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Agenda

• AI Accelerators
• High Level Synthesis
• Bespoke Accelerator Optimization

• Neural Network Architecture
• Quantization
• Data Movement

• Verification 
• From Python to RTL



AI Accelerators



Page 4

Deploying inferencing systems, where and how

The Cloud A Gateway The Edge

Higher Latency/Lower development costs

CPU GPU TPU/NPU Edge TPU FPGA or ASIC

Higher specialization/Lower energy

Highest performance and efficiency 
are achieved with specialized ASIC 

implementation running on the edge
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Inference Execution (on-chip) 
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Accelerated AI SoC Eco-system

General purpose chip developers

Board/system developers

Disaggregated

AI IP developers

Off-the-shelf solution

Bespoke SoC developers

Vertically Integrated

Internal customers

Custom solution
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AI Accelerator Verification Challenges

• CPU, GPU, NPU, TPU
• Verify algorithm implementation runs on IP
• Verify that IP is correctly integrated
• IP is assumed to be correct from the IP provider

• Bespoke accelerator
• Verify the algorithm runs on the accelerator
• Verify the accelerator is correctly integrated
• Verify the accelerator functions correctly
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From Python to Hardware

Machine Learning Framework

Iterate to find optimal NN 
architecture

Python Verilog

To check accuracy, you need to 
run thousands of inferences 

For Yolo Tiny, RTL simulation can 
run one inference in 28 hours

HW acceleration is difficult this 
early in the design cycle



Page 9

A Better Path

Machine Learning Framework

Iterate to find optimal NN 
architecture

Python Verilog

With this flow, proving 
equivalency between C++ and 
Verilog is much  faster and 
easier

C++

Automated 
conversion 
with HLS
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HLS AI Design Flow

Machine Learning 
Framework

Neural Network 
Architecture

Synthesizable 
RTL

RTL Synthesis 
and back-end 

tool flows

C++ 
Algorithm

C++
Architected

Implementation 

C++
Quantized 
Algorithm

High-Level
Synthesis
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What is High-Level Synthesis?

C/C++ or SystemC

Synthesizable RTL

Automated path from C/C++ or SystemC into 
technology optimized synthesizable RTL

High-Level
Synthesis
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High-Level Synthesis Features

• User architectural control
• Parallelism, Throughput, Area, Latency (loop unrolling & pipelining)  
• Memories vs Registers (resource allocation)

• Exploration and implementation by applying constraints
• Not by changing the source code

• Automatic arithmetic optimizations and bit-width trimming
• Bit-accurate types enable mathematical accuracy to propagate to 

outputs

• Multi-objective process-aware scheduling for both FPGA and 
ASIC
• Area/Latency/blend driven datapath scheduling
• Eliminates RTL technology penalty of I.P. reuse

void func (short a[N], 
for (int i=0; i<N; i++) {
if (cond)
z+=a[i]*b[i];

else

RTL
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High-Level Synthesis Benefits

• Faster design
• Typically, RTL design phase is 2X faster for novice users 10X for experienced users 
• Project start to tape-out can be 4X faster 

• Faster verification
• Algorithm is verified at the abstract level
• Formal and dynamic verification can be used to prove equivalence between C++ and 

HDL

• Easy technology retargeting, retiming
• RTL can be mapped to new technology library or clock frequency by re-synthesizing
• Simple transition between FPGA and ASIC implementation 
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How does High-Level Synthesis Work?

• HLS automatically meets timing based on the user-specified clock 
constraints.
• HLS understands the timing and area of the target technology and uses this 

to insert registers when needed.
• Using the right HLS target library is very important!

• HLS closes on timing using:
• Data flow graph analysis
• Resource allocation
• Scheduling
• Resource sharing and timing analysis
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High-Level Synthesis: Bit-Accuracy

• Different datatypes used in HLS tools:
• Algorithmic C (AC) data types

• Faster in simulation
• System C data types

• Slower than AC datatype in simulation
• Arbitrary Precision (AP) data types

• Needed to model true hardware behaviour
• Bit-accuracy simulated in source
• Provides a path for automated bit-for-bit comparison of C++ and RTL

• Fixed point types include optional rounding and saturation modes.
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Bit-Accurate AC Data Types
• Allows designers to model a signed or unsigned bit vector 

representing
• Arbitrary length integer: ac_int
• Arbitrary length fixed-point: ac_fixed
• Arbitrary length floating-point: ac_float, ac_std_float

• Saturation and overflow behavior like in RTL
• Decimal or integer numerical values – no need for scaling nor 

conversion
The Algorithmic C fixed point data types are 
declared as:

ac_fixed<W,I,S> x;
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AC Types Example – Integer and Fixed point

• 10 bit total, 1 integer bit, signed
• -1.0 to 0.99:

• Accumulator for 3 bits headroom
• No round/saturate

• Simple unsigned “int” 3-bit representation
#include <ac_fixed.h>
#define HEADROOM 3
typedef ac_fixed<10,1,true> coeff_type;
typedef ac_fixed<12,12,true,AC_RND_INF,AC_SAT> data_type;
typedef ac_fixed<22 + HEADROOM, 12 + 1 + HEADROOM, true> acc_type;
typedef ac_int<3,false> mode;
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Data Flow Graph Analysis

• HLS analyzes the data dependencies between the various steps in the 
algorithm
• Analysis leads to Data Flow Graph (DFG) description
• Each node of the DFG represents an operation defined in the C++ code

• For this example, all operations use the "add" operator
• Connections between nodes represent data dependencies and indicate the 

order of operations
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Resource Allocation

• During DFG analysis each operation is mapped onto a hardware resource which is 
then used during scheduling.

• Resources corresponding to a physical implementation of the operator hardware
• Implementation is annotated with both timing and area information which is used during 

scheduling
• Operations may have multiple hardware resource implementations that each have different 

area/delay/latency trade-offs

• Resources are selected from a technology specific library



Page 21

Scheduling

• HLS adds "time" to the design during the process known as "scheduling“
• Scheduling takes the operations described in the DFG and decides when (in which 

clock cycle) they are performed
• Has the effect of adding registers when needed to meet timing
• Similar to what RTL designers would call pipelining, by which they mean inserting registers to 

reduce combinational delays

• Scheduling automatically shares resources
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Resource and Register Sharing

• HLS shares resources
• Via design constraints and automated analysis
• Explicit mutual exclusivity in the code

• HLS shares registers
• Via lifetime analysis
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HLS Optimizations for Area and Performance

• Loop optimizations
• provides a way to explore many 

possible micro-architectures

• Loop Unrolling
• Represents space/parallelism

• Pipelining
• Represents time/throughput

• Automatic merging
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Interface Synthesis

• Adding an interface protocol to an untimed C++ design is known as 
“Interface Synthesis”
• C++ source code does not specify the protocol
• Interface synthesis allows the protocol to be defined using the HLS 

tool
void simple (int din, int &dout) 
{

dout = din;  
}

D0 D1

clk

req

ack

dindin

vld

rdy
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Memory Interface Synthesis

• Automatically mapped to ASIC or FPGA 
memories/registers
• User control over memory mapping
• Arrays on the design interface can be synthesized 

as memory interfaces
• Address, data, control

void simple_function(… ,int data[1024]){
int mem[1024];
<function body>

}

simple_function RTL

mem wrapper

Memory interface protocol

Instantiated memory wrapper



Page 26

Designing Concurrent Clocked Hierarchies

• Multi-block Design
• Top-down or bottom-up synthesis
• User specifies design blocks

• Design blocks/processes run in parallel
• High throughput

void CCS_BLOCK(run)(ac_channel<uint4 > &din, 
ac_channel<uint20 > &dout){

inst0.run(din,connect);
inst1.run(connect,dout);

}

Top-Level Design

Clocked process

Block0

rundi
n

do
ut

Block1

rundi
n

do
utconnect



Accelerator Optimization
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• Neural Network Architecture
• Modifying layers and channels

• Quantization
• Changing the representation of numbers

• Data Movement, Storage
• Alter data caching and access patterns 

Accelerator Optimization
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HLS AI Design Flow

Machine Learning 
Framework

Neural Network 
Architecture

Synthesizable 
RTL

RTL Synthesis 
and back-end 

tool flows

C++ 
Algorithm

C++
Architected
Algorithm 

C++
Quantized 
Algorithm

High-Level
Synthesis
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Neural Network Architecture

• Most Neural Networks are architected for accuracy on servers
• Reducing the number of layers and channels in each layer

• Small impact on accuracy (<1%)
• Large impact on performance and efficiency (>90%)
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Impact of Channel Count on Accuracy
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Reducing Network Size Example

Page 32

Original MNIST network

Optimized MNIST network

MAC operations: 12,353,000
Number of parameters: 4,915,080
Minimum data transfer: 4,941,854 words

Accuracy:     98.75%

MAC operations: 537,410
Number of parameters: 145,977
Minimum data transfer: 150,728 words

Accuracy:     98.46%
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• Fixed point multipliers are about ½ the area of a floating-point multiplier
• Multipliers are proportional to the square of their inputs
• A 64-bit floating point multiplier is about 64 times larger than an 8-bit fixed point 

multiplier
• Data storage and movement scale linearly with size

Quantization: Data Sizes and Operators
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Fixed Point Representation

integer bits fractional bitssign

Any size you want

64-bit Float

32-bit Float

Fixed Point
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• Convert weights and features from floating point to fixed point
• Eliminate unused high-order bits

• Removes constant 0 values from design
• Many neural network values are normalized to near 0

• May only need 4 or 5 integer bits

• Reduce fractional precision and measure impact on accuracy
• Iterative process

Quantizing Neural Networks
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Bitwidth vs Accuracy

Bit Width
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Accuracy vs. Bit Width, Post-training Quantization
Integer Bits
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32 bit floating point accuracy is 98.05

Area/power for 32 bit floating point multiplier is ~20X more than a 10 bit fixed point multiplier 
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• Floating point representations almost never overflow
• 64 bit floating point represents up to 10308

• Using reduced precision means overflows are more likely
• Overflow truncation corrupts the result, and all subsequent calculations

• Saturating math stores the maximum value which can be represented 
when an overflow occurs
• For many neural networks when a number gets large the absolute 

magnitude is not important, just that the number is “large”

Saturating Math
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Saturating Math 

39

Saturating math can reduce required representation size by 1 or 2 bits
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• Movement and storage of weights and features impacts performance 
and power
• Reducing numeric representation has a linear effect on storage costs
• For data movement, fully packing the bus with data is optimal

• Buses are typically sized based on powers of two
• For example, 16 bit representation is preferred to 17 bits

• While reducing the size of the representation usually negatively 
impacts accuracy, this can be offset by increasing layers or channels
• This means changing the architecture of the neural network

Data Movement and Storage
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• Convolution algorithms access the input feature map and output 
array multiple times
• Early in the network the input data sets are typically smaller
• Later layers typically have larger input arrays 
• Coordinating cache size with order of operations can optimize PPA

Convolution Order of Operations
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• Minimizing accesses to external memory can 
improve performance and minimize power
• Memories tend to dominate area and power
• Data movement tends to limit performance
• If CNN data sets are too large to fit on-chip, 

careful data management can significantly 
improve design characteris

Caching and Buffering

Inference Accelerator, post P&R
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• The CNN will undergo significant modification between the ML 
framework and the hardware design
• This presents unique verification challenges 

Accelerator Optimization



Verification Challenges
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• Need to verify:
• Individual operators, multipliers, adders, etc.
• Processing elements, Multiply/Accumulate (MAC) operations
• Complete inferences

• Neural Networks are robust to failed individual operations
• A single correct inference does not prove correctness of the implementation  
• A statistically significant number of inferences is required

Verification of Inferencing Systems
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• Performance in logic simulation is prohibitively slow (28 hours for one 
inference in an object recognition algorithm)
• And hardware acceleration is often not available early in the design cycle

• Verify at the abstract level and prove equivalence between 
representations at different design stages
• This can be done between Python and C++, then C++ and RTL

Verification of Inferencing Systems
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Traditional UVM Flow

Predictor
Keras CNN
(Python)

Compare

Stimulus

UVM tb

Agent Agent
SV/UVM

ML Accelerator
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• Verilog implements modified CNN
• Changes in layers/channels (these can be implemented in the predictor)
• Changes in numeric representation

• Float vs. fixed
• Bit widths 
• Saturation/rounding 

• Cannot directly compare outputs
• If there is a problem, debug is very hard

Traditional UVM Flow
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Verification landscape
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Prove Equivalence at Each Step

Restricted | © Siemens 2022 | R. Klein - AI Hardware Keynote Prep | Siemens Digital Industries Software | Where today meets tomorrow

Machine Learning 
Framework

Neural Network 
Architecture

Synthesizable 
RTL

C++ 
Algorithm

C++
Architected

Implementation 

C++
Quantized 
Algorithm

== == ==
High-Level
Synthesis
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Python to C++ Consistency 

Python to C++ 

==

C++ node Comparator

Node by node compare 
Python with C++

Python CNN • Run C++ node in parallel with Python node
• Both nodes use common float types
• Differences should be only order of computation 

rounding error
• Import C++ function into Python

• Several ways to do this: ctypes, CFFI, PyBind11, Cython

• Repeat for subsequent nodes, then layers, then 
complete network
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C++ to Quantized Model Consistency 

Quantization

C++ float32 CNN

C++ quantized CNN

• Run C++ node in parallel with the quantized node
• Quantized implementation should be identical to 

C++ algorithmic except for data types 
• Verify/debug one thing at a time

• Nodes use different types
• Float vs. fixed point, reduced bit-width (ac data types)

• Differences will exist, and may be large
• When in range, single operations will be within 

rounding error
• Outside of range will be saturated
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• Need to run large number of inferences
• Predictions will be different from Python or C++ algorithmic model

• Determine if CNN accuracy is acceptable
• Modify network/layers/channels as needed and repeat 

• One day ML frameworks will support quantized numbers
• Qkeras, Larq, and Hawq are examples of extensions that support quantization
• Currently, works for TPUs, but not expressive enough for bespoke accelerator
• Abstract model must exactly match the Verilog to be implemented

Quantized Model Must be Verified
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C++ Quantized to C++ Architecture Consistency 

Architecture

C++ Quantized CNN

C++ Architected CNN

• Run Quantized node with Architected node
• Quantized and Algorithmic nodes should differ 

only by order of operation rounding errors
• Nodes use same types 

• Fixed point, reduced bit-width
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Verification – before HLS 
Static Design Checks

Coverage Analysis

C++ Architected CNN

Static code analysis and synthesis 
checks.  Find coding errors and 
problem constructs   

Determine completeness of test 
cases.  Statement, branch and 
expression coverage as well as 
covergroups, coverpoints, bins and 
crosses 
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C++ to RTL consistency
Formal

RTL Coverage

UVM

C++ Architected CNN
Using formal techniques, prove as 
much equivalency as possible

Determine remaining verification 
effectiveness through RTL coverage 
metrics

Architected C++ is used as a 
predictor for RTL verification
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Debug – When Things Go Wrong
• Log all intermediate values to memory or log file

• This includes output from each layer

• Have scripts that can compare intermediate values 
from different model representations
• This identifies the first point of divergence between 

models
• Immediately find layer and node where problem 

resides

• Intermediate values from the Python can be 
recorded to a file for comparison

Model A

Model B
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HVL UVM Flow

Predictor:
Architected 

C++
Compare

Stimulus

UVM tb

Agent Agent

SV/UVM

SV/UVM

RTL

ML Accelerator
HLS Created 

Verilog
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Verification in HLS Flow

Area, Timing & 
Power Optimized

RTL

Catapult 
Design Checker

C++/SystemC 
Design

HLS 
Verification

Find language and 
coding bugs 

without simulation Ensure code/functional 
coverage of HLS Code

Run in a wide 
variety of 

environments

Verify post-HLS RTL 
leveraging existing 

tb

Catapult 
Coverage  

C++/ SysC/
UVM  

Testbench

Catapult 
HLS
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Conclusion

• Moving from Python to RTL in a single step introduces a significant 
verification problem
• Inferencing algorithms do not produce bit-level equivalency when accelerated
• Requires many inferences to verify accuracy of implementation
• Simulation performance is too slow, emulation or FPGA prototypes are usually 

not available

• High-Level Synthesis introduces an intermediate C++ model
• Verify the algorithm at the Python level
• Prove equivalency between subsequent model stages
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Thank You

Petri Solanti, Field Applications Engineer,   Petri.Solanti@Siemens.com
Russell Klein, Program Director,                    Russell.Klein@Siemens.com
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