
Verification of Inferencing Algorithm Accelerators

Russell Klein
Petri Solanti

Siemens EDA

Page 2

Agenda

• AI Accelerators
• High Level Synthesis
• Bespoke Accelerator Optimization

• Neural Network Architecture
• Quantization
• Data Movement

• Verification
• From Python to RTL

AI Accelerators

Page 4

Deploying inferencing systems, where and how

The Cloud A Gateway The Edge

Higher Latency/Lower development costs

CPU GPU TPU/NPU Edge TPU FPGA or ASIC

Higher specialization/Lower energy

Highest performance and efficiency
are achieved with specialized ASIC

implementation running on the edge

W
he

re
Ho

w

Page 5

Inference Execution (on-chip)

Slow Performance Fast

H
ig

h
En

er
gy

 E
ffi

ci
en

cy

 L
ow

 E
ne

rg
y

CPU

GPU

TPU/NPU

Custom

Page 6

Accelerated AI SoC Eco-system

General purpose chip developers

Board/system developers

Disaggregated

AI IP developers

Off-the-shelf solution

Bespoke SoC developers

Vertically Integrated

Internal customers

Custom solution

Page 7

AI Accelerator Verification Challenges

• CPU, GPU, NPU, TPU
• Verify algorithm implementation runs on IP
• Verify that IP is correctly integrated
• IP is assumed to be correct from the IP provider

• Bespoke accelerator
• Verify the algorithm runs on the accelerator
• Verify the accelerator is correctly integrated
• Verify the accelerator functions correctly

Page 8

From Python to Hardware

Machine Learning Framework

Iterate to find optimal NN
architecture

Python Verilog

To check accuracy, you need to
run thousands of inferences

For Yolo Tiny, RTL simulation can
run one inference in 28 hours

HW acceleration is difficult this
early in the design cycle

Page 9

A Better Path

Machine Learning Framework

Iterate to find optimal NN
architecture

Python Verilog

With this flow, proving
equivalency between C++ and
Verilog is much faster and
easier

C++

Automated
conversion
with HLS

Page 10

HLS AI Design Flow

Machine Learning
Framework

Neural Network
Architecture

Synthesizable
RTL

RTL Synthesis
and back-end

tool flows

C++
Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

High-Level
Synthesis

High-Level Synthesis

Page 12

What is High-Level Synthesis?

C/C++ or SystemC

Synthesizable RTL

Automated path from C/C++ or SystemC into
technology optimized synthesizable RTL

High-Level
Synthesis

Page 13

High-Level Synthesis Features

• User architectural control
• Parallelism, Throughput, Area, Latency (loop unrolling & pipelining)
• Memories vs Registers (resource allocation)

• Exploration and implementation by applying constraints
• Not by changing the source code

• Automatic arithmetic optimizations and bit-width trimming
• Bit-accurate types enable mathematical accuracy to propagate to

outputs

• Multi-objective process-aware scheduling for both FPGA and
ASIC
• Area/Latency/blend driven datapath scheduling
• Eliminates RTL technology penalty of I.P. reuse

void func (short a[N],
for (int i=0; i<N; i++) {
if (cond)
z+=a[i]*b[i];

else

RTL

Page 14

High-Level Synthesis Benefits

• Faster design
• Typically, RTL design phase is 2X faster for novice users 10X for experienced users
• Project start to tape-out can be 4X faster

• Faster verification
• Algorithm is verified at the abstract level
• Formal and dynamic verification can be used to prove equivalence between C++ and

HDL

• Easy technology retargeting, retiming
• RTL can be mapped to new technology library or clock frequency by re-synthesizing
• Simple transition between FPGA and ASIC implementation

Page 15

How does High-Level Synthesis Work?

• HLS automatically meets timing based on the user-specified clock
constraints.
• HLS understands the timing and area of the target technology and uses this

to insert registers when needed.
• Using the right HLS target library is very important!

• HLS closes on timing using:
• Data flow graph analysis
• Resource allocation
• Scheduling
• Resource sharing and timing analysis

Page 16

High-Level Synthesis: Bit-Accuracy

• Different datatypes used in HLS tools:
• Algorithmic C (AC) data types

• Faster in simulation
• System C data types

• Slower than AC datatype in simulation
• Arbitrary Precision (AP) data types

• Needed to model true hardware behaviour
• Bit-accuracy simulated in source
• Provides a path for automated bit-for-bit comparison of C++ and RTL

• Fixed point types include optional rounding and saturation modes.

Page 17

Bit-Accurate AC Data Types
• Allows designers to model a signed or unsigned bit vector

representing
• Arbitrary length integer: ac_int
• Arbitrary length fixed-point: ac_fixed
• Arbitrary length floating-point: ac_float, ac_std_float

• Saturation and overflow behavior like in RTL
• Decimal or integer numerical values – no need for scaling nor

conversion
The Algorithmic C fixed point data types are
declared as:

ac_fixed<W,I,S> x;

Page 18

AC Types Example – Integer and Fixed point

• 10 bit total, 1 integer bit, signed
• -1.0 to 0.99:

• Accumulator for 3 bits headroom
• No round/saturate

• Simple unsigned “int” 3-bit representation
#include <ac_fixed.h>
#define HEADROOM 3
typedef ac_fixed<10,1,true> coeff_type;
typedef ac_fixed<12,12,true,AC_RND_INF,AC_SAT> data_type;
typedef ac_fixed<22 + HEADROOM, 12 + 1 + HEADROOM, true> acc_type;
typedef ac_int<3,false> mode;

Page 19

Data Flow Graph Analysis

• HLS analyzes the data dependencies between the various steps in the
algorithm
• Analysis leads to Data Flow Graph (DFG) description
• Each node of the DFG represents an operation defined in the C++ code

• For this example, all operations use the "add" operator
• Connections between nodes represent data dependencies and indicate the

order of operations

Page 20

Resource Allocation

• During DFG analysis each operation is mapped onto a hardware resource which is
then used during scheduling.

• Resources corresponding to a physical implementation of the operator hardware
• Implementation is annotated with both timing and area information which is used during

scheduling
• Operations may have multiple hardware resource implementations that each have different

area/delay/latency trade-offs

• Resources are selected from a technology specific library

Page 21

Scheduling

• HLS adds "time" to the design during the process known as "scheduling“
• Scheduling takes the operations described in the DFG and decides when (in which

clock cycle) they are performed
• Has the effect of adding registers when needed to meet timing
• Similar to what RTL designers would call pipelining, by which they mean inserting registers to

reduce combinational delays

• Scheduling automatically shares resources

Page 22

Resource and Register Sharing

• HLS shares resources
• Via design constraints and automated analysis
• Explicit mutual exclusivity in the code

• HLS shares registers
• Via lifetime analysis

Page 23

HLS Optimizations for Area and Performance

• Loop optimizations
• provides a way to explore many

possible micro-architectures

• Loop Unrolling
• Represents space/parallelism

• Pipelining
• Represents time/throughput

• Automatic merging

Page 24

Interface Synthesis

• Adding an interface protocol to an untimed C++ design is known as
“Interface Synthesis”
• C++ source code does not specify the protocol
• Interface synthesis allows the protocol to be defined using the HLS

tool
void simple (int din, int &dout)
{

dout = din;
}

D0 D1

clk

req

ack

dindin

vld

rdy

Page 25

Memory Interface Synthesis

• Automatically mapped to ASIC or FPGA
memories/registers
• User control over memory mapping
• Arrays on the design interface can be synthesized

as memory interfaces
• Address, data, control

void simple_function(… ,int data[1024]){
int mem[1024];
<function body>

}

simple_function RTL

mem wrapper

Memory interface protocol

Instantiated memory wrapper

Page 26

Designing Concurrent Clocked Hierarchies

• Multi-block Design
• Top-down or bottom-up synthesis
• User specifies design blocks

• Design blocks/processes run in parallel
• High throughput

void CCS_BLOCK(run)(ac_channel<uint4 > &din,
ac_channel<uint20 > &dout){

inst0.run(din,connect);
inst1.run(connect,dout);

}

Top-Level Design

Clocked process

Block0

rundi
n

do
ut

Block1

rundi
n

do
utconnect

Accelerator Optimization

Page 28

• Neural Network Architecture
• Modifying layers and channels

• Quantization
• Changing the representation of numbers

• Data Movement, Storage
• Alter data caching and access patterns

Accelerator Optimization

Page 29

HLS AI Design Flow

Machine Learning
Framework

Neural Network
Architecture

Synthesizable
RTL

RTL Synthesis
and back-end

tool flows

C++
Algorithm

C++
Architected
Algorithm

C++
Quantized
Algorithm

High-Level
Synthesis

Page 30

Neural Network Architecture

• Most Neural Networks are architected for accuracy on servers
• Reducing the number of layers and channels in each layer

• Small impact on accuracy (<1%)
• Large impact on performance and efficiency (>90%)

Page 31

Impact of Channel Count on Accuracy

0

10

20

30

40

50

60

70

80

90

100

050100150200250300350400450500

Accuracy vs. Channels

Channels

Ac
cu

ra
cy

Based on MNIST LeNet
Dense layer has 500 channels

Page 32

Reducing Network Size Example

Page 32

Original MNIST network

Optimized MNIST network

MAC operations: 12,353,000
Number of parameters: 4,915,080
Minimum data transfer: 4,941,854 words

Accuracy: 98.75%

MAC operations: 537,410
Number of parameters: 145,977
Minimum data transfer: 150,728 words

Accuracy: 98.46%

Page 33

• Fixed point multipliers are about ½ the area of a floating-point multiplier
• Multipliers are proportional to the square of their inputs
• A 64-bit floating point multiplier is about 64 times larger than an 8-bit fixed point

multiplier
• Data storage and movement scale linearly with size

Quantization: Data Sizes and Operators

So
ur

ce
: N

vi
di

a,
 D

AC
 2

01
7

Page 34

Fixed Point Representation

integer bits fractional bitssign

Any size you want

64-bit Float

32-bit Float

Fixed Point

Page 35

• Convert weights and features from floating point to fixed point
• Eliminate unused high-order bits

• Removes constant 0 values from design
• Many neural network values are normalized to near 0

• May only need 4 or 5 integer bits

• Reduce fractional precision and measure impact on accuracy
• Iterative process

Quantizing Neural Networks

Page 36

Bitwidth vs Accuracy

Bit Width

Pe
rc

en
t A

cc
ur

ac
y

0

10

20

30

40

50

60

70

80

90

100

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Wake word Algorithm

Page 37

Accuracy vs. Bit Width, Post-training Quantization
Integer Bits

Fr
ac

tio
na

l B
its

32 bit floating point accuracy is 98.05

Area/power for 32 bit floating point multiplier is ~20X more than a 10 bit fixed point multiplier

Page 38

• Floating point representations almost never overflow
• 64 bit floating point represents up to 10308

• Using reduced precision means overflows are more likely
• Overflow truncation corrupts the result, and all subsequent calculations

• Saturating math stores the maximum value which can be represented
when an overflow occurs
• For many neural networks when a number gets large the absolute

magnitude is not important, just that the number is “large”

Saturating Math

Page 39

Saturating Math

39

Saturating math can reduce required representation size by 1 or 2 bits

Page 40

• Movement and storage of weights and features impacts performance
and power
• Reducing numeric representation has a linear effect on storage costs
• For data movement, fully packing the bus with data is optimal

• Buses are typically sized based on powers of two
• For example, 16 bit representation is preferred to 17 bits

• While reducing the size of the representation usually negatively
impacts accuracy, this can be offset by increasing layers or channels
• This means changing the architecture of the neural network

Data Movement and Storage

Page 41

• Convolution algorithms access the input feature map and output
array multiple times
• Early in the network the input data sets are typically smaller
• Later layers typically have larger input arrays
• Coordinating cache size with order of operations can optimize PPA

Convolution Order of Operations

Page 42

• Minimizing accesses to external memory can
improve performance and minimize power
• Memories tend to dominate area and power
• Data movement tends to limit performance
• If CNN data sets are too large to fit on-chip,

careful data management can significantly
improve design characteris

Caching and Buffering

Inference Accelerator, post P&R

Page 43

• The CNN will undergo significant modification between the ML
framework and the hardware design
• This presents unique verification challenges

Accelerator Optimization

Verification Challenges

Page 45

• Need to verify:
• Individual operators, multipliers, adders, etc.
• Processing elements, Multiply/Accumulate (MAC) operations
• Complete inferences

• Neural Networks are robust to failed individual operations
• A single correct inference does not prove correctness of the implementation
• A statistically significant number of inferences is required

Verification of Inferencing Systems

Page 46

• Performance in logic simulation is prohibitively slow (28 hours for one
inference in an object recognition algorithm)
• And hardware acceleration is often not available early in the design cycle

• Verify at the abstract level and prove equivalence between
representations at different design stages
• This can be done between Python and C++, then C++ and RTL

Verification of Inferencing Systems

Page 47

Traditional UVM Flow

Predictor
Keras CNN
(Python)

Compare

Stimulus

UVM tb

Agent Agent
SV/UVM

ML Accelerator

Page 48

• Verilog implements modified CNN
• Changes in layers/channels (these can be implemented in the predictor)
• Changes in numeric representation

• Float vs. fixed
• Bit widths
• Saturation/rounding

• Cannot directly compare outputs
• If there is a problem, debug is very hard

Traditional UVM Flow

Page 49

Verification landscape

10,000

100,000

1,000

100

10

1

0.1

C++
Algorithmic

C++
Architecture

uesta

VeloceIn
fe

re
nc

es
 p

er
 h

ou
r

Do as much verification as
possible here

Verify equivalency with prior
stage implementations during
refinement

Calendar time

C++
Quantized

Page 50

Prove Equivalence at Each Step

Restricted | © Siemens 2022 | R. Klein - AI Hardware Keynote Prep | Siemens Digital Industries Software | Where today meets tomorrow

Machine Learning
Framework

Neural Network
Architecture

Synthesizable
RTL

C++
Algorithm

C++
Architected

Implementation

C++
Quantized
Algorithm

== == ==
High-Level
Synthesis

Page 51

Python to C++ Consistency

Python to C++

==

C++ node Comparator

Node by node compare
Python with C++

Python CNN • Run C++ node in parallel with Python node
• Both nodes use common float types
• Differences should be only order of computation

rounding error
• Import C++ function into Python

• Several ways to do this: ctypes, CFFI, PyBind11, Cython

• Repeat for subsequent nodes, then layers, then
complete network

Page 52

C++ to Quantized Model Consistency

Quantization

C++ float32 CNN

C++ quantized CNN

• Run C++ node in parallel with the quantized node
• Quantized implementation should be identical to

C++ algorithmic except for data types
• Verify/debug one thing at a time

• Nodes use different types
• Float vs. fixed point, reduced bit-width (ac data types)

• Differences will exist, and may be large
• When in range, single operations will be within

rounding error
• Outside of range will be saturated

Page 53

• Need to run large number of inferences
• Predictions will be different from Python or C++ algorithmic model

• Determine if CNN accuracy is acceptable
• Modify network/layers/channels as needed and repeat

• One day ML frameworks will support quantized numbers
• Qkeras, Larq, and Hawq are examples of extensions that support quantization
• Currently, works for TPUs, but not expressive enough for bespoke accelerator
• Abstract model must exactly match the Verilog to be implemented

Quantized Model Must be Verified

Page 54

C++ Quantized to C++ Architecture Consistency

Architecture

C++ Quantized CNN

C++ Architected CNN

• Run Quantized node with Architected node
• Quantized and Algorithmic nodes should differ

only by order of operation rounding errors
• Nodes use same types

• Fixed point, reduced bit-width

Page 55

Verification – before HLS
Static Design Checks

Coverage Analysis

C++ Architected CNN

Static code analysis and synthesis
checks. Find coding errors and
problem constructs

Determine completeness of test
cases. Statement, branch and
expression coverage as well as
covergroups, coverpoints, bins and
crosses

Page 56

C++ to RTL consistency
Formal

RTL Coverage

UVM

C++ Architected CNN
Using formal techniques, prove as
much equivalency as possible

Determine remaining verification
effectiveness through RTL coverage
metrics

Architected C++ is used as a
predictor for RTL verification

Page 57

Debug – When Things Go Wrong
• Log all intermediate values to memory or log file

• This includes output from each layer

• Have scripts that can compare intermediate values
from different model representations
• This identifies the first point of divergence between

models
• Immediately find layer and node where problem

resides

• Intermediate values from the Python can be
recorded to a file for comparison

Model A

Model B

Page 58

HVL UVM Flow

Predictor:
Architected

C++
Compare

Stimulus

UVM tb

Agent Agent

SV/UVM

SV/UVM

RTL

ML Accelerator
HLS Created

Verilog

Page 59

Verification in HLS Flow

Area, Timing &
Power Optimized

RTL

Catapult
Design Checker

C++/SystemC
Design

HLS
Verification

Find language and
coding bugs

without simulation Ensure code/functional
coverage of HLS Code

Run in a wide
variety of

environments

Verify post-HLS RTL
leveraging existing

tb

Catapult
Coverage

C++/ SysC/
UVM

Testbench

Catapult
HLS

Page 60

Conclusion

• Moving from Python to RTL in a single step introduces a significant
verification problem
• Inferencing algorithms do not produce bit-level equivalency when accelerated
• Requires many inferences to verify accuracy of implementation
• Simulation performance is too slow, emulation or FPGA prototypes are usually

not available

• High-Level Synthesis introduces an intermediate C++ model
• Verify the algorithm at the Python level
• Prove equivalency between subsequent model stages

Questions or Comments

?? || //

Thank You

Petri Solanti, Field Applications Engineer, Petri.Solanti@Siemens.com
Russell Klein, Program Director, Russell.Klein@Siemens.com

mailto:Petri.Solanti@Siemens.com
mailto:Russell.Klein@Siemens.com

