
Verification of Virtual Platform Models
- What do we Mean with Good Enough?

Ola Dahl, Ericsson

Jakob Engblom, Intel

https://www.lacan.upc.edu/admoreWeb/2018/05/all-models-are-wrong-but-some-are-useful-george-e-p-box/

https://www.azquotes.com/quote/531521

https://www.lacan.upc.edu/admoreWeb/2018/05/all-models-are-wrong-but-some-are-useful-george-e-p-box/
https://www.azquotes.com/quote/531521

• Ola Dahl
• Senior Specialist Model-Based

Development

• Ericsson, Stockholm, Sweden

• Ericsson AI

• Software Engineering

• Control, Modeling, Signal
Processing

• Jakob Engblom
• Director Simulation Technology

Ecosystem

• Intel, Stockholm, Sweden

• Intel® Simics® virtual platforms
since 2002

• Simulation, modeling

Decades of industrial experience

We don’t have all the answers…
but hopefully some good questions

What Does Correctness Mean?

Correctness, Software Perspective

Hardware
Virtual platform

model

Software

Runs on Runs on

Good: Equivalent
VP purpose: run,
develop, test software

Correctness, IP Block/Hardware Perspective

Hardware
Virtual platform

model

Verification

Good: Find Errors
VP purpose: act as reference
for hardware implementation

Uses Checks

Too Much Correctness?

VP good enough for software
development and test

VP good enough for
hardware verification

Higher speed

More details

Virtual platform
model

Typical “fast virtual platform” Typical “golden
reference model”

At what level of observation is the model correct?

Is the software virtual platform
model the same as the hardware
golden reference?

Note: (Software) Correctness:
Is Being Forgiving Correct?

Software scenarios that
work on hardware

Software scenarios that
fail on hardware

Software scenarios that work on the
virtual platform

All software that runs on the hardware runs on the virtual platform. Good enough?

The VP fails to fail the software that
would fail on hardware

The VP correctly runs all correct
software that would run on the

hardware

Specifications and Implementations

In a Perfect World:
One Specification to Rule them All

Specification

Hardware
Virtual platform

model

Software

Note: Single Spec – Multiple Implementations

Specification

Hardware

Virtual platform
model

Software

Hardware

Hardware

For example, an instruction set
specification… (ARM, RISC-V, X86, …)

Virtual platform
model

Software

Multiple VPs, developed by
different vendors or users

Multiple hardware
implementations, from the
same or different vendors

Multiple software stacks –
different operating
systems, compilers, …

Ideally, any software runs on any VP or hardware

However...

“The Software Works on the Hardware”

Specification

Hardware
Virtual platform

model

Software

The software is
developed by testing
on hardware

The VP is developed
by testing against
the software

?

The specification
is not used

The hardware is one
particular implementation
of the specification

Is this VP correct? What happens when the software or hardware is exchanged for a different implementation?

?

?

“My Hardware Implementation is the Spec”

Specification?

Hardware
Virtual platform

model

Software

The specification is derived from the
actual hardware implementation

The VP is constantly
having to chase specs
from the hardware team

The software is also chasing specs
from the hardware team

Happy: unconstrained, hacking
away, changing the hardware
implementation, and by
implication the spec…

Following the spec does not mean you are correct vs hardware – specification updates are optional, late, and inconsistent

?

?

“The Software Works on the Virtual Platform”

Specification

Hardware
Virtual platform

model

Software

The VP is implemented
from the specification

The software is designed by testing on
the VP – whatever the VP allows is OK

VP and software can go off on a tangent together… Unclear that the software works on hardware…

?

?

“The Hardware Said So”

Specification

Hardware
Virtual platform

model

Software

The VP is implemented by
looking at a specific
hardware implementation

?

VP might not match the specification and not run the software – the hardware might have specific interpretations of the spec, bugs, etc.

The software is implemented
from the specification

“Bug-Compatibility”

Specification

Hardware
Virtual platform

model

Software

The VP is implemented
from the specification,
updated to add errata

The hardware implementation
has bugs – and it has shipped to
customers

The software is implemented
from the specification – and
errata

≠

≠

The VP models a particular hardware variant and revision – better remember that it deviates from spec

“That’s Not My Specification”

Specification

Hardware
Virtual platform

model

Software

Specification

Specification

Multiple editions or versions of the
specification are in use –
the “hardware spec”, “the user manual”,
“internal/external spec”, …

?

?

Does your flow go from
specification to model?

System Integration / Testing
Ola’s part

B

C

A

A B

CModule

Module

Integration

B

C

A Module testing

Module testing

Integration testing

Amount of module testing (for A)

Amount of module testing (for B)

Amount of integration testing (for C)

System Integration - Concepts

B

C

A

A B

CVP

SW

SW tests

B

C

A VP testing

SW testing (no VP)

SW testing on VP

Software on a Virtual Platform (VP)

Some Words from Software (and Google)

Employ the principle of software unit testing to the TB
[testbench] code early to minimize the age old “is it the
DUT [Device under Test] or the TB that’s wrong?”
debug cycle*

*The Challenges of Verifying an Arm CPU, Scott Kennedy, Arm, 2022 - link

Some Words from Hardware (and Google)

https://www.tessolve.com/wp-content/uploads/2022/06/3-Scott-Kennedy-ARM-Ltd.pdf

Software on VP – Take 1

my software test fails on
your VP

Oh, I'm sorry to hear that

are you sure that the VP
is Ok?

How?

I tested it

I ran your software test*

yes, the VP works fine

How do you know?

Software
Virtual

platform

*The software tests from an earlier version of the software

Software on VP – Take 2

my software test fails on
your VP

Are you sure that the
software is Ok?

yes, the software works
fine

I ran it on your VP*

How?

How to you know?

I tested it

Software
Virtual

platform

*The software ran on an earlier version of the virtual platform

Software on VP – Only Integration Tests

B

C

A

A B

CVP

SW

SW tests

B

C

A VP testing

SW testing (no VP)

SW testing on VP

Amount of module testing

Amount of module testing

Amount of integration testing

Borrowing – Key Concept

A VP borrows C SW testing on VP

A VPborrowsC SW testing on VP

Each team (A, B/C) uses a fixed baseline (a fixed version) of the
other team's products

The baseline is moved periodically (like once a week)

B

C

A

A B

C
VP model of IP
(“reference model”)

RTL (for the IP)

UVM testbench

B

C

A VP model testing

RTL testing (no testbench)

UVM testing

Hardware (IP, RTL) Verification

Hardware (IP, RTL) Verification

How do you know that
your ref model is good
enough? I run it in the UVM test

bench, where its outputs
are compared with the
outputs from RTL Virtual

platformRTL

How do you know that
your RTL is good enough?

I run it in the UVM test
bench, where its outputs
are compared with the

outputs from the ref
model

Hardware (IP, RTL) Verification

Virtual
platformRTL

A B

C

B

C

A VP model testing

RTL testing (no testbench)

UVM testing

Amount of module testing

Amount of module testing

Amount of integration testing

B

C

A
VP model of IP
(“reference model”)

RTL (for the IP)

UVM testbench

Hardware (IP, RTL) Verification

Borrowing, Again

A VP model borrows C UVM test bench (tb)

A VP modelborrowsC UVM tb

Each team (A, B/C) uses a fixed baseline (a fixed version) of the
other team's products

the baseline is moved periodically

Tests from team (1 … n)

delivers to

This team gets a
huge pile of tests…
do they motivate
their cost?

Deliverable from team (1 … n)

Cumulative Borrowing

borrows from

A B

C

A B

C

A B

C

A B

CD

...

A B

Module Testing on Different Levels

How much should you test at each level?

Employ the principle of SW unit testing to the TB code
early to minimize the age old is it the DUT or the TB
that’s wrong?” debug cycle*

*The Challenges of Verifying an Arm CPU, Scott Kennedy, Arm, 2022 - link

To what extent shall we
"test the tests"?

https://www.tessolve.com/wp-content/uploads/2022/06/3-Scott-Kennedy-ARM-Ltd.pdf

Amount of module testing

Amount of module testing

Amount of integration testing

Amount of module testing

Amount of module testing

Amount of integration testing

Module Testing – Is There a Scale
From None To "Significant" To "Too Much" ?

Stubs/Mockups/Verification IP/et cetera

C

System pre-integration test of by borrowing from

A B

A

B

C

real product

real product

real product

A

B

C

System pre-integration test of by borrowing (specs, concepts) from

S

real product

stub

real product

S

BA

A

A

C

T

System pre-integration test of by borrowing (specs, concepts) from and

T

BA C

S

A real product

stub

stub

SA

A VP uses T
Tests that represent
(mimic) the SW that
will run on the VP

S
A simplified HW model
e.g. built for host, that
mimics the VP

usesC SW testing on VP

Each team (A, B/C) manages their own stubs

Breaks the borrowing cycle

Borrowing with Stubs: Software and VP

A VP model uses

Tests that mimic "what's to
come" in the UVM tb for RTL,
e.g. using a virtual platform-
level tb

A simplified model, representing
the VP model and/or the RTL DUT,
perhaps with possibilities for fault
injection

usesC UVM testbench

Each team (A, B/C) manages their own stubs

Breaks the borrowing cycle

T

S

Borrowing with Stubs: VP and RTL

Borrowing, Stubs, and Module Tests

• What is the right amount of borrowing?

• How much unit testing?

• How much integration testing?

• How much integration testing with stubs?

Do You Do the Right Amount of
Unit Testing?

If not… too Little or too Much?

Different Kinds of Bugs
Still from Ola

implement

implement

Doing the thing right

Doing the right thing

implement

implement

Doing the thing right (DTR)

Doing the right thing (DRT)

Bugs

I did not implement what I
intended to implement

I implemented what I intended to
implement, but it was the wrong thing
to implement

a DTR bug

a DRT bug

there are no DTR bugs in

What if?

there are no DTR bugs in

there are no DTR bugs in

And/but the integrated system
does not behave according to
its spec (its tests fail)

how do we proceed?

System Integration

C

A B

A

C

B

is it the case that ...

if the subsystems being integrated into a
composite system do not have any DTR bugs

and this is true also for the integration
framework (the "wiring")

then the reason for the composite system failing can only
be due to DRT bugs

noting that ...

DRT bugs occur due to different parties
interpreting a spec differently

and hence that DRT bugs are not solved by
"trouble-shooting" (rather by re-reading specs
and discussing)

we might conclude that system integration becomes
requirements management

Recall…

Specification

Hardware
Virtual platform

model

Software

Imagine a Bug Report… That Looks Like This

Dear VP team,

I ran my test on your VP and it failed.

Here are instructions for how to reproduce

If needed, please contact us and we can set up a meeting for
collaborative trouble-shooting

Dear VP team,

I ran my test on your VP and I saw an unexpected value in
registers R1 and R2.

I expected these values (values mentioned), according to spec rev
version 43, but I saw these values (values mentioned)

If needed, please contact us and we can set up a meeting for a
requirements discussion (perhaps we have used different spec
versions?)

…Instead Looking Like This:

and solved by debugging

Dear VP team,

I ran my test on your VP and it failed.

Here are instructions for how to reproduce

If needed, please contact us and we can set up a meeting for
collaborative trouble-shooting

Imagine a Bug Report… That Looks Like This

and solved by a feature update (which should be possible to estimate)

Dear VP team,

I ran my test on your VP and I saw an unexpected value in
registers R1 and R2.

I expected these values (values mentioned), according to spec rev
version 43, but I saw these values (values mentioned)

If needed, please contact us and we can set up a meeting for a
requirements discussion (perhaps we have used different spec
versions?)

…Instead Looking Like This:

If we do more unit testing, and more
integration testing with stubs?

Do we get a return on investment in the
form of less trouble-shooting?
(fewer DTR bugs, perhaps as a vision: only
DRT bugs)

Some “Software Laws”

Conway’s Law

• The organizational structure will be reflected in the structure of
hardware and software

• If major interfaces in the VP do not follow the organizational
structure, problems will develop over time

• Be aware: Organizational boundaries can limit the access to
specifications, limiting or complicating VP modeling
• Corollary: to model something, you must know someone in the org building it

Hyrum’s Law

• Developers using an interface will likely come to rely on
undocumented or unspecified behaviors

• The VP model cannot be expected to follow the Hyrum’s law aspects
of the hardware

• Rely on the specification and consider issues as software or hardware
bugs (in the case implementation aspects creep in)

Goodhart’s Law

• If a measure becomes a target, the measure becomes pointless

• Don’t make volume or delivery dates of platforms into targets

• That will distort the process

Summary

Main Points

Define
“correctness”
appropriately

The specification
should be king

Unit tests are
key to successful

integration

Consider what a
test actually

tests

Doing the right
thing, or doing
the thing right?

Organization
matters

The End!

The Only way to Know is to Test

Specification

Hardware
Virtual platform

model

SoftwareTests

