CONFERENCE AND EXHIBITION

EUROPE

MUNICH, GERMANY DECEMBER 6 - 7, 2022

Verification of High-Speed Links through IBIS-AMI Models

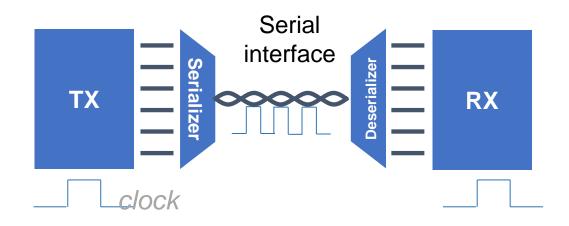
Ganesh Rathinavel, Sr. Application Engineer – AMS/SI

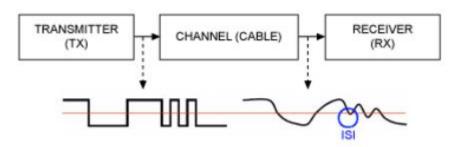
Outline

- Introduction to high-speed links
- System-Level modeling workflow
- Performance verification
 - Statistical Domain
 - Time-Domain
- Generation of IBIS-AMI
- Regression checks
- Channel Pre-layout and Post-layout
- Compliance Checking
- Summary

Introduction to High-Speed Links

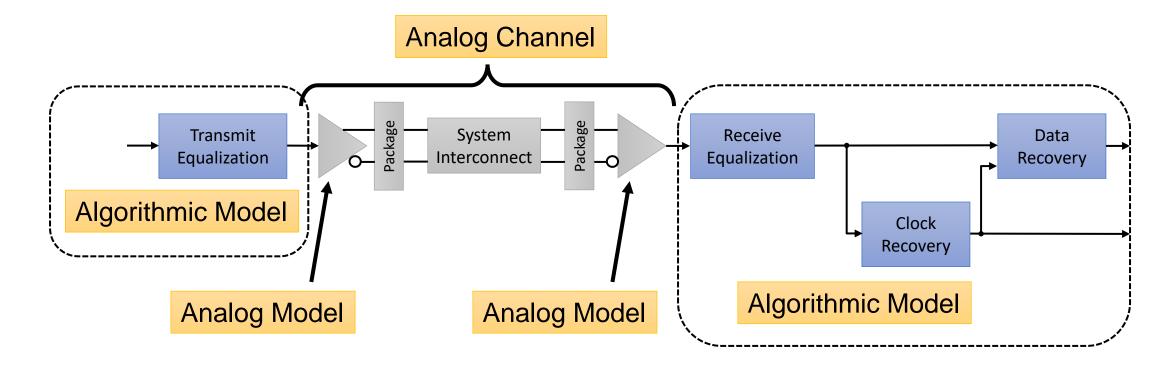
- High speed digital links or wired links are ubiquitous
- Wide variation of speed and applications, operating conditions
- Limited ports requiring multiplexing at high-speeds
- Growing demand of higher data rate and throughput

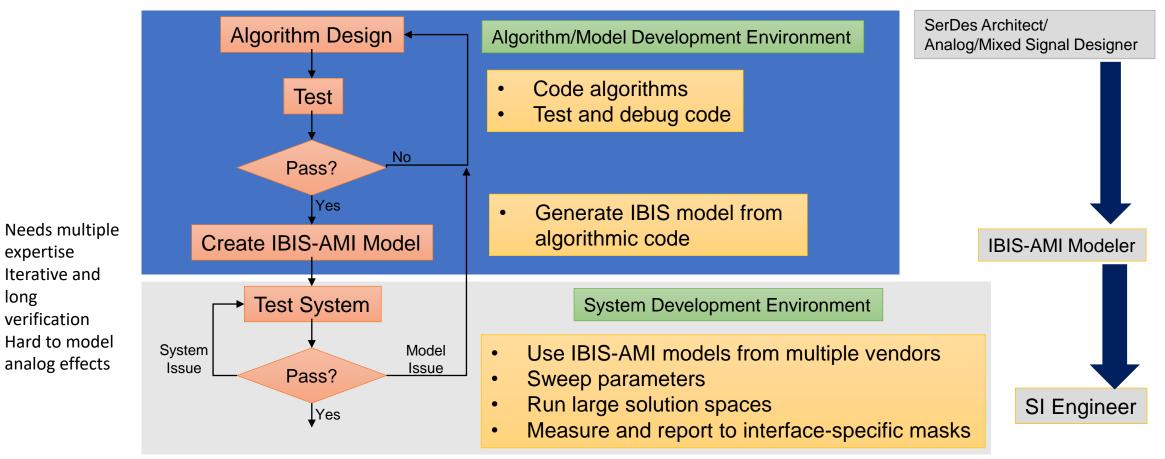




SerDes

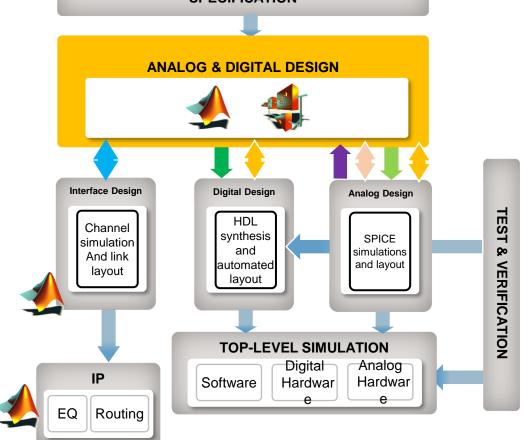
- Serializer Deserializer
 - Send Data and Clock
 - Constant increase in speed (~100Gbps)
 - Special case of Mixed-Signal (DSP+RF)
 - Evaluating Equalization techniques
- Example
 - Ethernet
 - Universal Serial BUS
 - DDR (with CDR)
 - PCI

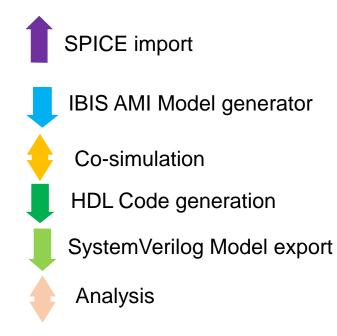




Typical SerDes system: TX, RX and channel

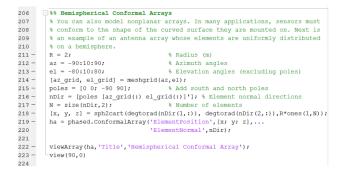
Typical workflow

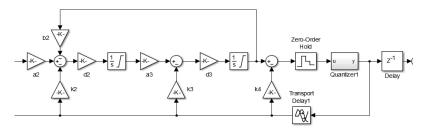


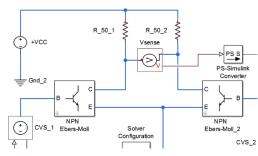

SYSTEMS INITIATIVE

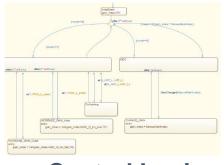
long

Mixed-Signal Design with MATLAB and Simulink



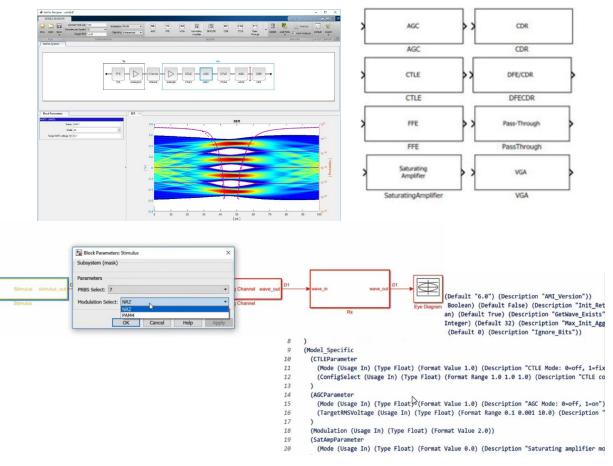



Modeling Approaches

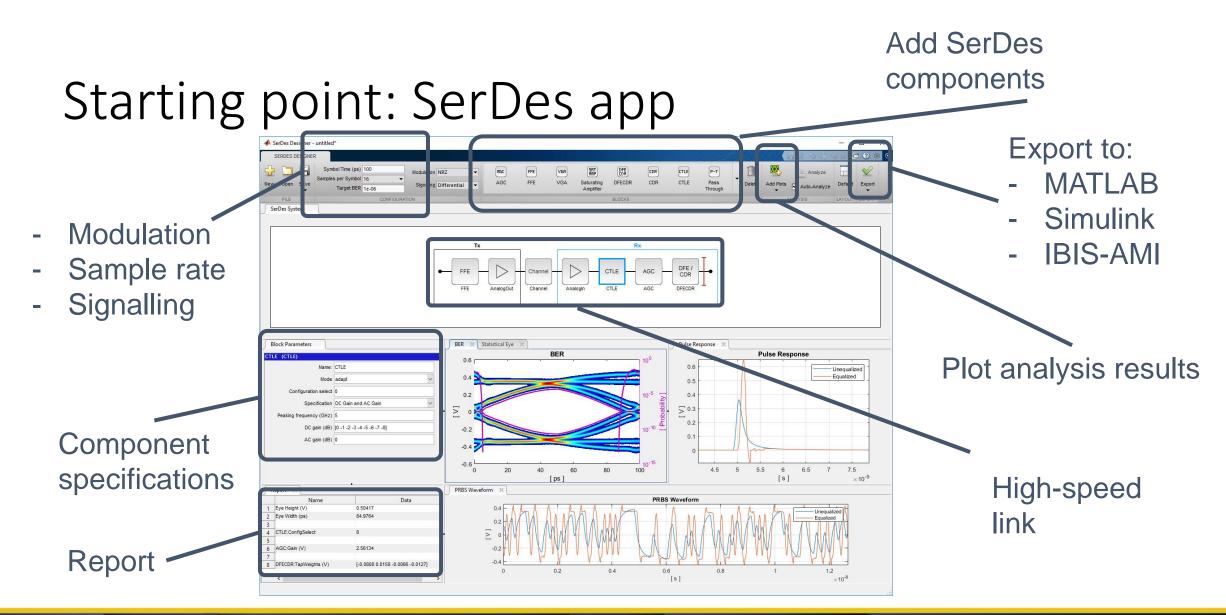

Algorithms

Behavioral Models

Physical Network

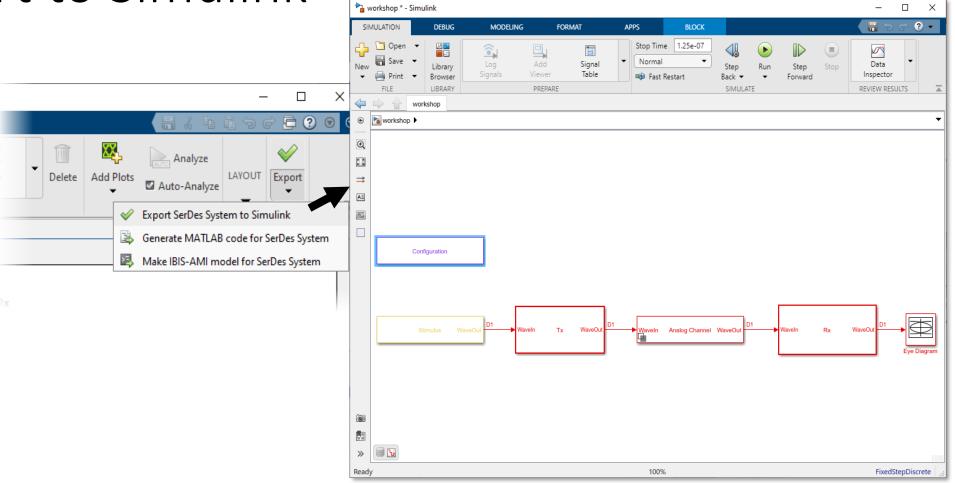


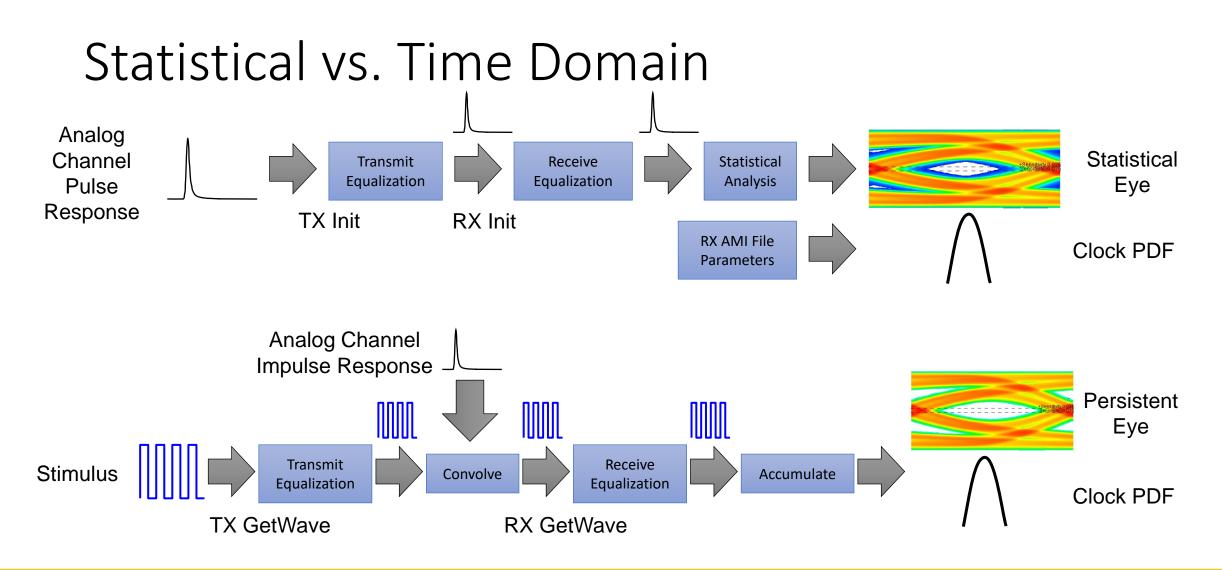
Control Logic



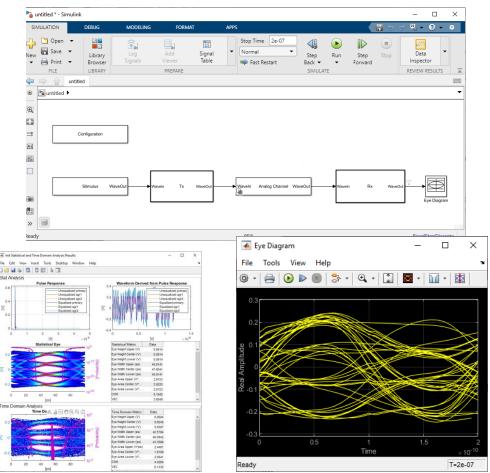
System-level modeling workflow

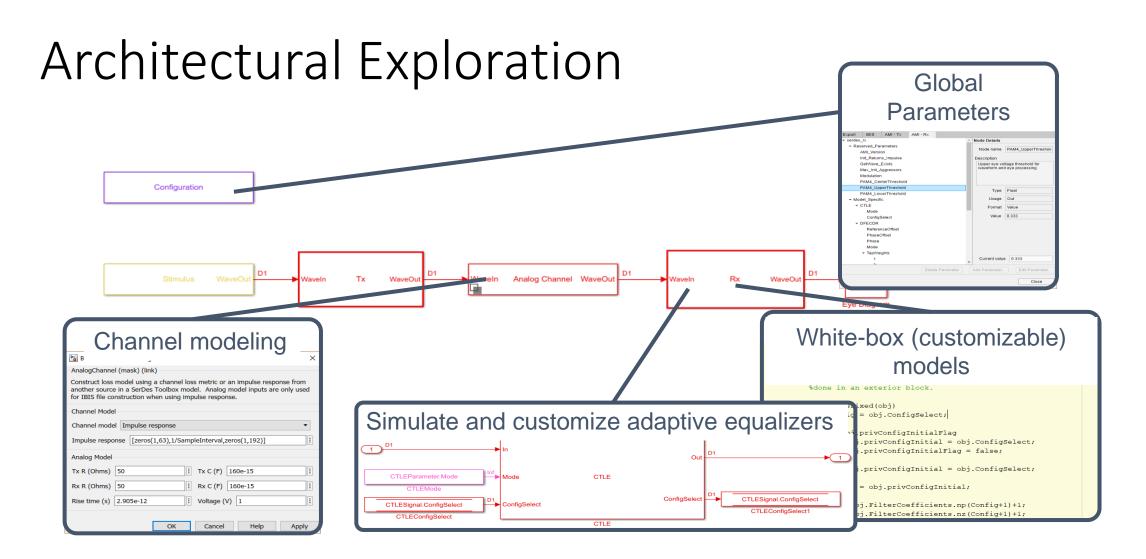
- Design and analyze transmitters and receivers with the SerDes Designer app
- Develop equalization algorithms with MATLAB System objects and Simulink blocks
 - FFE, DFE, AGC, CDR, CTLE, etc...
- Perform SerDes statistical analysis and timedomain simulation
- Generate **dual IBIS-AMI models** for 3rd party channel simulators
- Use reference designs for high-speed links such as Ethernet CEI-56G, DDR5, PCI-Gen4




📣 SerDes Designer - untitled	*									3. _ 33	đ	X
SERDES DESIGNER										96	5 ? 0	0
New Open Save	es per Symbol 16 👻	naling Differential 👻	RGC FFI	Contraction of the second s	Saturating Amplifier BLOCKS	DFECDR	CDR CDR	- Delete	Add Plots Add Plots	Default	Export EXPORT	PI
SerDes System												
		-	FFE AnalogO	Dut Channel		-						
Block Parameters		Plots										
AnalogIn R (Ohms C (pF												

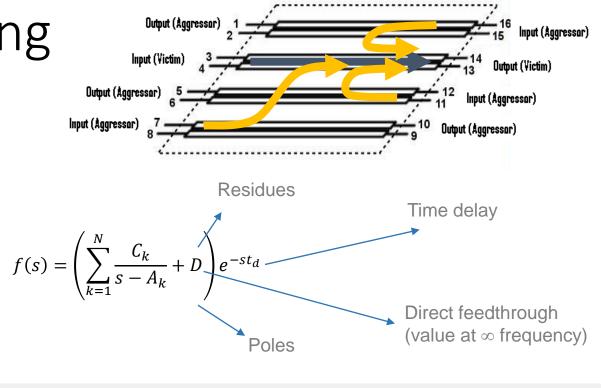
Export to Simulink

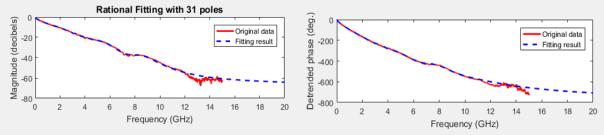




Performance verification

- Export to Simulink models for time-domain simulation
- Model non-linear effects such as saturation
- Customize blocks and equalization algorithms
- Enable global adaptation, and back-channel optimization




Channel & CTLE Modeling

- Manipulate frequency data to extract the desired information
 - Convert single ended **S-parameters**, select port-pair configuration
 - Analyze impedance, attenuation, phase delay
- Use rational fitting for time-domain simulation
 - Analyze and enforce passivity
 - Causal by construction
 - No overfitting of noise

SYSTEMS INITIATIVE

• Analyze impulse response, poles and zeros

S-Parameter Import

- S-Parameter Fitter App
 - Accessible from SerDes Designer App, Analog Channel block in Simulink, and command line

Block Parameters

Channel

- Push button experience customers want!
- S-Parameter Fitter Class enhanced
 - Signal-Ended support (DDR5)
 - Crosstalk support

Construct loss model using a channel loss metric or an impulse response from another source in a SerDes Toolbox model. Analog model inputs are only used for

Plot Channel Responses Import S-Parameter Touchstone File...

OK Cancel

Help Apply

Tx C (F) 100e-15

Rx C (F) 200e-15

Voltage (V) 1

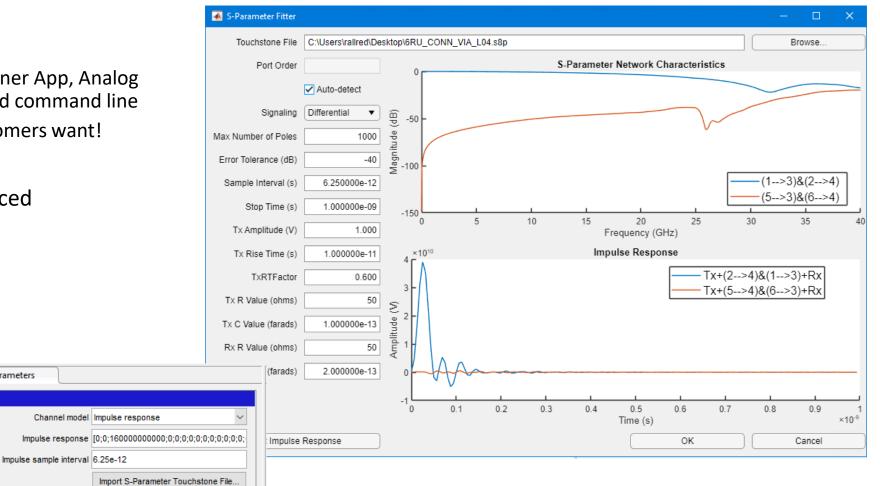
😼 Block Parameters: Analog Channel

IBIS file construction when using impulse response Channel Model Crosstalk

Channel model Impulse response 🔻

Impulse sample interval 6.25e-12

Analog Model

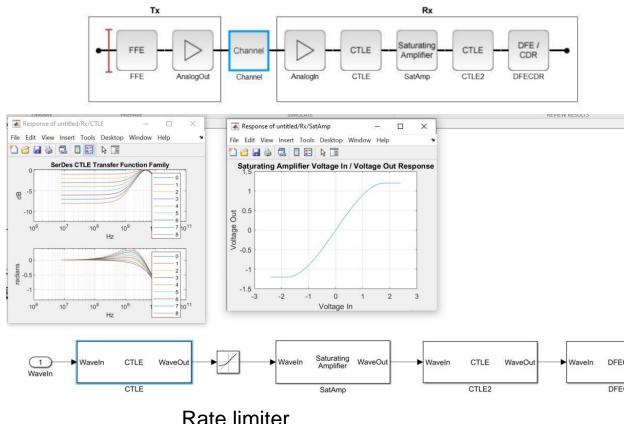

Tx R (Ohms) 50

Rx R (Ohms) 50

SYSTEMS INITIATIVE

Rise time (s) 10e-12

AnalogChannel (mask) (link)


Improved accuracy with bottom-up modeling

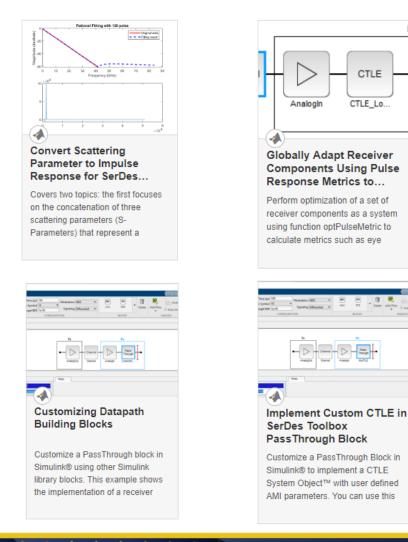
- Import Data
- Preprocess Data
- Fit Data
- Visualize Data & Fit
- Integrated with
 - SerDes Designer App
 - CTLE Blocks

CTLE Fitter App Import CTLE frequency response from Base workspace	Base Workspace variables data
Symbol Time (ps) 100 Samples per Symbol Preprocess Options	128 Δt = 0.70125 ps Max Frequency: 1/2/Δt = 040 GHz Plot Pulse Response Report
✓ Truncate response below 0.5 GHz ✓ Truncate response above 30 GHz □ Remove delay 2.5 ps	Magnitude Response
Rational Fitting Parameters Tolerance (dB) -40 Max # of poles 6	-20 - 9 -30 - -40 Fit 15
Use common poles for whole set Tends to zero High Frequency Pole (GHz) 100	-50 -60
	$\begin{array}{c} -70 \\ 10^{0} \\ 10^{2} \\ 10^{4} \\ 10^{6} \\ 10^{8} \\ 10^{10} \\ 10^{10} \\ 10^{12} $

Example of inclusion of Non-Linearity

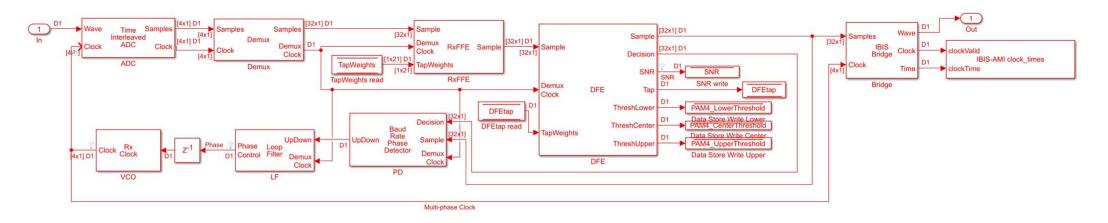
SerDes App

Simulink Export


Rate limiter

New Examples

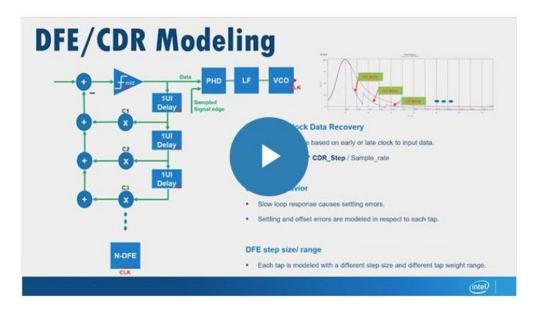
- S-Parameter to Impulse Response
- Global Optimization
- Custom Block Workflow Edit CTLE
- Custom Block Workflow Use any Simulink block



Rx

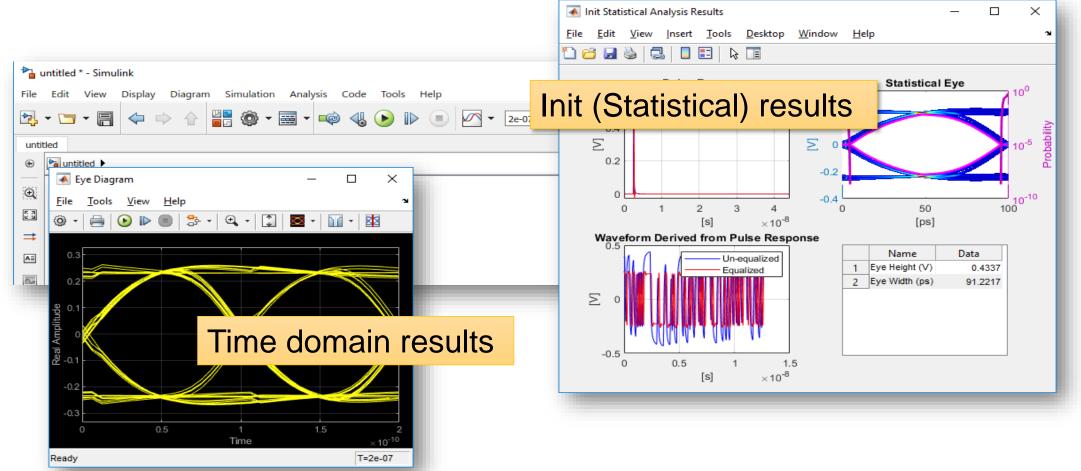
Advanced example for high speeds

- Show how to more precisely **explore the tradeoffs** between:
 - Number of interleaved ADCs
 - Gain, timing, bandwidth and voltage offsets between the interleaved ADCs
 - Demux width
 - DSP adaptation loops

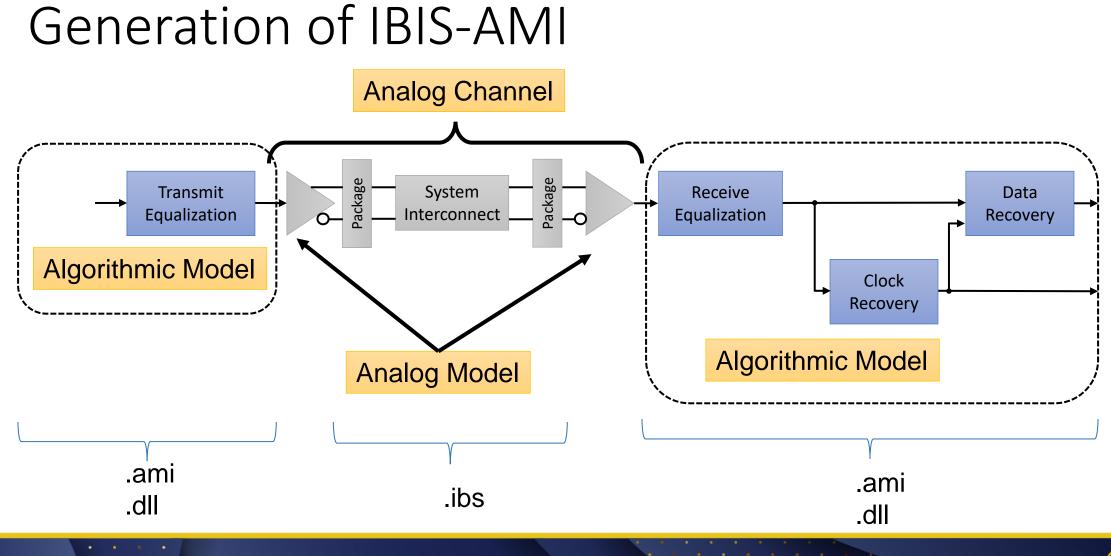


Customer reference: Intel

• <u>56G PAM4 IBIS-AMI Model</u>

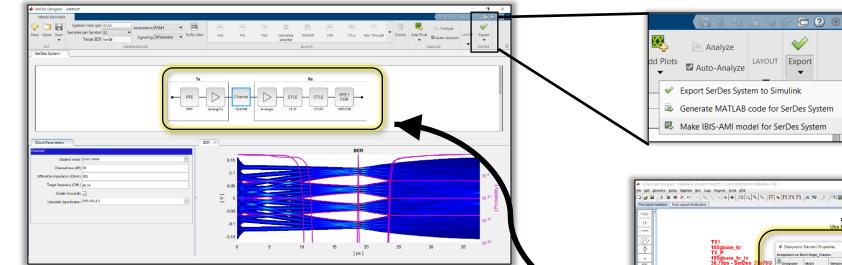


- <u>DesignCon 2020</u>
 - DfA (Design for AMI) A New Integrated Workflow for Modeling 56G PAM4 SerDes Systems

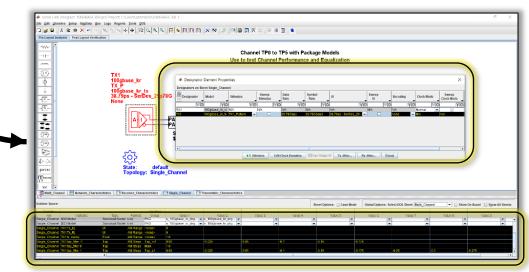


Correlated Simulations

Generation of IBIS-AMI

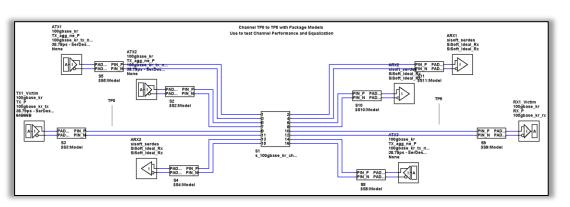

- Generate standard-compliant Init and GetWave IBIS-AMI models
- Generate associated analog IBIS model
- Customize the model interface by managing the IBIS- AMI-parameters
- Retimer & redriver:
 - Connects Rx to Tx per IBIS-AMI spec
- I/O: Bi-directional for DDR applications

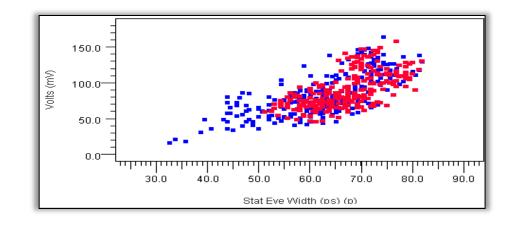
1			E	AMI File	
			0	📋 serdes_rx.ami	
			9	serdes_tx.ami Autosave Simulink Model or Libr	
	承 SerDes IBIS-AN	/II Manager		untitled.slx.autosave	ary
	Export IBIS	AMI - Tx AMI - Rx		Application extension	
1	Model Configurati	on	IBIS Settings	serdes_rx_win64.dll	
	Tx and Rx			serdes_tx_win64.dll	
		lel Name io_model	Tx model nam	Exports Library File	
	Redriver	_	Rx model nam	🛱 Rx.exp	
	Retimer		Tx and Rx corr	d ^图 Tx.exp	
	AMI Model Setting	s-Tx	AMI Model Set 🚍	IBS File	
	Model Type		Model Type	serdes.ibs	
	 Dual model 		Dual mode	Object File Library	
	GetWave on	v	GetWave	Rx.lib	
	O Init only		O Init only	🖩 Tx.lib	
	Bits to ignore	0	Bits to ignore	0	
	File Creation Option	ons			
	Models to export				
		✓ IBIS file			
	Both Tx and F	Rx IBIS file name (ibs) serdes.ibs		
	O Tx only	AMI file(s)			
	Rx only	✓ DLL file(s)			
	Target director	S:\22\tworrell.Brf.j1322689		Browse	
				Export	
				Close	


Integration for testing

- Build your model in SerDes Toolbox and export an IBIS-AMI model directly into Signal Integrity Toolbox for Regression Analysis
- Sweep your IBIS-AMI model parameters to test them with various channels in Signal Integrity Toolbox

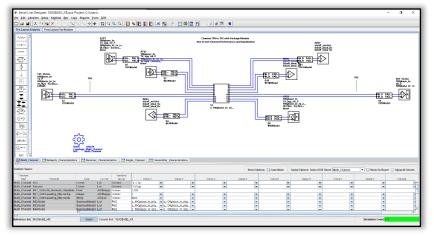
SYSTEMS INITIATIVE


 If there are any issues, the test case can be pushed back to SerDes Toolbox / Simulink where you have full debug capabilities

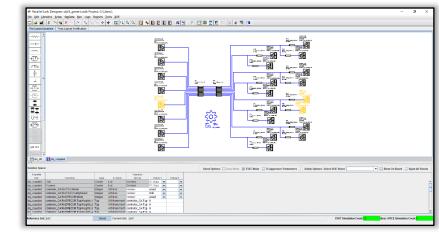


Verifying the IBIS-AMI model with the channel

- Sweep parameters to explore the to find the best solution
- Build schematics to test the signal integrity of high-speed end-to-end serial and parallel links
- Test components and/or system designs for industry standard compliance
- Perform channel, statistical, and time-domain analyses and visualize the results
- Import PCB files for post-layout verification
- Import IBIS-AMI models for testing

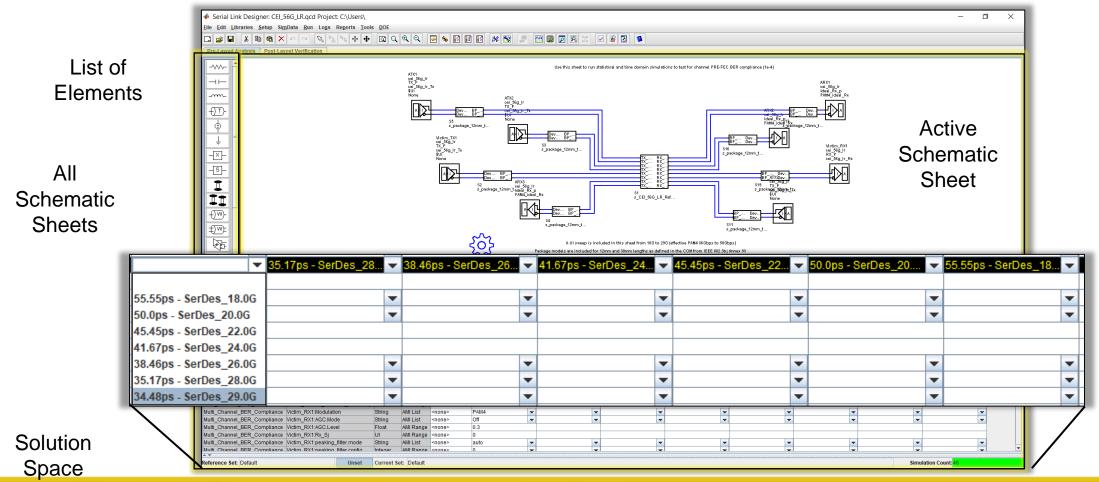


Pre-layout Analysis workflow


• Serial Link

- Determine optimal equalization settings
- Predict operating margins and bit error rates
- Perform network, statistical, and time-domain analysis

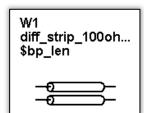
Parallel Link


- Determine setup/hold timing and voltage margins
- Conduct waveform and timing analysis
- Analyze interfaces for timing and signal integrity compliance

Pre-layout Analysis: solution space

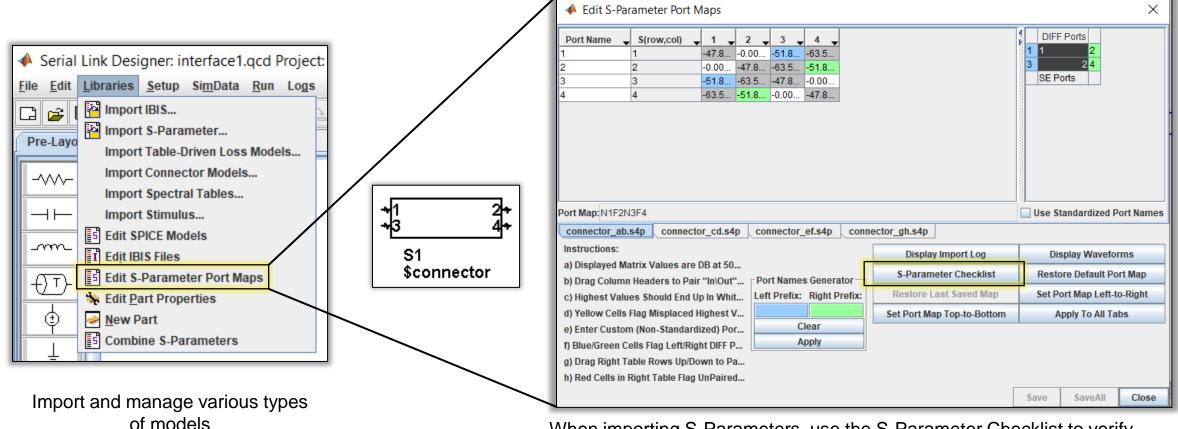
-Top L2--Top L2_L-X_ViaDiff1 Default_Diff_Via

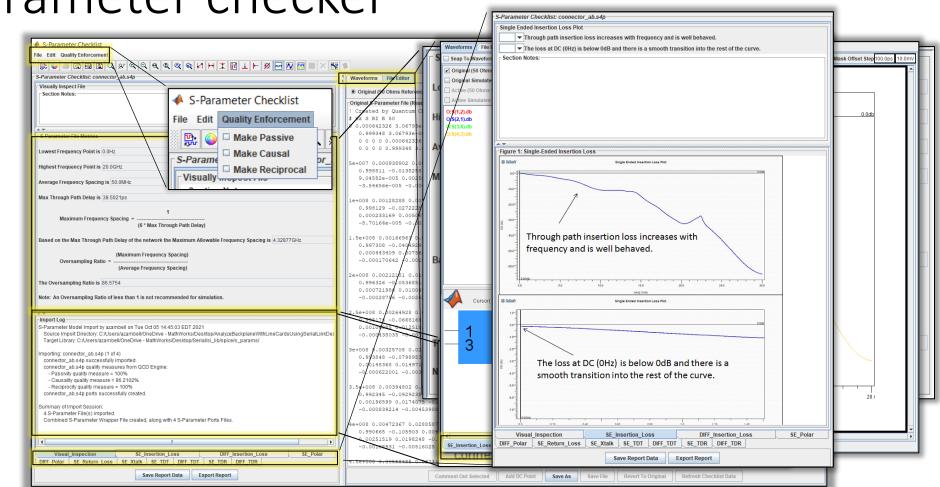
	efault.stkup + Pre-L	ayout Vias											
Cursor(-	35.0.2		5.5 Ohms		Bo	ard Heigh	t = 64.2mils	s Select	ed Layer(s) Thicknes	s = 0.0mils	📃 Edit	t Stack
		Zcm = 2 Delay =	2.7 Ohms 11.2 ps			Layer		Thickness		Left Via	Right Via		
			b = 0.0 s			ID Name		(mils)	Connect	X-Section	X-Section	Connect	1
Bottom Stub = 0.0 s						1	Dielectric	1.0					
Cpad = 23.0 fF Exit Trace = 55.0 mils						2 Top	Signal	0.6	v			~	
		Exit Trac	ce = 55.0 mils			3	Dielectric	5.0					
4						4 P1	Plane	0.6					
►. ▼					- 1 A	5	Dielectric	5.0					
Model Name Det	ault Diff Min			-		5 L2	Signal Dielectric	0.6 5.0					
			D.L.L.			8 P2	Plane	0.6					
Сору	R	ename	Delete				Dielectric	5.0					
Geometry				_		0 L3	Signal	0.6					
:	Start Layer Top			-		1	Dielectric	5.0					
Finished Hel	End Layer Bottom Diameter 18.0			▼ mils	1	2 P3	Plane	0.6					
	e Diameter 21.0			mils	1	3	Dielectric	5.0					
					1 1	4 P4	Plane	0.6					
Pad Shape Circle	Antij		Racetrack		1	5	Dielectric	5.0					
Diameter 30.0	50.0		_	mils	1	<mark>6</mark> L4	Signal	0.6					
Width 30.0	50.0		110.0	mils		7	Dielectric	5.0					
Height 30.0	50.0		50.0	mils		8 P5	Plane	0.6					
Pads On All Laye	ers			_		9	Dielectric	5.0					
Differential Via	Spacin	g 60.0		mils		0 L5	Signal	0.6					
Racetrack				_	2		Dielectric	5.0					
Back Drill						2 P6	Plane	0.6					
Enable	By Stub	By Layer	By Depth	h	1.1	3 4 Bottom	Dielectric	5.0 0.6	~			~	
	Stub		Depth			5 Bottom	Signal Dielectric	0.6	V				
Drill	(mils)	Layer	(mils)		⁴		Dielecult	1.0					
Drill Side			0.0	^									
Side Top	0.0												
Side	0.0		0.0										
Side Top			0.0										


Building schematic: Configure Via

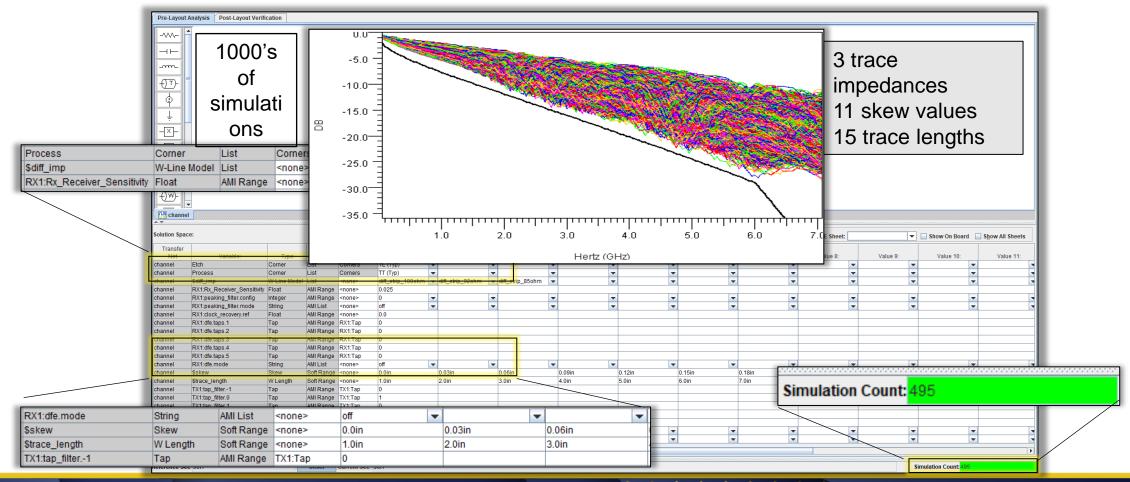
Building schematic: Configure Transmission

Line


			– 🗆 X
File Edit			
Transmission Line Model = diff_strip_97ohm_2x.mod (Library Model)			
Single Conductor 💿 Differential		Height Top ↔	
Coupled Aggressors: 2 Conductors: 6 Reference Plane		t Base Pitch Pitch	
Model Type Diff Pair L1 R1 Diff Pair	Etch Shape	Tabbed Routing	
○ Simple Lossy T-Line Calculate S S S S S S S S S S S S S S S S S S S	Rectangle	Enable	
○ Microstrip View Model ✓ W → ↓ Victim	2 Trapezoid	Tab Pitch (mils)	
Stripline Trace T Dielectric Er	Angle (45 - 90 degrees) Top Width (mils)		
	67.5 3.4615223	Tab Base Width (mils)	
Save Save As Close Reference Plane		Tab Height (mils)	
			-
Coupling Differential Tpd Resistance Inductance Capacitance Conductivity Trac		f Er at f Loss Table-Driven Differential Conductor R	
Configuration Impedance(Ohms) (ps/in) (mOhms/in) (nH/in) (pF/in) (Meg S/m) Width (Adjacent ▼ 94.362 178.141 279.916 11.204 2.893 58.0 4.0		(GHZ) Tangent Loss Model Separation (mills) (Micro	
Adjacent v 94.362 178.141 279.916 11.204 2.893 58.0 4.0	0.65 6.5 13.0	1.0 4.25 0.02 None ▼ 4.0 0.1	5 4.0 4.0

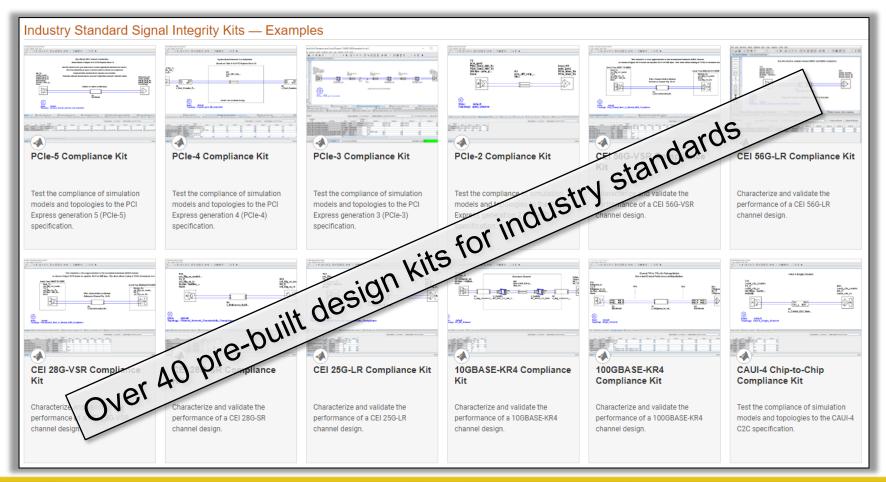

Importing and Edit s-parameter Models

When importing S-Parameters, use the S-Parameter Checklist to verify their quality before use



S-parameter checker

Design Space Exploration – Sweep parameter


Design Space Exploration - Parallelization

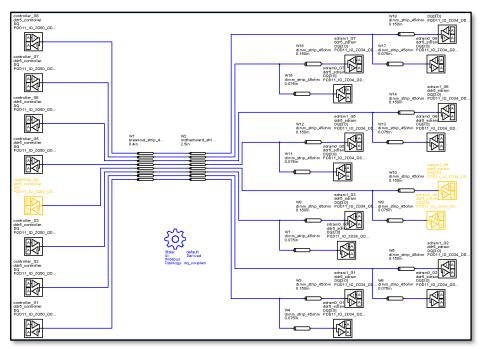
Prelayout Channel Analysis Project: backplane_linecard Interface: serdes	×
Reference Schematic Set: set1 - Process Controls:	Parallel Computing Toolbox Clusters:
Stop On Error Setup Stop Error Conditions Backup Before Deleting Data Restore	Default Cluster: local Cluster Selection: Number of Simulations Per Task:
Simulation Options Simulation Parameters Image: Parallel Configure Parallel Channel Analysis Steps: Channel Analysis Summary	SPICE: <default cluster=""> SPICE: 1 * Channel Analysis: Channel Analysis: 1 *</default>
✓ Validate ✓ Generate Netlists ✓ Include Statistical Analysis ✓ Include Time Domain Analysis	Parallel Help Test Refresh Clusters
Run SPICE Perform Channel Analysis Display Results Spreadsheet Autoload Results All Sheets Current Sheet	Local to Remote Path Maps: Local Path Remote Path
- Channel Analysis Queue Monitor	
Run Close Errors & Warnings 🔀 Autoload Results	

Design Kit for Industry Standards

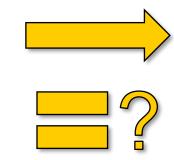
Simulation Technology

- Perform Channel Analysis provides network characterization results which includes un-equalized system responses such as impulse response, step response, pulse response, S-Parameters, transfer functions, and more.
- Include Statistical Analysis results such as statistical eye, BER, bathtub, contour, crosstalk, and more.
- Include Time-Domain Analysis results such as persistent eye, BER, bathtub, contour, deterministic jitter probability function, crosstalk, and more.

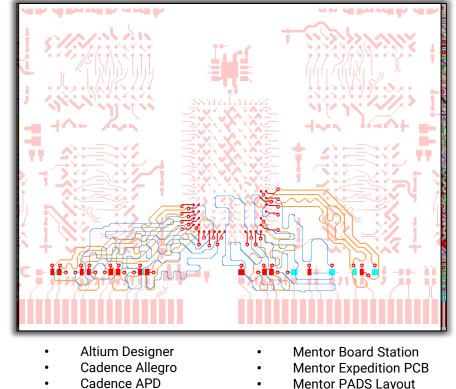
Prelayout Channel Analys Project: backplane_linecard Interface: serdes	IS			Show BER ×
Reference Schematic Set: set1 Process Controls:	Display1			Show Bathtub
Stop On Error Setup Stop Er	ැ Row	ID	Transfer Net	Show BER
Backup Before Deleting Data		Y©		Show Persistent Eye
	1	1	Single_Channel_BER	Show Bathtub
Simulation Options Sin	2	2	Single_Channel_BER	Show vertical Bathtub
Channel Analysis Steps:	3	3	Single_Channel_BER	Show D.I
✓ Validate	4	4	Single_Channel_BER	Show Contours
Generate Netlists	5	5	Single_Channel_BER	-
 Include Statistical Analysis Include Time Domain Analysi 	6	6	Single_Channel_BER	
	1	7	Single_Channel_BER	
Perform Channel Analysis	8	8	Single_Channel_BER	Show officer fruitsfer
 Display Results Spreadsheet Autoload Results 	9	9	Single_Channel_BER	Show Drobod Dorejetont Evo
Autoload Results All Sheets Curren	10	10	Single_Channel_BER	
0.000	11	11	Single_Channel_BER	-
	12	12	Single_Channel_BER	
	13	13	Single_Channel_BER	Show IDIS-AMI Output Parameters P
Channel Analysis Queue Monitor	14	14	Single_Channel_BER	Show Solution Space
	15	15	Single Channel BER	Show Results
	0: Network	1: Statistical 2:	Time Domain	
	C. HELWOIN	Ti Statistical	Time_bomain	Show On PCB
	0: Network	1: Statistical	2: Time_Domain	Show On PCB
	Ľ			
	Run C	Close Errors & V	Varnings 🛛 🕅 Autoload	Results


<u>File Edit Libraries Setup SimData Run Logs Reports Tools DOE</u>

Pre-Layout Analysis Post-Layout Verification


A. 🔻		
Solution Space:	Sheet Options: Case Mode	Global Options: 🗌 Incremental Select DOE Sheet: 🔍 💌 🔄 Show On Board

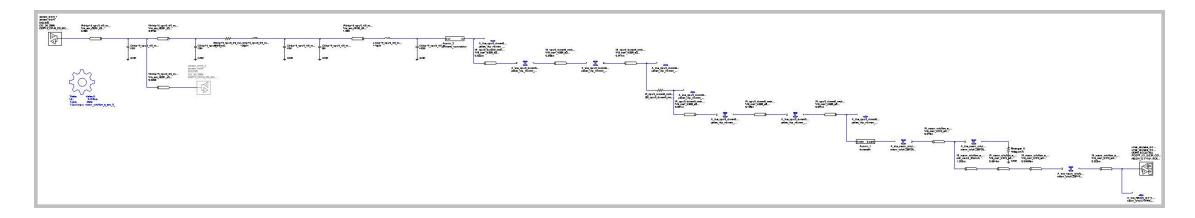
Reference Set: Set Current Set: Simulation Count:


Post-layout **Pre-layout**

- Use RF PCB Toolbox to import PCB files ٠
- Compare pre- and post-layout nets to each other .
- Easily identify any issues
- Incorporate fixes and re-simulate

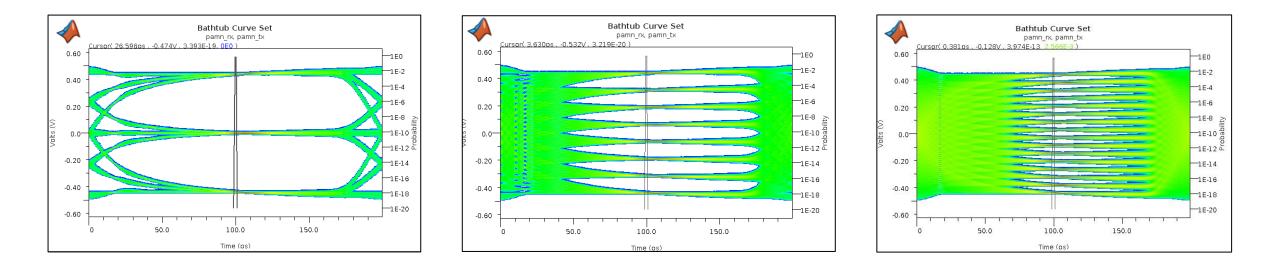
Post-layout

- Mentor PADS Layout
 - ODB++
- Zuken


IBIS EBD

Intercept Pantheon

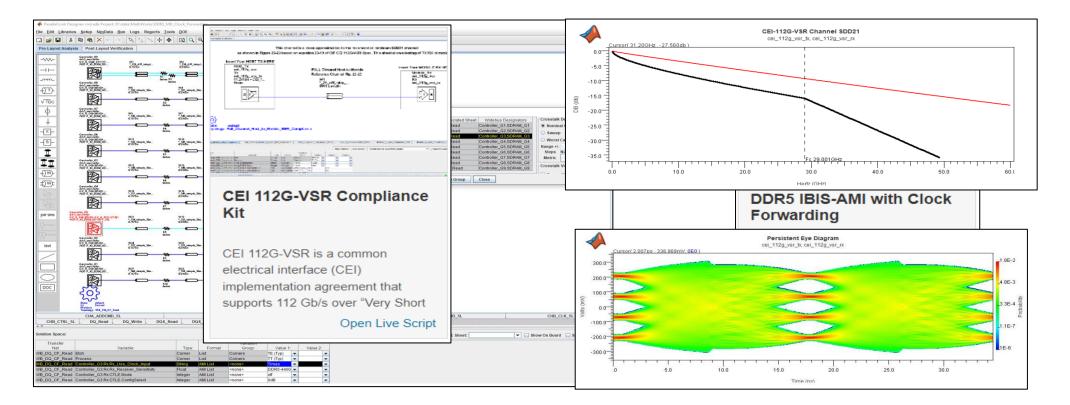
Post-layout to Pre-layout



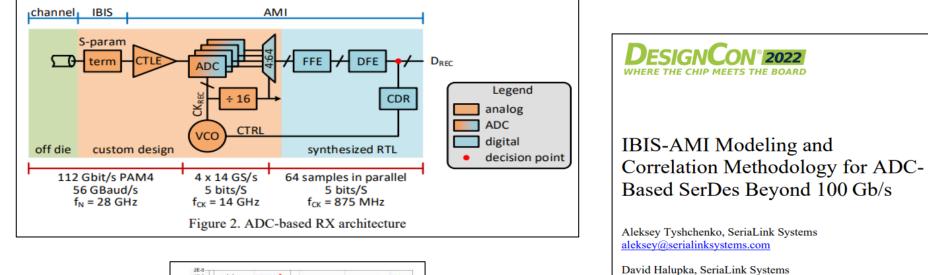
- Includes etch, vias, connectors, and discrete components for each board
- Topology can now be modified using Pre-Layout GUI to find solution

CFFE. LapWeights.2	lap	AMI LIST	intel clodeke de					-
ch_A/RN83.1.4:R		soft Range	<none></none>	10ohm	12ohm	15ohm	18ohm	
ecc<0>_1:Length	W Length	Soft Range	<none></none>	0.750in	1.203in	1.50in		
ecc<0>_1:W_Model	W-Line Model	List	<none></none>	mb_micro_40ohm	mb_micro_50ohm	wb_micro_65ohm	-	v
	4			and the second have				•
Unset	Current Set:	set1				STAT Simulation Count: 72	Bas	e SPICE Simulation Count: 72

New for R2022b – PAMn IBIS-AMI Model Support



Now use IBIS-AMI models with PAM3, PAM8, PAM16 modulation for use with next generation USB4, GDDR7, MIPI A-PHY, and Automotive SerDes Alliance Motion Link


New for R2022b – Design Kits for Industry Standards



Two DesignCon 2022 Best Paper Award Winners!

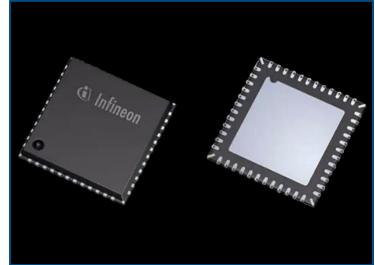
Richard Allred, MathWorks Tripp Worrell, MathWorks Barry Katz, MathWorks

Clinton Walker, Alphawave IP

Adrien Auge, Alphawave IP

Infineon Accelerates Development of IBIS-AMI Models for SerDes Designs

Challenge


Produce a complete IBIS-AMI model of a SerDes system for a key customer on an aggressive schedule

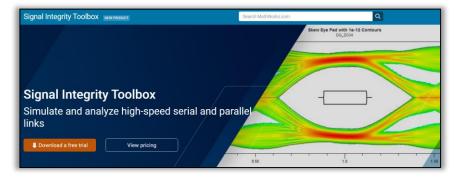
Solution

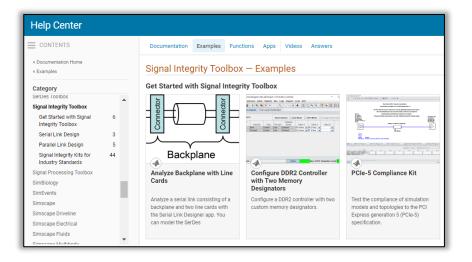
Use Simulink and SerDes Toolbox to develop, verify, and deliver an IBIS-AMI model in two weeks

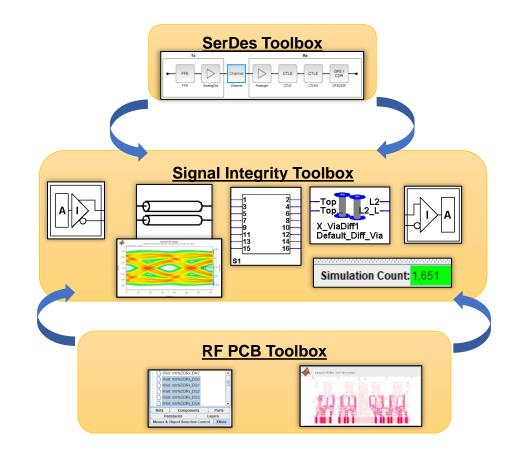
Results

- Complete IBIS-AMI models delivered in two weeks
- Development ramp-up accelerated
- In-house IBIS-AMI capability developed

Infineon semiconductor.


"The process of creating and configuring IBIS-AMI models with SerDes Toolbox is straightforward and fast to learn. After completing it once ourselves, we had full control over IBIS-AMI model creation, and eliminated our dependence on contractors." - Syed Babar Raza, Infineon


Link to user story



Summary

Key takeaway

- Start with statistical analysis
- Refine model with architectural/circuit-level details
- Generate IBIS-AMI model ensuring equivalence
- Regression testing with different channels
- Make sure there is enough margins in all conditions
- Compliance check with the standard

Questions?

