Interface Handler

AXI_M
Interface Handler

Interface schedulers

• Connection points to the external TB
check components

• Sends out the predicted model output
information to
• Scoreboards

• Registers

• Timing checks are supported
• E.g.: for performance

Reference Model

AXI
Interface Scheduler

Memory
Interface Scheduler

AXI_M
Interface Scheduler

Model in operation
A typical processing example

A typical processing example

• AXI Cacheable write
• The write beats have random latency

• The accessed area is NOT in the cache memory
• Refill operation is performed

• The read beats have random latency

• The refilled data needs to be merged with the written data
• Synch is needed between AXI slave and AXI master data

• After successful processing a write response is generated

Arbitrate new
items

New
BEAT

Fetch item
from DB

Update SL
trans in item

[t]

Req Data

Cacheable WR access

PROCESS DB

Store the new item
into the DB

P item

AXI_SL
IF_HANDLER

New
REQ

[t]

PROCESS
ARBITER

Fetch new items
from DB

P item

[t]

STATE_1

Create new
process item

START item
execution

Process
item

Item is in INIT
STATE

[t]

MAIN state machine timeline

[t]Cacheable WR

Process
item

MAIN State machine timeline

INIT STATE

STATE_1

Refill REQ
prediction

Send out REQ to
M AR SB

RespReq Resp

#1 Refill RD

Publisher
pool

Notify:
DO! AXI_M

IF_HANDLER

AXI_M
IF_SCHEDULER

[t]

SUB State machine timeline

STATE_REFILL_REQ_PREDICT

[t]

[t]

PROCESS DB

New RD
RESP

Update M
trans in item

New RD
RESP

Update M
trans in item

P item

STATE_NSTATE_2 ➢ Next state is created by the current state
➢ State classes are stored in a library file

STATE LIB

Resp

Resp

Cacheable WR

#1 Refill RD

Process
item

STATE = null

STATE = null

BRESP
prediction

Send out BRESP to scoreboard

STATE_RESP

STATE_DONE

[t]

[t]

MAIN State machine timeline

SUB State machine timeline

Item execution
DONE

REMOVE Process
item from DB

PROCESS DB
P itemX

AXI_SL
IF_HANDLER

AXI_SL
IF_SCHEDULER

[t]

Benefits and possible future usages

• High modularity allows to easily add new functionality in the
future

• State libraries are reusable for future IP derivatives or extensions

• The model approach allows to verify performance features beside
simple data consistency checks

• The multi thread reference model approach can be applied for
pipelined designs
• E.g.: Digital signal processors or Memory controllers etc.

Questions

	Slide 1: Verification of an AXI cache controller using multi-thread approach based on OOP design patterns
	Slide 2: Agenda
	Slide 3: Planning
	Slide 4: Our verification target: AXI cache controller
	Slide 5: Verification goals
	Slide 6: How to model it?
	Slide 7: Multi thread model
	Slide 8: Thread evolution
	Slide 9: Using the State pattern
	Slide 10: Exchanging information
	Slide 11: Using the Observer pattern
	Slide 12: Observer pattern limitations
	Slide 13: Using the Decorator pattern
	Slide 14: Let's create the model!
	Slide 15: Process item
	Slide 16: Process item structure
	Slide 17
	Slide 18: Process database
	Slide 19: Process arbiter
	Slide 20: Interface handlers
	Slide 21: Interface schedulers
	Slide 22: Model in operation
	Slide 23: A typical processing example
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Benefits and possible future usages
	Slide 28: Questions

