
© Accellera Systems Initiative

With the increasing complexity of SOC designs for AI, automotive, wearables and

mobile applications, the focus on creating robust system stimulus covering all critical

interfaces and measurement of functional coverage at SOC level has increased

significantly. IP/Sub-system level DV scope covers internal design core with synthetic

traffic using bus transactor and often do not see simulation runtime challenges, when

the same IP/Sub-system is integrated in SOC, generating real traffic from higher level

abstraction poses limitation in covering varieties of scenarios predominantly due to

longer runtimes (i.e. verification at SOC level requires compulsive clock initializations

and memory initializations). Verification of the SOCs with memory models like HBM3

and multiple instances of Traffic Generators consists of complex concurrent traffic

scenarios. Implementing such large data traffic scenarios on the emulation systems

which provides rich debug environment and support for functional coverage analysis

becomes absolutely necessary, since simulation poses challenges like very long

runtimes, complex testbench setup, various initialization requirements, unsteady

license availability and license holding, hence blocking us from performing multiple

iterations with various functional and address coverage.

Introduction

Implementation Details

Proposed Methodology

Implementation Flow Chart

Above diagram represents the architectural overview of HBM3 Controller.

SRAM memory is used for loading software workloads, which is accessed by the

processor. UART API’s in the software make use of UART IP and its transactor for

message display. SPI IP provides SPI interface for alternate bootflow. We have multiple

instances of traffic generators, in each traffic generator we again have multiple

instances of DMA330 and the custom DMAs all functioning to generate the traffic for

the HBM3 block.

Varun Kumar C, Senior Engineer, SSIR, Bangalore (varun.k2@samsung.com)
Sekhar Dangudubiyyam, Associate Director, SSIR, Bangalore (sekhar.d@samsung.com)

Madhukar Ramegowda, Associate Technical Director, SSIR, Bangalore
(madhukar.r@samsung.com)

Utilization of Emulation for accelerating

the Functional Verification Closure

[1] Emulation – Synopsys: https://www.synopsys.com/verification/emulation/zebu-server.html

[2] HBM3 IP solutions: https://www.synopsys.com/designware-ip/interface-ip/hbm.html

[3] Corelink DMA-330 DMA Controller Technical Reference Manual

[4] Emulation for accelerating the Functional Verification Closure presentation: https://drive.google.com/file/d/1_-PRqnHApA_0jsYgEpX05oPihXkTN6SX/view?usp=drivesdk

Results Table Conclusion

The methodology discussed has been successfully validated on emulation platform

with waveform capture and complete debug capabilities. The future work that has

been identified for this methodology are :

1. Extending to other High Speed IPs like PCIE, USB etc. Use existing protocol

transactors and cover larger traffic test like DMA scenario.

2. Backdoor read/write and memory dump operations of emulation system can be

used for data capture and comparison.

3. Testbench infrastructure can be scaled up to netlist based runs for zero delay GLS.

PnR ready netlist based emulation is already proved methodology.

Hence, scaling up the usage of emulation infrastructure in accelerating functional

coverage closure of critical interfaces in SOC like power management, DRAM, fabric

acceptance/issuing capabilities, coherency, memory management (MMU) and Q/P

channel handshake et al. This brings together various aspects of simulation and

emulation like hardware implementation of SOC design, peripheral transactors,

software workloads, functional verification, functional coverage model and

covergroups, trace32 based debug and waveform capture, ultimately helping in

overcoming the limitations of simulation and speeding up the verification closure.

With the tremendous future works identified, adopting and scaling up of this

methodology becomes an absolute necessity.

Runtimes were captured for concurrent traffic scenarios, both in simulation and

emulation environments and the data is presented in the below table,

Waveform captured and Functional coverage data collected are given in the figure

below,

REFERENCES

Based on the requirement for implementing the concurrent traffic scenario on the

emulation system, below objectives were defined :

• To use the emulation methodology for accelerating verification of multimedia, high

speed IO and performance verification.

• Implementing complete functional coverage solution with powerful single binding

statement providing coverage metrics for all the instances of DMAs and Custom

DMAs.

• Complete leverage of existing UVM SV environment for preparing software

workloads.

• Use this emulation flow for self checking and UART aided debug.

• Developing software like interrupt service routines for SOC interrupts handling.

• Periodic interrupts from the Multi Core Timer(MCT) for printing the runtime units.

• T32 interface for live monitoring of various IPs and memory models in SOC.

• Developing an emulation image with the SPI transactor for alternate bootflow.

• Capture the waveform for the desired time window of the concurrent activity.

Interconnect

Processor
Traffic

Generator

Traffic

Generator

Traffic

Generator

HBM3 Block HBM3 Block HBM3 Block

DMA

Pattern

Generator

DMA

Pattern

Generator

Traffic Generator

UART

SPISRAM

HBM3

PHY

HBM3

Controller

HBM3

Memory

HBM3 Block

Preparation of the design files

Development of top file which includes DUT

instantiation, transactor hookup and

coverage bind constructs

Compilation (front-end and back-end) to

generate the bitstream

Preparation of software workloads

Runtime environment setup

Runtime – design is loaded into FPGAs of the

emulation system for verification

Functional coverage data generation

CMU initialization, HBM3 Memory model

initialization and UART API initialization

Loading pseudo random data into source

address locations

Configuration of DMAs and custom DMAs with

address and transaction parameters

Starting concurrent traffic from all the

traffic generators

Software like counter based interrupt

service routines to decide end of data

transfer

Compare the data from destination

addresses with expected data

Verification on Emulation systems

Software workload program flow

Events RTL Simulation
Gate Level
Simulation

RTL Emulation
Runtime Efficiency
Improvement

HBM initialization 69 hours 21 mins 415 hours <30 secs 8000x ~ 50,000x

DMA Verification 15 hours 32 mins 163 hours 13 mins <10 mins 100x ~ 1000x

Custom DMA runs 13 hours 50 mins 133 hours 49 mins <7 mins 100x ~ 1000x

1 ms timer run 10 mins 50 mins <10 secs 60x ~ 300x

Runtime comparisons between simulation and emulation

Waveform capture for 4 instances of DMA330s and 2 instances of

Custom DMA
Functional Coverage implementation on Emulation Platform

Architectural overview of HBM3 Controller

mailto:varun.k2@samsung.com
mailto:sekhar.d@samsung.com
mailto:madhukar.r@samsung.com
https://www.synopsys.com/verification/emulation/zebu-server.html
https://www.synopsys.com/designware-ip/interface-ip/hbm.html
https://drive.google.com/file/d/1_-PRqnHApA_0jsYgEpX05oPihXkTN6SX/view?usp=drivesdk

