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Abstract: UVM testbenches are powerful, reusable programs that generate transaction-level stimulus and analyze 
transaction-level results, leaving the signal-level control to bus functional models. One has to wonder why we are writing 

this complex software using a language intended to describe RTL in an event-driven simulator. Wouldn’t we be better off 
using the most popular software development language1, Python?   

This paper introduces `pyuvm`, a Python implementation of IEEE Spec 1800.2. It discusses the Python tricks used to 

implement UVM features such as the factory, FIFOs, and config_db. 

I. WHY CONSIDER PYTHON? 

While the Universal Verification Methodology (UVM) continues to dominate the industry for both ASIC and FPGA 

verification projects, achieving greater than 50% usage in both industry segments2, there remains a substantial portion 

of the verification community for whom UVM is not a viable option. 

There are many reasons for this situation, starting with a lack of knowledge of – and resistance to learning – 

SystemVerilog, for either design or for verification. Especially in the military/aerospace (mil/aero) segments, the 

pervasive use of VHDL makes it difficult for a SystemVerilog-based solution, such as UVM, to achieve any significant 

market penetration. 

It could be argued (and in fact is has been) that it would be in their best interests to “bite the bullet” and move to 

SystemVerilog in order to take advantage of the unique capabilities of the language for verification, particularly 

constrained-random data generation and functional coverage. While there have been some attempts to mimic these 

capabilities through open-source VHDL libraries, the best that has been achieved is to approximate the structured 

component-based approach of UVM to improve modularity and reuse for VHDL users. However, any attempt at 

constrained-random coverage-driven verification in VHDL has been rudimentary at best. 

Of course, this kind of institutional inertia has always existed. This is the very reason that SystemVerilog was 

created as a strict superset of Verilog, to at least make it seem like it was not a new language, even though it introduced 

many powerful programming features, most notably Object-Oriented Programming. Clearly, the success of 

SystemVerilog and UVM has proven the utility of this approach. But what comes next? 

Mil/Aero companies are currently on a college hiring spree. For all the success that SystemVerilog and VHDL have 

had in the industry, there are precious few colleges where they are taught, meaning that today’s new engineers often 

do not enter “real life” with a working knowledge of the major languages used by our industry. Instead, this growing 

cohort prefers newer languages like Python and others.  

                                                           
1 https://spectrum.ieee.org/at-work/tech-careers/top-programming-language-2020 
2 Foster, H. (2020). 2020 Wilson Research Group Functional Verification Study: IC/ASIC Functional Verification 

Trend Report. Siemens EDA. 
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As we know, the sheer volume of legacy design code and “back-end” tool flows based on SystemVerilog and VHDL 

means that these languages will continue to dominate the design side of the equation for the foreseeable future. 

However, there is evidence that new languages for verification could be viable, given the proper tool support in 

simulation and emulation. Efforts such as CocoTB prove that even basic attempts to write verification environments 

in Python can attract interest. But for a Python-based solution to really be viable, it would need to provide all of the 

functionality from SystemVerilog and UVM. 

II. WHAT’S DIFFERENT ABOUT PYTHON? 

To see the difference between Python and SystemVerilog and VHDL one has to indulge in a bit of language history. 

The engineers who created the first programming languages were augmenting assembly language programming, and 

thus could not get away from the notion that different data types took a different number of bits. 

They devised language types to ensure that programs allotted the correct number of bytes for the given type (thus 

we have int and longint) or that several data could be sent as a block of bits (thus we have struct) 

Compilers checked that programmers were transferring data between like types with varying degrees of strictness 

with the ALGOL-based languages such as Ada, and VHDL taking a hard line, and the CPL based languages such as 

C and SystemVerilog allowing flexibility between types. 

There are two assumptions that go into all these languages: 

 Programmers are, at core, transferring bits between variables that have been correctly sized. 

 Programmers must ask the language’s permission before transferring data between variables, otherwise 

bits could get overwritten. 

Python is different in two ways: 

 Python programmers are, at core, transferring handles to objects. The handles are all the same size and so 

they always transfer properly. 

 Programmers ask forgiveness instead of permission. Programmers can read any member from an object, 

and if the member doesn’t exist Python raises a runtime exception. 

We will see below how asking forgiveness instead of permission makes it easier to write and maintain testbenches. 

Parameters: The Bane of Programming 

One can think of languages as either manipulating bits (C, Verilog) or manipulating objects (Simula, Python). 

However, one can also imagine a bit-manipulating language that wants to manipulate objects. For example, inspired 

by Simula, Bjarne Stroustrup created C with Classes which became C++.3 

The problem here was that the classes were stored as bits and the compiler needed to keep track of the size of all 

the data members in a class. This created problems of reuse when you had a class, say a FIFO, that could be used to 

store int or shortint or char. How do you write one set of code for all FIFOS when you don’t know the size of 

the data being stored? You create typing parameters that provide the size of the data in the FIFO.  

                                                           
3 Wikipedia. (n.d.). C++. https://en.wikipedia.org/wiki/C%2B%2B 



SystemVerilog ran into the same problem when classes were introduced to Verilog. A class, such as a 

uvm_tlm_fifo needs a parameter to provide the type being run through the FIFO, and each parameterized class 

becomes a different type. This makes for convoluted class diagrams and lots of syntax errors. 

As we’ll see, life is much easier in Python since all variables hold instances of objects. This, combined with asking 

forgiveness instead of permission makes it much easier to write testbench code in Python. 

Class Instances Everywhere 

Everything in Python is an instance of an object. Consider the number 5. The type() method returns the type of 

an object and so we can do this at a python command line: 

>>> type(5) 

<class 'int'> 

The example above shows that the number 5 is an instance of the class int. Yet we can also see that int is also 

an object. 

>>> type(int) 

<class 'type'> 

So we see that int is of class type. The type class is the default root class for all classes in a Python program. 

Though, we’ll see below that we can change this for our benefit. 

III. JUST ENOUGH PYTHON 

In this section we’ll cover just enough Python to be able to talk about how IEEE 1800.2 was implemented in Python. 

One of the advantages of Python is that is comes with an enormous ecosystem of training classes, websites, and books 

that delve deeply into the language.4 

A. Defining Classes 

The class statement defines a new class, but unlike SystemVerilog or C, Python executes the class statement 

rather than compiling it. When we execute the class statement it creates a new class object and stores it in the script’s 

list of classes for later use. 

Here is a simple example: 

                                                           
4 The >>> in the examples is the prompt from the Python interpreter. You see the interpreter when you type 

python on the command line. We will show Python output in italicized font. 



class Animal(): 

     def __init__(self, name): 

         self.name = name 

  

     def say_name(self): 

         print(self.name) 

  

     def make_sound(self): 

         print("generic sound") 

  

>>> aa = Animal(4433) 

>>> aa.say_name() 

4433 

>>> aa.make_sound() 

generic sound 

The above example demonstrates common elements of class declaration. The first thing we notice is the infamous 

Python indenting. Python uses indenting instead of begin/end or {/} to signify blocks. Whether one likes this is 

largely personal taste, but there it is. 

The def __init__(self, name): overrides the __init__ method and demonstrates the double underscore 

convention for methods that exist in all classes. The __init__ method does the initialization one usually does in 

new() in SystemVerilog. There are many such methods including __str__ and __eq__ that server the UVM roles 

of convert2string() and compare(). 

The __init__ above requires that we provide a name for the animal. You can also see that we’re not doing any 

type checking on the name. In the cold and bureaucratic world of this program the animal stored in aa received only 

a number. 

The self Variable 

When we declare a class in SystemVerilog we declare class variables that SystemVerilog implicitly references as 

in C: 

class point; 

  byte unsigned x; 

  byte unsigned y; 

 

  function new(byte unsigned X, byte unsigned Y); 

      x = X 

      this.y = Y 

  endfunction 

endclass 

In the above code the x = X line does the same thing as the this.y = Y code. They both set the instance’s variable 

to the constructor argument. 

Python does not use the implicit assignment. 

class Point: 

 def __init__(self, X, Y): 

       self.x = X 

       self.y = Y 

Unlike the implicit this in SystemVerilog, Python requires that we explicitly supply the self variable as the first 

variable in an instance method. The calling mechanism hides this from us so we see when we instantiate a point: 



>>> make_my_point = Point(10,3) 

The above causes Python to create an instance of the Point class and call __init__(self, X, Y), passing the 

newly created object as self.  

Methods that don’t have self as the first argument must be either class methods (which receive a first argument of 

cls) or static methods (which have no required first argument) 

Inheritance 

Classes can inherit attributes from other classes and override methods from the base class. For example: 

class Lion(Animal): 

     def make_sound(self): 

         print("Lion roar") 

  

>>> ll = Lion('Stanley') 

>>> ll.make_sound() 

Lion roar 

>>> ll.say_name() 

Stanley 

We see here that we’ve overridden Animal to create a Lion. We’ve only overridden the make_sound() method, 

so we inherited __init__ and say_name().  

When we call make_sound() Python looks for the make_sound() method in the Lion class, finds it, and executes 

it. When we call say_name() Python does not find the method in Lion and so it searches Animal. Finding the 

method there, it executes it. 

Multiple Inheritance 

Unlike SystemVerilog, Python provides multiple inheritance. This made it much easier to implement UVM in 

Python than SystemVerilog since SystemVerilog required us to create classes that mimicked multiple inheritance 

behavior. There are no _imp classes in pyuvm. 

Given that we have Animal, Lion, and Tiger we can create a Liger: 

 class Liger(Lion, Tiger): 

     ... 

  

>>> ll = Liger("Bitey") 

>>> ll.say_name() 

Bitey 

>>> ll.make_sound() 

Lion roar 

The Liger inherits from both Lion and Tiger. The ... is Python’s way of defining a class that inherits all its 

methods. 

You’ll notice that we’ve created the dreaded Diamond of Death in that Lion and Tiger both inherit from Animal 

and Liger inherits from Lion and Tiger. In a compiled language this is a problem since one can’t tell which 

make_sound() method to call. 

But Python determines this dynamically. As above it looks for make_sound() in Liger and, not finding it, it 

searches the parent classes in the order they appear in the declaration. That’s why it finds the make_sound() in Lion. 

We now have enough class definition information to examine pyuvm. 



Exceptions are the Rule 

Asking forgiveness instead of permission is a key Python design philosophy. Languages such as C and 

SystemVerilog take the opposite approach. They use typing to ensure that a programmer cannot accidentally mix types 

and overwrite bits. Even those languages use the forgiveness philosophy when issuing runtime errors such as trying 

to access an array with an index beyond its range. 

Python comes with built-in exceptions 5 that extend the BaseException base class. It throws exceptions when we 

try to execute an illegal action such as trying to pull a value out of an associative array that doesn’t exist: 

>>> my_array = {} 

>>> my_array['one'] = 1 

>>> my_array['two'] = 2 

>>> my_array[3] = 3 

>>> print(my_array['three']) 

Traceback (most recent call last): 

  File "<input>", line 1, in <module> 

KeyError: 'three' 

In the above example we created an associative array (called a dict in Pythonese) and stored two values in it. Notice 

that the keys here can be of any type. Our bug was using 3 instead of three.  

The KeyError class extends LookupError which extends Exception. The error class tree becomes important 

when we want to catch exceptions. 

Consider a case where we’re implementing a uvm_pool. The IEEE 1800.2 specification says that the pool get() 

method will return the value at the key, and if the key doesn’t exist, then initialize the location at key from Table 6-7 

in the SystemVerilog LRM (IEEE 1800-2017). We’ll use the Python universal object for emptiness None (not to be 

confused with SystemVerilog null, which is a null pointer. None is an actual object named None) to do the 

initialization. 

from pyuvm import * 

class uvm_pool(uvm_object): 

    def __init__(self): 

        self.pool = {} 

    def get(self, key ): 

        try: 

            return self.pool[key] 

        except KeyError 

            self.pool[key] = None 

The try/except block says to try the operation, and if the operation throws an exception of type KeyError we 

recover and set the pool’s location to None.  

If any other kind of exception were thrown the exception would go up the call stack. If nothing caught the exception 

with an except block, then it would print to the screen and terminate the program. 

The Joy of Duck Typing 

Throughout this paper, we’ve often pointed out that Python allows us to implement the UVM without the 

complications created by constant type-checking and the parameterization it engenders. 

                                                           
5 https://docs.python.org/3/library/exceptions.html#bltin-exceptions 
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We can write the code this way because of the Pythonic philosophy of duck typing. Duck typing says that, given an 

object, one says “If it walks like a duck and quacks like a duck, then it is a duck.”So,We see the following: 

class Canary(Animal): 

     def make_sound(self): 

         print("tweet") 

  

>>> my_duck = Canary('Phil') 

>>> try: 

>>>      my_duck.migrate() 

>>>  except AttributeError: 

>>>      print ("Hey. That's not a duck")     

Hey. That's not a duck 

Rather than declare my_duck to be of type Duck we say that any object that has the method migrate() must be a 

Duck. Given a Canary object we tried to make it migrate and found out that it could not.  

This is not to say that you have to blindly try any object handed to you. You can check an object’s type so as to 

handle an error in a meaningful way: 

class Duck(Animal): 

     def make_sound(self): 

         print('quack') 

     def migrate(self): 

         print('Gone south.') 

  

>>> assert(isinstance(my_duck, Duck)), "You must provide a Duck." 

Traceback (most recent call last): 

  File "<input>", line 1, in <module> 

AssertionError: You must provide a Duck. 

The assert statement checks a condition (isinstance() in this case) and raises the AssertionError exception 

if the checked condition is false. 

IV. IMPLEMENTING UVM IN PYTHON 

It has been said that a camel is a horse designed by committee. Sadly, SystemVerilog is a similar beast. Band-Aid 

after Band-Aid, kludge after kludge, and syntax after syntax were piled on top of what was originally a simple RTL 

language to satisfy the languages many stakeholders, creating something that prompts dismay in anyone who tries to 

use it without proper warning. 

Given that, creating the object-oriented UVM on top of SystemVerilog was a heroic exercise in ingenuity. The 

developers cobbled together macros, static class members, parameterization, and a judicious combination of 

inheritance and composition to create a powerful object-oriented verification methodology. 

The result was a clearly defined specification IEEE 1800.2, that lays out the steps needed to create the UVM in any 

object-oriented language. While it is true that we can ignore some elements of the specification such as the *_imp 

classes in a language with multiple inheritance, overall, the spec gives us an excellent roadmap. 

In this section we’ll examine the way Python has made it easier to implement the UVM and how we’ve structured 

the pyuvm project. 

The pyuvm Package 

The pyuvm package allows users to import all the UVM classes into a Python script: 



from pyuvm import * 

import pytlm 

 

class tinyalu_test(uvm_test): 

The repository organizes the project by the sections in the IEEE 1800.2 specification. So pyuvm.py starts like this: 

from enum import Enum, auto 

# Support Modules 

from error_classes import * 

from utility_classes import * 

# Section 5 

from s05_base_classes import * 

# Section 6 

from s06_reporting_classes import * 

# Section 7 

from s07_recording_classes import * 

Unlike the SystemVerilog import statement which reads from a compiled library unit, the Python import executes 

the code in the imported file. For the most part, these files contain class statements whose execution adds another 

class object to the collection of available classes. 

The work consists primarily of going through the specification and implementing what we see there: 

class uvm_object(utility_classes.uvm_void): 

    """ 

    5.3.1 

    """ 

 

    def __init__(self, name=''): 

        """ 

        Implements behavior in new() 

        5.3.2 

        """ 

        # Private 

        assert (isinstance(name, str)),  

                f"{name} is not a string it is a {type(name)}" 

        self.set_name(name) 

        self.__logger = logging.getLogger(name) 

 

    def get_name(self): 

        """ 

        5.3.4.2 

        """ 

        assert (self.__name != None), f"Internal error. {str(self)} has no name" 

        return self.__name 

 

    def set_name(self, name): 

        """ 

        5.3.4.1 

        """ 

        assert (isinstance(name, str)), f"Must set the name to a string" 

        self.__name = name 

Notice above that the code honors the type definitions in the specification by checking name’s type using an 

assertion. 

Notice also that the __name variable denotes a protected variable as we are accustomed to in SystemVerilog. 

Python implements the protected status by mangling the variable name, changing __name to Point__name. One 

could still access the protected variable directly, but only a monster would do that. 



Docstrings 

The strings in the triple quotes """ right after the function definition are docstrings. They appear in IDEs when you 

hover over the function call, or in automatically generated documentation. It could be argued that they deserve more 

information than the IEEE 1800.2 section number. 

Python Properties 

A Python-familiar reader may take offense to the existence of a get_name and set_name as Python has done away 

with the need for these sorts of accessors. More Pythonic code would look like this: 

@property 

def name(self): 

 return self.__name  

 

@name.setter 

def name(self, name): 

 self.__name = name 

The @property string is a decorator that wraps these function calls in code that allows us to do this: 

>>> my_object.name = "Foo" 

>>> print(my_object.name) 

Foo 

This is, of course, much cleaner than the accessor functions needed in the SystemVerilog UVM, and one could 

argue that these accessors should have been implemented in a more Pythonic way. But the goal here is to make pyuvm 

easy to use for existing UVM programmers. Changing basic elements of the specification would defeat that goal. 

V. KEY BASE CLASSES, SV VS PYTHON 

Much of the work of writing the UVM in Python is, as we saw above, writing simple functions that implement the 

specification. However, there are some base classes which can take more advantage of Python’s capabilities. This 

section shows how Python can make it easier to both write and use the UVM. 

The Factory 

The SystemVerilog UVM’s implementation of the factory pattern is a heroic act of engineering akin to the Gilligan’s 

Island professor making a Geiger counter out of coconuts. Still, it imposes some work on the programmer. 

First there is the need to remember the `uvm_*_utils macros. 

class my_component extends uvm_component; 

`uvm_component_utils(my_component) 

And then there is the creation incantation that allows a component to be overridden: 

    my_comp_h = my_component::type_id::create_component("my_comp_h",this); 

This requires section 8.2.2 in the 1800.2’s Factory classes section which specifies a proxy type for all descendants 

of uvm_object: 

typedef my_component type_id 

In addition, there is a uvm_component_registry proxy class and other factory enabling tools. Here is how a user 

creates a component in pyuvm: 



class my_component(uvm_component): 

... 

pyuvm automatically adds any descendent of uvm_void to the factory. We create a new object like this: 

my_comp_h = my_component.create("my_comp_h", self) 

One can also sidestep the factory with a simple instantiation. 

my_comp_h = my_component("my_comp_h, self) 

One can implement overrides using the uvm_factory singleton. 

factory = uvm_factory() 

factory.set_type_override_by_type(my_component, overriding_component) 

In addition to the UVM factory type overrides shown above, pyuvm also implements all the UVM factory instance-

based overrides. 

Implementing the Factory in Python 

The Python factory implementation takes advantage of the fact that the class statement is executed and not 

compiled. This gives us an opportunity to control what it means to create a class object. 

As we saw above, most types in Python are objects of type type. 

>>> type(int) 

<class 'type'> 

>>> type(type) 

<class 'type'> 

The type class is the default base class of all types and classes in Python. But we can create objects using base 

classes other than type.  These are call metatypes. The uvm_void class is such a type: 

>>> type(uvm_void) 

<class 'utility_classes.FactoryMeta'> 

We specify this in its declaration: 

class uvm_void(metaclass=FactoryMeta): 

    """ 

    5.2 

    In pyuvm, we're using uvm_void() as a meteaclass so that all UVM classes can 

be stored in a factory. 

 """ 

This code means that the uvm_void class object and all class objects descended from it are of type FactoryMeta. 

FactoryMeta registers all these classes with the factory: 

class FactoryMeta(type): 

    """ 

    This is the metaclass that causes all uvm_void classes to register themselves 

    """ 

 

    def __init__(cls, name, bases, clsdict): 

        FactoryData().classes[cls.__name__] = cls 

        super().__init__(name, bases, clsdict) 

The code above says that when you execute a class statement to create a class object that extends uvm_void that 

class object runs the above initialization code as is done with any other object. Notice though that we have cls as the 



first variable rather than self. This is to remind us that we’re being passed a class object. (The name is otherwise 

meaningless.) 

We store the class object in the FactoryData singleton’s associative array (dict in Python parlance) named 

classes. 

The FactoryMeta class extends the type class, so we call super().__init__ to ensure that all the work needed 

to set up a type gets done. 

Now when you define a class that extends uvm_void, pyuvm automatically registers it with the factory. 

Singletons 

The UVM uses the Singleton Pattern in many places. The Singleton pattern describe a class that has only one 

instantiated object used throughout the testbench. We implement singletons in SystemVerilog using a static get() 

method. 

class my_singleton; 

 

static my_singleton common_handle = null 

 

static function get(); 

    if (common_handle == null) then 

         common_handle = new(); 

    return common_handle; 

endfunction 

Then we get the handle like this: 

single_h = my_singleton::get() 

The get() method either returns the previously created handle or creates a new one, stores it in the static 

common_handle location and returns the newly created handle. Regardless, new() only gets called once. 

Of course, this is susceptible to this bug: 

my_singleton bad_h; 

bad_h = new() 

And now bad_h is a rogue instance of what is supposed to be a singleton. 

Python allows you to avoid this by combining the get and new functionality in a single call. The Python code above 

looks like this: 

single_h = my_singleton() 

We cannot create the bad_h 

bad_h = my_singleton() # not so bad after all 

Implementing the Singleton in Python 

There are many ways to implement the Singleton pattern in Python, but the pyuvm uses the metaclass approach as 

was done with the factory: 



class Singleton(type): 

    _instances = {} 

 

    def __call__(cls, *args, **kwargs): 

        if cls not in cls._instances: 

            cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) 

        return cls._instances[cls] 

 

The above code demonstrates the built-in __call__ method. __call__ gets called whenever you put parentheses 

after any object.  

Of course not all objects have a __call__ method, or they use the method to raise an error. For example, the 

number 5 is an object, what happens if we call it? Python raises a TypeError exception: 

>>> 5() 

<input>:1: SyntaxWarning: 'int' object is not callable; perhaps you missed a 

comma? 

Traceback (most recent call last): 

  File "<input>", line 1, in <module> 

TypeError: 'int' object is not callable 

But, if our object is of type class, then the parentheses cause Python to call __call__ and eventually __call__ 

calls __new__ and ultimately __init__. 

In the Singleton metaclass, __call__ receives the class object in the cls variable, and it creates an instance of 

that object (using super to call the Singleton’s parent constructor in type) and it stores that instance in an 

associative array using the cls object as an index. Now future calls to the class return the stored pointer. 

We define a singleton like this: 

class my_singleton (metaclass=Singleton): 

And so the two examples of calling my_singleton() above deliver the same handle. 

pyuvm uses the Singleton metaclass for uvm_root(), uvm_factory() and uvm_pool() among others. 

Ports and Exports Without the Imps 

Since SystemVerilog doesn’t have multiple inheritance, it needs to solve the problem of functional flexibility using 

composition and thus the SystemVerilog UVM needed to create *_imp classes that implemented behaviors such as 

blocking put, nonblocking get, etc. The entire port/export structure is much easier to implement in Python since we 

don’t need the *_imp classes. Like SystemVerilog, Python has a Queue object that implements communication 

between processes. And, like SystemVerilog, the UVM needs us to use the Queue to implement the ports and 

exports that allow us to connect arbitrary components.  

The UVM implements TLM behavior using a variety of ports and exports. These are divided into all the 

permutations of operations and TLM interfaces. 

The operations consist of the following: put, get, peek, transport, master, and slave. 

The TLM interfaces are blocking and nonblocking. 

This gives us 6 * 3 = 18 combinations of operations and interfaces. 

Implementing Ports 

First we have the uvm_port_base that provides common functions to all ports: 



class uvm_port_base(uvm_component): 

 

    def __init__(self, name, parent): 

        super().__init__(name, parent) 

        self.connected_to = {} 

        self.provided_to = {} 

        self.export = None 

 

    def connect(self, export): 

        try: 

            self.export = export 

            self.connected_to[export.get_full_name()] = export 

            export.provided_to[self.get_full_name()] = self 

        except KeyError: 

            raise UVMTLMConnectionError(\ 

                  f"Error connecting {self.get_name()} using {export}") 

 

    @staticmethod 

    def check_export(export, check_class): 

        if not isinstance(export, check_class): 

            raise UVMTLMConnectionError( 

            f"{export} must be an instance of\n{check_class} not\n{type(export)}") 

 

We see that all ports provide a connect method and also the ability to check that an offered export is the right 

type. pyuvm raises UVMTLMConnectionError exceptions if there is problem. 

The connect method sets the self.export variable and populates the connected_to and the export’s 

provided_to associative arrays. 

Now we implement a uvm_blocking_put_port: 

class uvm_blocking_put_port(uvm_port_base): 

 

    def connect(self, export): 

        self.check_export(export, uvm_blocking_put_port) 

        super().connect(export) 

 

    def put(self, data, timeout=None): 

        try: 

            self.export.put(data) 

        except AttributeError: 

            raise UVMTLMConnectionError(f"Missing or wrong export in” 

                       f”{self.get_full_name()}. Did you connect it?") 

The uvm_blocking_put_port overrides the connect method because this class knows which type of export it 

wants. It checks export against its needs for uvm_blockinig_put_port and then calls 

super().connect(export) to make the connection. (The UVM allows a port to be connected to a port, and so 

connect checks for a port.) 

The uvm_blocking_put_port also provides the put() method and implements it using the export.put() 

method. Notice that here we ask permission rather than forgiveness. We assume that we have the right export and 

raise UVMTLMConnectionError if export does not have a put() method. 



Now we can implement uvm_put_port using multiple inheritance giving us a one-line definition because a 

uvm_put_port is both a uvm_blocking_put_port and uvm_nonblocking_put_port: 

class uvm_put_port(uvm_blocking_put_port, uvm_nonblocking_put_port): 

... 

Implementing Exports 

Implementing uvm_nonblocking_put_export consists of nothing but extending uvm_blocking_put_port.: 

This means that its easy to define exports: 

class uvm_blocking_put_export(uvm_blocking_put_port): 

    ... 

 

class uvm_nonblocking_put_export(uvm_port_base):  

... 

 

class uvm_put_export(uvm_nonblocking_put_port, uvm_blocking_put_port):  

... 

These empty classes aren’t really necessary for the Python version of the UVM. All classes could be a ports with a 

final port class implementing the put(), get(), and other functions.  But the TLM has a convention of naming. these 

classes exports and so we honor that naming convention here. When we implement the TLM methods we do it in an 

export class.   

Implementing the FIFO 

The uvm_tlm_fifo uses the Python Queue class to coordinate TLM communication between threads (each 

run_phase runs in its own thread.) This means that the exports in a uvm_tlm_fifo need to have a handle to the 

FIFO’s Queue. We implement this with the QueueAccessor class: 

class QueueAccessor: 

    def __init__(self, name, parent, queue, ap): 

        super(QueueAccessor, self).__init__(name, parent) 

        assert (isinstance(queue, UVMQueue)),  

                "Tried to pass a non-UVMQueue to QueueAccessor constructor" 

        self.queue = queue 

        self.ap = ap 

The QueueAccessor assumes that it will be extended along with another class that needs the name and parent 

variables. It’s __init__ method has four arguments: name, parent, queue, and ap (the analysis port). It uses the 

first two arguments to turn itself into an export class (which is, in turn a uvm_component) and it uses the second two 

arguments to store the queue and ap handles. 

One note about the super() keyword. Given a list of multiple parent classes, the argument tells super() to call 

the __init__ method in the class after the QueueAccessor class in the parent list. We are certain there is an 

interesting explanation for this strange behavior.  

Now that we have defined the QueueAccessor we can implement the export in the uvm_tlm_fifo by defining a 

nested class, BlockingPutExport: 



class BlockingPutExport(QueueAccessor, uvm_blocking_put_export): 

    def put(self,item): 

        self.queue.put(item) 

        self.ap.write(item) 

As stated above, the super() method calls the __init__ after the QueueAccessor: uvm_blocking_put_export. 

The put method writes to self.queue and self.ap, following the expected UVM behavior for a put port.  

We instantiate this class in the uvm_tlm_fifo’s __init__()method to create the blocking_put_export that 

can later be passed to a connect() method. 

class uvm_tlm_fifo(uvm_tlm_fifo_base): 

def __init__(self, name, parent): 

#snipped 

self.blocking_put_export=self.BlockingPutExport("blocking_put_export", self, 

                                                self.queue, self.put_ap)                                              

Now we can connect this blocking_put_export to any blocking_put_port and pass the check_export() 

method while also having Queue access. 

Extending the Queue Class 

SystemVerilog is well acquainted with threads (which it calls processes) since every always or initial block 

acts as its own thread. Python also supports threads in the threading import library. The difference is that 

SystemVerilog has been comfortable with killing threads instantly ever since the $finish() system call appeared in 

Verilog-XL. When you finish a simulation all the threads in the testbench get surprised and killed. 

Python doesn’t allow such barbarous thread-killing. Instead, it requires that threads be allowed to put their affairs 

in order (closing files, for example) before they die. Python programmers must create a mechanism to tell threads to 

exit and let them do it on their terms. 

This creates a problem for the blocking put() and get() methods in a Queue since a blocked thread has no way 

to respond to an exit request. Pyuvm solves this by extending Queue to create the UVMQueue.  The UVMQueue 

overrides the blocking put() and get() methods to allow them to exit. 

We do this by adding a timeout to the put() or get() method in a while loop. The while loop checks to see if 

we’re at the end of the run phase, and if we are it exits: 

def get(self, block=True, timeout=None): 

 

   if not block or timeout is not None: 

       try: 

           return super().get(block, timeout) 

       except queue.Empty: 

           raise 

   else: # create block that can die 

       while not ObjectionHandler().run_phase_complete(): 

           try: 

               datum = super().get(block=True,timeout=self.sleep_time) 

               return datum 

           except queue.Empty: 

               pass 

       exit() # Kill thread if it's time to die 

The code first checks to make sure that you are doing a blocking get with no timeout. If you are then it creates a 

while loop that checks to see if the run phase has completed. If it has not then we call get() again, otherwise we exit. 



Executing Phases 

Python completely breaks with one of the basic assumptions behind SystemVerilog, the notion that classes cannot 

be modified at run time. In SystemVerilog the compilation step locks classes in place and syntax errors control whether 

one successfully makes a function call.  

In Python, everything is an object, including functions. A class can have a function object added to it at any time 

and thus gain new functionality over the course of a run. 

Similarly one can use operations such as hasattr and getattr to inspect a class and get a handle to a function in 

it. We use this capability when executing phases. 

The UVM defines a list of common phases that ship with the UVM and are expected to be supported in any 

uvm_component. The list contains phases such as uvm_build_phase, uvm_connect_phase, and 

uvm_run_phase. We can see that all the common phases have the string uvm_ at the beginning and if we strip that 

off we get the name of the phase function or task. 

This gives the following implementation of the uvm_phase.execute() method, where we loop through a list of 

common phases, strip off the “uvm_” string to get the method name (uvm_build_phase becomes build_phase), 

use getattr() to find a handle of the method with that name,  and finally, execute the method using the handle: 

    def execute(cls, comp): 

        assert (issubclass(cls, common_phase)), "We only support phases whose 

                                                 “names start with uvm_" 

        method_name = cls.__name__[4:] # strip off uvm_ 

        try: 

            method = getattr(comp, method_name) 

        except AttributeError: 

            raise error_classes.UVMBadPhase(f"{comp.get_name()} is missing” 

                                            f”{method_name} function") 

        method() # call the phase method 

Once again, we see ourselves asking forgiveness rather than permission. Given that we were passed a real 

component, the phase methods should always exist, but if they don’t, we’ll catch the error and raise an informative 

exception. 

Handling Objections to Completion 

The pyuvm makes no attempt to implement the baroque phasing system of the SystemVerilog UVM. Instead it 

implements the set of functionality familiar to all users. This allowed for two simplifications: 

1. The phase methods no longer take a phase argument as it is typically only used to raise and drop objections to 

ending the test. 

2. The uvm_component now provides raise_objection() and drop_objection() convenience methods. 

The alu_test class’s run_phase now looks like this: 



def run_phase(self): 

    self.raise_objection() # Keeps the phase from advancing  

#                            until the sequence is done. 

    seq = alu_sequence("seq") # Here is the ten-item sequence 

    seqr = self.config_db_get("SEQR") # The sequencer  

#                                       stored itself in the config_db 

    seq.start(seqr) # Start the sequence on the sequencer. 

    time.sleep(1) # Give everything time to settle out. 

    self.drop_objection() # Allow the testbench to go to the next phase 

There is no longer a need to use the phase variable to raise and lower objections. The ObjectionHandler() 

singleton seen in the UVMQueue now creates a list of objecting objects and then deletes the objects as they drop their 

objections. When the list has a length of zero, the run_phase is over. 

VI. USING THE PYTHON UVM 

If one takes as given that pyuvm works, however it is implemented, then one must ask how to use it. In this section 

we’ll see how to create a testbench with pyuvm. 

We’ll use the TinyALU example from the UVM Primer6. This is a simple ALU with ADD, AND, XOR, and MUL 

functions. 

A. Defining the UVM Test 

We can start at the top of the testbench defining a test to launch our test sequence:  

class alu_test(uvm_test): 

   

    def build_phase(self): 

        self.env = env("env", self) 

 

    def run_phase(self): 

        # shown above 

 

    def final_phase(self): 

        bfm = self.config_db_get("ALUDRIVERBFM") 

        bfm.done.set() # Trigger the cocotb event to end the sim 

Here you can see the pyuvm version of the ConfigDB convenience routines in action. They are now part of the 

uvm_component.  Any component can raise or lower objections. 

                                                           
6 Salemi, R. (2013). The UVM primer: An introduction to the Universal Verification Methodology. Boston, MA: 

Boston Light Press. 



Defining The TinyALU Agent 

Once we import pyuvm, implementing an agent is remarkably similar to the same SystemVerilog code: 

class tinyalu_agent(uvm_agent): 

    """ Provides the sequence and monitoring structure. """ 

    def build_phase(self): 

        self.cm_h = command_monitor("cm_h",self) # Add the command monitor 

        self.dr_h = driver("dr_h", self)         # the driver (note no parameter) 

        self.seqr = uvm_sequencer("seqr", self)  # the sequencer (note no 

        #                                          parameter here either) 

 

        self.config_db_set(self.seqr, "SEQR", "*") # Sequencer to configDB 

 

        # Factory Examples 

        self.rm_h = self.create_component("result_monitor", "rm_h")  

        self.sb_h = self.create_component("scoreboard", "sb_h")      

 

        self.cmd_mon_ap = uvm_analysis_port("cmd_mon_ap", self)      

        self.result_ap = uvm_analysis_port("result_ap", self) 

 

    def connect_phase(self): 

        self.cm_h.ap.connect(self.cmd_mon_ap)  # connect aports to aports 

        self.rm_h.ap.connect(self.result_ap)    

 

        # Connect driver to sequencer 

        self.dr_h.seq_item_port.connect(self.seqr.seq_item_export)  

         

        self.cm_h.ap.connect(self.sb_h.cmd_f.analysis_export # cmds to scoreboard 

        self.rm_h.ap.connect(self.sb_h)  # Scoreboard is an ap. 

We now have an agent that provides self-checking, monitoring, and analysis ports for other parts of the testbench. 

Transactions 

The TinyALU transactions are similarly common to the SystemVerilog versions. For example, here is the 

command_transaction: 

class command_transaction(uvm_sequence_item): 

 

    def __init__(self, name, A=0, B=0, op=ALUOps.ADD): 

        super().__init__(name) 

        self.A = A 

        self.B = B 

        self.op = ALUOps(op) #enums in Python 

 

    def __str__(self): 

        """The equivalent of the UVM convert2string()""" 

        return f"A: {self.A} OP: {self.op} ({self.op.value}) B: {self.B}" 

 

 



The Dual-Top Testbench: The Proxy Approach 

Accelerating a testbench on an emulator requires that we create a testbench with two parts. The HVL part (or Python 

part in this example) creates the stimulus, checks the results, and stores functional coverage. The HDL part contains 

the DUT and the synthesizable part of emulation-compatible VIP7. 

Here we will see one mechanism for connecting a Python testbench to an HDL simulation using a suggested pytlm 

interface. The interface hides the ultimate connections to uvm_connect that connect this testbench to a simulation or 

emulation of the HDL.  

The TinyALU Driver 

The pytlm uses a proxy object to connect the Python to a given BFM in the HDL side of the testbench. The proxy 

sends data to the HDL and blocks until the operation has finished. We use the in the tinyalu_driver: 

class driver(uvm_driver): 

    """ 

    A classic UVM driver.  It inherits a seq_item_port and uses it  

    to get sequence items sent by the sequencer 

    """ 

    def run_phase(self): 

        self.bfm = self.config_db_get("ALUDRIVERBFM") 

         

        while True: 

            command = self.seq_item_port.get_next_item() 

            self.bfm.send_op(command) 

            self.seq_item_port.item_done() 

The TinyALU Monitors 

Similarly, the monitors use proxies to wait for their data. We have a command monitor and a result monitor. The 

agent uses the command monitor to write the command to an analysis port (for the scoreboard predictor to use) and 

the result monitor writes the result to an analysis port for the scoreboard to use for comparison. Here is the 

command_monitor class: 

class command_monitor(uvm_component): 

        def build_phase(self, phase = None): 

            self.ap = uvm_analysis_port("ap", self) 

            self.monitor_bfm = self.config_db_get("ALUDRIVERBFM") 

 

 

        def run_phase(self): 

            while True: 

                (A, B, op) = self.monitor_bfm.get_cmd()  

                mon_tr = command_transaction("mon_tr", A, B, op 

                self.ap.write(mon_tr) 

We can see above that the monitor uses Python’s ability to return arbitrary tuples from a function call. Rather than 

having to define a struct to return multiple values the monitor bfm can simply return them directly, in this case with 

(A, B, op) getting returned. We use them to create a transaction and write the transaction to the analysis port. The 

result works similarly. 

                                                           
7 van der Schoot, H. and Yehia, A., 2015. UVM and Emulation: How to Get Your Ultimate Testbench Acceleration 

Speed-up. In: DVCon Europe. [online] Available at: <https://dvcon-europe.org/sites/dvcon-

europe.org/files/archive/2015/proceedings/DVCon_Europe_2015_P1_4_Paper.pdf>. 



A TinyAlu Sequence 

Having all the above in place allows us to create a uvm_sequence: 

    def body(self): 

        cmd_tr = command_transaction("cmd_tr") 

        for ii in range(10): 

            self.start_item(cmd_tr) # UVM start_item gets the sequencer 

            cmd_tr.A = random.randint(0,255) # use Python randomization 

            cmd_tr.B = random.randint(0,255) 

            cmd_tr.op = random.choice(list(ALUOps)) # Pick an operation 

            self.finish_item(cmd_tr) # waits for the driver to call item_done 

We now have a working TinyALU testbench that is compatible with either a simulator or an emulator and that can 

leverage the entire Python ecosystem. 

VII. RUNNING THE PYUVM WITH COCOTB 

The UVM code above has abstracted out the access to the DUT using an object it calls the bfm. The BFM could be 

implemented with DPI-C function calls, but in this example we use the coroutines in cocotb. 

Coroutines are Python functions that run in the context of an event loop. They run until they await some other 

routine to complete. At that point they cede control of the processor and let other routines run.  The open source cocotb 

project on GitHub is an open source interface between Python and supported simulators. 

This paper looks at two elements of getting cocotb to work with pyuvm. 

A. Creating a Driver BFM 

The RisingEdge and FallingEdge triggers in cocotb allow us to create Python that acts a lot like an RTL BFM. 

We loop on the positive edge of the clock and run a little state machine to to response to commands. 

async def driver_bfm(self): 

 # snip initialization 

    while True: 

        await RisingEdge(self.dut.clk) 

        if self.dut.start == 0 and self.dut.done == 0: 

            try: 

                cmd = self.driver_queue.get(timeout=0.1) 

                self.dut.A = cmd.A 

                self.dut.B = cmd.B 

                self.dut.op = int(cmd.op.value) 

                self.dut.start = 1 

            except queue.Empty: 

                pass 

        elif self.dut.start == 1: 

            if self.dut.done.value == 1: 

                self.dut.start = 0 

                self.dut.op = 0 

Notice that the first line in the try block does a timed get() from a Queue. If there is a transaction in the Queue 

then it processes it, otherwise it loops around and waits for the next clock edge. This is similar to the way we code a 

BFM in RTL. 



Creating a Monitor BFM 

Similarly we create a monitor that fills an infinite Queue (what UVM calls an analysis FIFO) with results. We look 

for the synchronous rising edge of done and then get the result and send it to the result queue.: 

async def result_mon_bfm(self): 

    prev_done = 0 

    while True: 

        await FallingEdge(self.dut.clk) 

        done = int(self.dut.done) 

        if done == 1 and prev_done == 0: 

            self.result_mon_queue.put_nowait(int(self.dut.result)) 

        prev_done = done 

The queues allow the UVM threads to make blocking calls into the asynchronous coroutines without having to be 

part of the coroutine event loop. 

Running the Test 

Like all testbench frameworks, cocotb wants to own and run the tests.  Therefore, we need to create a cocotb test 

and then launch the uvm_root().run_test() method in a thread. Then we wait on an event that gets triggered by 

the UVM test’s finish_phase() method. 

Here is the test 

@cocotb.test() 

async def test_alu(dut): 

    ConfigDB().set(dut, "DUT", "*") 

    clock = Clock(dut.clk, 2, units="us") 

    cocotb.fork(clock.start()) 

    bfm = AluDriverBfm(dut, "ALUDRIVERBFM") 

    await bfm.reset() 

    cocotb.fork(bfm.start()) 

    await FallingEdge(dut.clk) 

    test_thread = threading.Thread(target=run_uvm_test, args=("alu_test",), 

                                   name="run_test") 

    test_thread.start() 

    await bfm.done.wait() 

The cocotb library launches this coroutine, forks off the clock, calls reset, and starts the bfms. Then it launches 

the pyuvm run_test() thread and awaits pyuvm telling it the test is complete. 

VIII. CONCLUSION 

This approach literally provides the best of both worlds. Rather than reinventing the wheel, we build on all of the 

work that has gone in over the years to the development of the UVM, the most popular verification methodology in 

the industry, as well as existing constraint solvers and other capabilities provided by a simulator but provide it to a 

new generation of engineers in a language with which they are already familiar. 

The pyuvm is a Free Open Source Software project. As of the writing of this paper, Siemens is choosing an open-

source Git platform for delivery. That repository will contain the current cocotb testbench as well as coding guidelines 

for the project. 

 


