

1

Using a Generic Plug and Play Performance

Monitor for SoC Verification

Ajay Tiwari, ASIC Engineer, eInfochips, Ahmedabad, India (ajay.tiwari@einfochips.com)

Bhavin Patel, ASIC Engineer, eInfochips, Ahmedabad, India (bhavin.rpatel@einfochips.com)

Janak Patel, Sr. ASIC Engineer, eInfochips, Ahmedabad, India (janak.patel@einfochips.com)

Kaushal Modi, Sr. Technical Lead, eInfochips, Ahmedabad, India (kaushal.modi@einfochips.com)

Abstract

Performance validation, while often critical for SoC verification, is usually implemented as an afterthought,

leading to inefficiencies. A case study of a complex performance-critical SoC involving a large number of

communication paths is presented. The SoC is based on an OCP/AXI/APB Bus Interconnect with 30+ bus masters

(such as Dual Core Processors, DDR controller, PCIe controller) and 80+ bus slaves (Peripheral IPs, System RAM,

DDR).

The performance verification approach was broadly divided into four stages:

1. Traffic generation

2. Event collection

3. Performance measurement

4. Reporting result

Initially in the absence of a uniform and standard method, for performance calculations, we picked the start

time and the end time of transactions, using collected data bytes from the monitor callbacks for respective protocols.

Since the start time and end time capturing conditions and successful performance requirement for different

protocols were different, the calculations for different protocols could not be put in a single method. This meant a lot

of coding – per protocol, per traffic pattern requirement.

The approach worked fine and we were able to close the performance verification on time. The effort described

above was reasonable if this was a one-time effort. However, such ad-hoc approach for measurement and reporting

for this SoC became increasingly cumbersome due to the following conditions:

- Different protocol interfaces at source and destination

- Addition of new paths for the derivative SoCs

- Path-specific measurement requirements

- Interleaved traffic patterns

- Changes in performance requirements during the course of project

To overcome these issues, a generic plug-and-play performance monitor component was developed. It had to be

protocol-independent, a plug-and-play entity and easily integrated into a SoC verification environment like a typical

UVM verification component.

For performance measurement of multiple traffic requirements on same interface, performance monitor is

designed with three levels of hierarchy. Configuration options are available at each level.

Top hierarchy class of performance environment, performance monitor environment (level -1), is responsible to

create the number of instances of performance monitor based on configuration. Next level in hierarchy is the

performance monitor (level -2), which calculates the bandwidth and latency at any entity (bus interface/serial

interface/IP user interface or any customized requirement). If more than one type of traffic is flowing on single entity,

then it may require measuring each type of traffic separately. In order to meet this kind of requirement performance

mailto:bhavin.rpatel@einfochips.com
mailto:janak.patel@einfochips.com

2

monitor contains a third level of hierarchy called the leaf monitor (level -3). A leaf monitor is needed per traffic

pattern, per interface.

We identified following major features to be supported by generic plug-and-play performance monitor:

- Configuration support for: [1] Multiple paths and multiple traffic patterns [2] Units for latency and bandwidth

- Types of performance measurement: E.g. Per-transaction/Average latency calculation, Bandwidth calculation,

Alternate bandwidth and latency calculation window, etc.

- Configuration class or CSV (Comma Separated Values) based configuration

- Variety of reporting results: E.g. Measurement reporting depending upon user-defined level, Trace file

reporting for all the measurements, etc.

- Callback support to collect functional coverage

- API support to get performance statistics during on-the-fly simulation

For SoC mentioned at the beginning, during our initial effort for building the set-up for performance

verification took as long as a month and another month was spent achieving the closure through testcase and

debugging. A derivative of the same SoC was verified for performance using the performance monitor and the

complete performance verification closure was achieved within 3 weeks duration, with lesser resources. This shows a

clear saving in the man-hours put in for the closure.

Keywords—component; formatting; style; styling; insert (Style: key words)

I. GENESIS OF PERFORMANCE MONITOR

With SoCs becoming more complex by the passing day, performance verification has become an integral part

of SoC front-end verification closure. The parameters of performance verification, namely latency and bandwidth,

have to be measured and verified against an expected value for all the paths of interest. With a multitude of IPs

connected and talking to each other, there is a possibility of some of these paths not meeting the requirement for

performance as they may be sharing a common medium for communication, for e.g.: an SoC interconnect or a

network switch. In such cases, the IPs may eat into each other’s bandwidth or affect the latency. Given such

scenarios, the necessity of performance verification cannot be overlooked.

In one of our recent projects, the SoC had an OCP/AXI/APB Bus Interconnect, connected with 20+ bus

masters (such as Dual Core Processors, DDR controller, PCIe controller) and 80+ bus slaves (Peripheral IPs,

System RAM, DDR) and thereby had multiple paths of communication. This complexity of SoC made its

performance verification a challenging task.

We divided the verification approach into following broad categories/steps:

a) Traffic generation

o Where the necessary traffic load was generated and driven on the path

b) Event collection

o Collection of start and end time for transactions, captured at required event

c) Measurement through collected data

o Having collected the data, perform calculations as per requirement

d) Reporting of results

o Displaying messages indicating the success or failure of meeting the requirements along with

other related data

We picked the start time and the end time of transactions, collected the data bytes in the monitor callbacks for

respective protocols, and in the absence of a uniform and standard method, performed the needed calculations.

3

Since the start time and end time capturing conditions and successful performance requirement for different

protocols were different, the calculations for different protocols could not be put in a single method. This meant a

lot of coding – per protocol, per traffic pattern requirement. As an example, in our project, the Read and Write

traffic latency requirements were different between a particular master and slave, which demanded separate

calculations. In addition, the success or failure of meeting the requirement was printed as an info or error

respectively in the log file. This necessitated the use of an extra script that will pick messages of interest and give

a summary or else we had to look for them manually in the simulation log files. While we went about the task, we

also had to keep an eye on the time at our disposal, which is usually critical in verification projects.

The approach worked fine and we were able to close the performance verification on time. However, further

reduction in the effort during the performance verification cycle was required. The effort described above was

reasonable if this was a one-time effort. If new paths were added, or if the requirements changed, chopping and

changing was required at all the stages of the cycle, even if it was as little as changing the info messages. Since

the code and calculation was specific to a project, next project demanded a complete repetition of the cycle.

Driven by this demand, we identified the requirements of developing a general purpose, re-usable performance

monitor and identified the following challenges that the monitor should take care of:

 The SoC IPs communicate using a host of protocols so the monitor should be protocol independent

 Each path can have specific measurement requirements. The requirements can include interleaved traffic

patterns within single path. The architecture of the monitor has to take care of this important requirement.

 Performance requirements can be changed during the course of the project so the monitor should be

configurable

 There can be a possibility of addition of new paths in derivative SoC apart from the existing multiple

paths over which performance has to be measured.

 The reporting of results has to be detailed and easy to read and analyze so that no additional script

development is required.

To overcome above challenges, a highly configurable Performance Monitor was developed with UVM

Methodology base. This performance monitor is a protocol independent, plug-and-play entity that can be

integrated easily into the SoC verification environment like any other verification component. The user has to

integrate the monitor in verification environment, configure it as per requirement and the rest of the steps of

performance verification will be taken care of by the monitor upon being provided the transaction details such as

start time, end time and data bytes. These steps are explained with examples in the sections that follow. The

different options available for configuration allow the user to tailor the measurement according to the

requirement. These configuration options include the number of interfaces to be verified, traffic patterns over

each interface, reporting style of results among others. In case of changed requirements, user has to reconfigure

only the component. The reporting mechanism is uniform and detailed for each path. Since the user is not

developing any extra component or any supporting script, it reduces development time, which in turn leads to

significant reduction in the overall time consumed in performance verification. Following sections discuss the

features of this monitor, its architecture, its usage in testbench with an example and a case study of the use of

monitor in actual project.

A. Features of Performance Monitor

 The monitor gives user a control of the measurements one wants to do. The user can choose between the

following measurement type or perform both simultaneously:

o Latency measurement – Here latency measured can be end-to-end latency (latency for a

request/response to reach from one point to another in the design) or round-trip latency of

transaction (request to response latency). The monitor is able to provide the latency value for

each transaction and an average value of latency over a number of transactions.

4

o Bandwidth measurement – Bandwidth can be measured over user defined number of

transactions (e.g. between 25th and 75th transaction) or between user defined events (e.g. when

the transaction size varies in DMA transfer, the bandwidth can be measured between DMA

start and DMA end), depending upon user’s requirement.

 The results will be reported (in tabular form) in user’s choice of units. These include:

o Latency : ms, us, ns, ps

o Bandwidth : KBps, MBps, GBps, Kbps, Mbps, Gbps

 A user-friendly method of configuration is provided. User puts the configurations in a .csv (comma

separated value) file which is read by the monitor and gets configured accordingly(This method is in

addition to the regular way of taking instance of the configuration classes and updating the configuration

parameters).

 The user can configure expected values of latency and bandwidth, which the monitor will use to compare

the measured values. If the measured values are not as expected, an error will be thrown from the

monitor. The measurement path that is not meeting the requirements is also indicated, which helps in

quick debugging and saves manual effort.

 Configuration compliance checks are provided.

 Some requirements may ask for ‘Setup’ and ‘Hold’ transactions facility. The Setup transactions are the

transactions before the measurements start and Hold transactions are the ones after the measurement is

completed. Since these transactions take care of the cold start effects at the beginning and trailing edge

effects at the end of the flow, these number of transactions are neglected in calculation. A support for

configuring the number of such transactions is provided. Also the window size (number of transactions

over which the latency or bandwidth has to be measured) is user defined. User can choose same window

of transactions or different windows for latency and bandwidth measurement. Measurement over multiple

windows is possible.

 A support for alternate window, other than the configured window over which parameters are measured,

is provided which helps in checking the consistency of results over the simulation. For example, say the

user measured the average latency between 40th and 80th transaction, but wants to know the average

latency between 30th and 90th transaction for consistency purpose. This can be achieved by configuring

the required parameters at the beginning of simulation. This number can also be provided as a percent of

the total number of transactions (e.g. between 30% and 90% of total transactions). The result of this

window is reported alongside the summary of primary window, which makes the comparison easier.

 The monitor has rich result reporting features, the verbosity of which is configurable. All the details

related to the measurement are displayed in tabular form. The reporting configurations can help the user

to point to the exact window in a traffic pattern within an interface that is not meeting the performance

requirement thereby helping in the debugging process.

 The user can compare the performance results across entities (interface), if needed, and get the cumulated

bandwidth for different traffic patterns within an interface. For e.g., between a master and a slave,

requirement can be of 100MB/s of combined read and write traffic of which 70MB/s is read traffic and

30 MB/s is write traffic. All these requirements can be verified by configuring the performance monitor.

 In case a variation of results is expected, user can provide this value as ‘tolerance’ value. The

performance monitor will define a new value for ‘expected’ parameter depending upon the tolerance

value and shout error only if the new value is violated in measurement.

 Callbacks have been provided that give the performance data values for coverage purposes. In case the

testcase writer wants to base the behavior of test upon the results of measurements, APIs have been

provided that return the measured values and status of simulation.

5

 The user can also change the monitor configuration run-time in which case the monitor will use the

updated configuration for measurement and reporting.

All these features help in making the component flexible and re-usable across projects.

6

II. ARCHITECTURE OF PERFORMANCE MONITOR

 The measurement over different interfaces and traffic patterns is taken care of by the hierarchical

structure of the performance monitor. This architecture is discussed in this section.

A. Detailed Architecture

For measuring performance of multiple traffic requirements on same interface, performance monitor is

designed with three levels of hierarchy as shown in figure below. Configuration options are available at each

level. All class components are extended from “uvm_component” and all configurations are extended from

“uvm_object” of UVM class library.

Figure 1 Performance Monitor Hierarchy

Top hierarchy class of performance environment is called as performance monitor environment (level -1).

This class has its own configuration called performance environment configuration (level -1 cfg). This class will

be instantiated by user in testbench to use this monitor. It contains the dynamic array of performance monitor and

user can provide the number of performance monitor to be created through configuration of this component.

Upon creation of performance environment class, it creates the instances of performance monitor based on

configuration.

Next level in hierarchy is the performance monitor (level -2). This is a component, which can be used to

calculate the bandwidth and latency at any entity (bus interface/serial interface/IP user interface or any

customized requirement). Specifically, one performance monitor is needed for measuring the performance

requirements on one interface (E.g. at AHB/AXI/OCP system bus interface or RGMII interface of Ethernet or at

USB interface, etc.). If it is required to measure parameters of more than one entity, then it is possible to create

multiple instances of performance monitor through level-1 configuration. This component contains a UVM

analysis port of performance transaction type, through which it will receive the required information (in the form

of performance transaction) to calculate bandwidth and latency. Thus, for measurement, user will need to map the

required information (such as start time, end time, number of data bytes) into performance transaction and write it

through analysis port from inside the testbench.

If more than one type of traffic is flowing on single entity, then it may require measuring each type of traffic

separately. For example,

Leaf monitor

Basic entity that performs
calculations

One instance per traffic pattern,
per interface

Performance monitor

One performance monitor
instantiated per interface of
measurement

Top level Environment

Instantiated inside testbench

Perf Top
Env

Perf Mon

Leaf Mon Leaf Mon

Perf Mon

Leaf Mon

7

 Processors are using same bus interface for instruction load and store. However, traffic requirement of

load and store are different, so it may require verifying bandwidth and latency for both type of traffic

separately.

 On USB bus, there is bi-direction data traffic, one is from Host to Device and the second is from Device

to Host. In that case, it may require checking bandwidth for both direction traffic individually.

In order to meet this kind of requirement performance monitor contains a third level of hierarchy called the

leaf monitor (level -3). A leaf monitor is needed per traffic pattern, per interface. The performance monitor

contains dynamic array of leaf monitor and can be configured for required number of leaf monitors equal to

number of different traffic to be measured using level-2 configuration. Minimum of one leaf monitor is required

per performance monitor for measurement. The configuration options for leaf monitor (level -3 cfg) contain the

controlling flag, as well as expected reference values for bandwidth and latency. This component also does

reporting of calculated bandwidth and latency in log file, as well as dumps the information in trace file based on

the configuration.

When the leaf monitor is created, a unique ID is assigned to each leaf monitor from configuration based on

traffic type. A corresponding field has been provided in the performance transaction as well. So while

performance transactions for all the traffic will be received through the same analysis port in performance

monitor, the traffic will be differentiated based on ID field of each transaction and since there will be one leaf

monitor for each traffic type with matching ID, the packet will be navigated to the corresponding leaf monitor for

calculations.

Leaf monitor contains the logic of bandwidth and latency calculation performed on the performance

transaction. As mentioned above, since the performance monitor can be used with a variety of interfaces, there is

a need for a generic performance transaction type. The following table mentions the fields of performance

transaction.

Table 1 Performance transaction fields

Field Description

Id Decides the leaf monitor that this transaction is intended for

req_lat_start_time Stores the start time for latency calculation

req_lat_end_time Stores the end time for latency calculation

bw_start_time Stores start time for bandwidth calculation

bw_end_time Stores end time for bandwidth calculation

data_bytes Stores the total number of bytes being transferred in a transaction

User will update these fields when generating the performance transaction (inside a testbench component or

hook-up from where start time and end time of transactions are available) upon the occurrence of required event

and pass it to performance monitor through connecting port.

Detailed class hierarchy of performance environment and configuration class is shown in below figure.

8

Performance Monitor Environment

Perf_mon_N cfgleaf_mon

_cfg[]
Perf_mon_1 cfgleaf_mon

_cfg[]Perf_mon_0

Leaf_mon_N

cfg
Leaf_mon_1

cfg
Leaf_mon_0

cfg

cfg
Perf_mon

_cfg[]

cfgleaf_mon

_cfg[]

De-

Multiplexer

Selection Line

Figure 2 Detailed Class Hierarchy of Performance Monitor Environment

In summary, there is one performance monitor (level-2) from performance environment used per measuring

interface and each performance monitor has one dedicated analysis port through which it will receive the

performance transaction. Each performance monitor has leaf monitor (level -3), which calculates and reports

measured bandwidth and latency. There can be multiple leaf monitors, if it is required to measure different types

of traffic simultaneously on same entity/interface.

Next section discusses about the configuration parameter methods to configure the performance monitor,

based on which the operation of the performance monitor will be decided.

III. CONFIGURATION

Similar to the hierarchy of performance monitor components, there is a hierarchy of configuration classes,

with each one dedicated to corresponding hierarchy component as discussed in previous section. The table below

describes configuration parameters at each level. These parameters need to be set based on requirement for

performance verification.

Table 2 Configuration Control at Each Hierarchy

Level Hierarchy Name Configuration Control

L1

Performance Environment

Configuration
 Number of performance monitor(s)

 ID of each performance monitor

 Uniformity check configuration

L2 Performance Monitor Configuration Number of Leaf Monitor

 ID of each leaf monitor

 Cumulative measurements configuration

L3 Leaf Monitor Configuration Measurement types

 Expected values for each measurement

 Measurement window information and window

type

9

 Reporting level and trace file configuration

Following two easy-to-use methods are available to configure the performance monitor:

A. Configuration class based approach

B. Comma Separated Values (CSV) file based configuration approach

A. Configuration class instance approach

This is a common approach for configuration of any component. Instance of configuration class for each level

is taken in the testbench. As performance monitor is developed in UVM methodology, each instance needs to be

created in “build_phase” of user testbench or testcases. Therefore, in the build phase, user has to create an object

of this configuration and then assign appropriate values to its members based on requirement of each level. Below

example demonstrates the creation of performance monitor.

Figure 3 Example of instance based configuration

Line numbers 55 and 59 show how the APIs are used to pass the configurations across levels. The

configurations of lower level component are stored in a dynamic array of the component immediately above it in

the hierarchy. (L3-cfg stored in array in L2-cfg, and L2-cfg stored in array in L1-cfg). User passes the

configuration instance and name of the component to this APIs.

10

B. CSV file based configuration approach

This is a user-friendly approach to configure the performance monitor. There is one pre-defined format of

CSV file, which contains all required parameters for configuration of leaf monitor, performance monitor and top-

level configurations. User just has to fill this CSV file and use it with the performance monitor in the testbench.

This CSV file will be read by the monitor and configuration for all the levels will be set as defined in the file.

1) Example of setting configuration through CSV

Below figure shows the format of CSV file. User needs to configure this file for each level of configuration

base on the requirement. There is a separate set of configuration parameters provided in the file for each level of

hierarchy. Parameter for each level is recognized by LEVEL column. The performance environment

configuration will be provided with the LEVEL column value L1. Correspondingly, the performance monitor

configuration will be provided with a value L2 and the leaf monitor configuration with the value L3. If there are

more than one leaf monitor under one performance monitor, then multiple rows can be created for each leaf

configuration.

The sample CSV below shows that two performance monitors: one for AXI and the other for OCP. For each

interface, there is requirement of measuring bandwidth and average latency for read and write transaction. So

there are two L2 level of configurations (one for OCP and one for AXI, provided with PERF_MON_NAME) and

each is having two L3 level of configuration (for READ and WRITE, provided with LEAF_MON_ID). All such

requirements can be created in single set of configuration and can be used for all the testcases.

Figure 4 Sample CSV file

It is also possible that different testcases may have different configuration requirement or there may not be

requirement of some components while measuring performance for dedicated path or interface. E.g. If there two

independent paths for which we need to measure performance and we have two testcases. Therefore, it is better to

create performance monitor dedicated to the path in particular testcase. In such case, multiple set of

configurations can be created for each testcase or set of testcases within same CSV by using CONFIG_ID or

SEQUENCE_NAME parameter.

After creating CSV file, an API is used to apply configuration from the CSV file, named

get_perf_config_for_seq_f. In this API, first argument is the name of the CSV file and second is the name of

testcase (if more than one set of configurations are used, otherwise by default it will take first one). Below snippet

shows the example of setting configuration from “sample.csv” for “ocp_axi_read_write_seq” sequence.

Figure 5 Example of setting configuration through CSV

11

Once the monitor is connected and configured as per requirement, the performance monitor is ready for

measurements. The types of measurement that the performance monitor is able to do are discussed in the next

section.

IV. MEASUREMENTS SUPPORTED

The performance monitor is capable of performing different types of measurements based on the

configuration. All the calculations related to these measurements are done using the data received in the

performance transaction. The types of measurements that the monitor is able to perform are:

A. Per Transaction Latency Measurement:

This measurement is done when the latency on a particular interface is to be measured without traffic on the

other interfaces or traffic requirement is of guaranteed service. The performance monitor will check for each

transaction meeting expectations and report an error in case of failure for any of the transactions.

B. Bandwidth and Average Latency Measurement over a number of transactions:

This measurement gives the value of bandwidth and latency over a user-defined window of transactions. The

monitor will take into considerations the ‘Setup’ and ‘Hold’ number of transactions in this measurement and

perform calculations over user-defined window.

The average latency is measured when the traffic is moving on the other interfaces as well along with the

interface of interest. In this case, the value of latency being measured on any interface can vary depending upon

the traffic on other interfaces. Therefore, an average or RMS value of latency is taken in such cases. The average

value of latency can be measured along with ‘Per Transaction’ latency measurement.

C. Bandwidth and Average Latency Measurement between two events:

This measurement is done when data contained in each request is not constant and measurement window has

to be defined by the total bytes to be transferred.

For example, when the total number of bytes to be transferred from DMA engine is 4KB, the bandwidth to be

measured is regardless of the total number of requests sent from DMA. Measurement should start as soon as the

DMA transfer starts and end once 4K transfers complete. The user can assign a start value of time in performance

transaction upon DMA start. Then each subsequent transactions should have the time value equal to “-1” until

DMA stop occurs. Upon the DMA stop event, the end value of time should be assigned in the performance

transaction. A value of “-1” in any of the time related field is not considered by the monitor for calculation. The

performance monitor will collect all the data bytes provided to it in between this start- and end-time and perform

the calculations accordingly.

D. Latency and Bandwidth measurement over an alternate window:

This measurement helps to get the parameter measurement over a different window than the one defined by

the user in the simulation. This helps to know the consistency of results. In this measurement, the monitor collects

all the data received during the simulation and at the end of the simulation. It re-calculates the desired parameter

over the alternate window defined by the user. This measurement can also be performed independently of any

other measurement.

E. Cumulative Bandwidth measurement:

If there is a requirement of different traffic patterns meeting a bandwidth requirement collectively, cumulative

bandwidth measurement feature of monitor helps. When enabled, the performance monitor accumulates the

bandwidth over all the traffic patterns and compares it against the configured expected value.

F. Uniformity Comparison:

If the measured value for any interface has to be compared against the other interface, uniformity comparison

can be used. One example is the performance comparison over multiple instances of the same type of interface

(like checking performance of multiple GPUs of same type).

12

V. REPORTING

After finishing the measurements, the monitor displays all the results and related information. While deciding

the reporting structure, the main objective was to aid the process of debugging. Keeping this in mind, a tabular

form of reporting was decided. In addition, a UVM_ERROR is reported whenever the required conditions are not

met, helping to catch the erroneous case quickly. The errors are reported irrespective of the reporting levels

(discussed below).

The monitor does two types of reporting:

1) Log file reporting

2) Trace file reporting

The information printed in log files can be controlled by configuration of the monitor as per the details

needed. The levels of reporting are as follows.

A. Log File Reporting

1) Default Reporting

A summary of results is always printed at the end of the simulation, in report_phase, by default. This

summary has the following information:

 Name of the leaf monitor. This helps to identify the path and traffic under measurement

 Number of windows and size of the windows

 Expected bandwidth/latency

 Actual bandwidth/latency measured (an average over all the windows)

 Minimum and maximum bandwidth/latency for a window over complete measurement

 Number of windows that did not meet the requirement

An example of this default report is shown in the following figure:

Figure 6 Example of simulation summary report

The alternate window bandwidth and latency information, if enabled, will also be printed in default summary.

This value also will be compared with the expected alternate window bandwidth and latency.

Above message will be displayed as an error in case the average values or the alternate window values do not

meet the requirement.

A display message in the default report will inform the user about the measurements that have been disabled.

Below figure gives an example of such a message.

Figure 7 Example of a message displayed in summary

2) 5.1.2 Reporting Level -1

In reporting level – 1, apart from the default reporting, information related to windows of measurement will

be reported runtime at the end of each window. It contains following information.

13

 Window number and transactions in that window

 Start and End transfer count for each window

 Min, max and average bandwidth and latency

 Start and end time as well as data bytes

 Error difference between the expected and the average value (which can be used to calculate RMS value

of error). This value is reported only if the requirement not met (i.e. if bandwidth measured is less than

expected or latency is greater than expected)

Figure 8 Example of bandwidth report

3) 5.1.3 Reporting Level -2

In reporting level -2, in addition to default and level-1 reporting, information related to each transaction

namely per transaction latency information, start time, end time will be reported runtime in log file itself.

Figure 9 Example of transaction latency report

4) Reporting level -3

This reporting level is for debugging. In this reporting level, all information will be reported those reported in

reporting level 2 and with debug messages in log file.

Debug messages will give information about currently calculating information like:

 Full simulation calculation

 Start id and end id of full simulation

 Selected full simulation window type

 Total number of transactions available in queue

 Full simulation bandwidth/latency and with start time and end time

Since all the information related to measurement is available at one place, as an info or error, along with the

name of the leaf monitor, the debugging process speeds up.

B. Trace File Reporting

Reporting of the performance parameters is dumped in trace file if enabled. This trace file can be used to

generate a graph of results by reading it in an Excel file. For each simulation, two types of trace can be done as

per configuration parameters:

 Leaf monitor trace file:Includes the latency information per transaction, average latency information per

window and bandwidth information per window. It generates a trace file from each leaf monitor as per

configuration set.

 Default reporting trace file:Includes the default reporting for all leaf monitor.

14

An example of a trace file is given in figure below:

Figure 10 Example of a trace file

VI. USE OF PERFORMANCE MONITOR IN A TESTBENCH

This chapter demonstrates the use/integration of the performance monitor in a user’s testbench. This is

described using example of an OCP master connected to an OCP slave through interconnect.

MASTER

SLAVE

INTERCONNECT

REQ

OCP
INTERFACE

OCP
INTERFACE

OCP
INTERFACE

RESP

Figure 11 Example system having a single master and slave

Let us assume that the specification and requirement of this hypothetical system example is as follows:

 Three types of traffic flows between master and slave:

1) Random write traffic

2) Random read traffic

3) Sequential read traffic

 The master should be able to drive 1.6 GB/s of combined traffic to the slave. Out of this combined traffic,

1) 1.2 GB/s must be for sequential read traffic

15

2) 300MB/s for random reads

3) 100MB/s for random writes

 The request to response read latency from the master to the slave shall not exceed 130 ns.

The steps involved in use of the performance monitor are mentioned in the diagram below. These steps are

explained using the system shown in figure 11.

Figure 12 Steps for Performance Monitor Usage

A. Requirement definition:

At the outset, user needs to determine the performance parameters those are of interest for a particular design

under verification. In addition, the number of interfaces over which performance needs to be measured must be

known along with the traffic patterns. These definitions help in configuring the monitor according to the

requirement.

In case of our example system, we filter out following information:

 Bandwidth and latency both are required to be measured.

 Since the requirement is of request-to-response latency, we will have to observe the interface

between the master and interconnect, where both request and response can be observed. So

accordingly performance monitor to be integrated.

 3 types of traffic flows on the interface i.e. Write, Read and Sequential Read. According to the

architecture of performance monitor, we will need 3 leaf monitors – one per traffic type.

B. Importing Package:

The Performance Monitor files are provided as a package that must be included and imported in testbench.

C. Instantiation in Testbench:

User must then create an instance of the top environment of performance monitor and its configuration in the

top environment of the testbench.

16

Figure 13 Performance environment instance in top environment of the testbench

D. Configuration:

Using the information gathered in step 1, the performance monitor must be configured at each level of

hierarchy. Some of the important fields that need to be configured are as follows:

Table 3 Configuration parameters for example system

Parameter Value

MEASUREMENT_TYPE BANDWIDTH, AVG_LATENCY
NUM_PERF_MONITOR 1 (Between master and interconnect)
NUM_TRANS_TYPE 3 (Random write, read and sequential read)
TOTAL_EXP_BW 1600 (MBPS)
BW_UNIT MBPS
TIME_UNIT Ns

EXP_BW 100, 300, 1200

A snippet of a part of the file for this configuration is given below:

Figure 14 CSV file for example system

17

E. Connection to environment components and creating performance transaction:

The performance monitor now needs to be connected to any component or at different testbench hook-ups

such that the user must be able to get the data like start time, end time and data byte of the passing transaction

through the component to which the monitor connects. In our example scenario, the performance monitor is

connected to the OCP monitor callback. The performance transaction is built inside the callback and passed to the

performance monitor through the connecting port as shown in the figure below.

Figure 15 Performance transaction building and driving

The analysis port instance taken in line 18 is connected to performance monitor in top environment of the

testbench. An API is provided in the top environment of the performance monitor for this purpose. This is shown

in the figure given below (Here ‘master’ is the name of the master component given in CSV):

Figure 16 Connection between testbench environment and performance monitor

In line 57, this transaction is written into the analysis port, after which it will be available to the performance

monitor for calculations.

In case these fields are not available to user through hook-ups, support for adapter class has been provided.

This adapter class is connected to the performance monitor. User can write the logic to extract these fields by

extending the adapter class and assign them to the performance transaction fields.

18

Following diagram gives an idea of set-up after connecting performance monitor to testbench:

Top Environment

General
transaction

Performance
Transaction

DUT

Adapter

Agent

Top_env_cfg

Perf_top_
env_cfg

Figure 17 Performance monitor integration in environment

F. At this stage, the set-up for using performance monitor is done and user can run simulations to perform

measurements

VII. SUMMARY

 We have used the mentioned performance monitor in three different projects for different clients so far.

A comparison of the effort and time put in these projects vis-à-vis the effort put in performance verification of

projects done without performance monitor vouch for the usefulness of the monitor.

In the SoC mentioned at the start of the paper, building the set-up for performance verification took as long as

a month and another month was spent achieving the closure through testcase and debugging. A derivative of the

same SoC was verified for performance using the performance monitor and the complete performance

verification closure was achieved within 3 weeks duration, with lesser resources. This shows a clear saving in the

person-hours put in for the closure.

