Using Mutation Coverage for Advanced Bug
Hunting and Verification Signoff

Nicolae Tusinschi

Q)
onespin

making electronics reliable \Z
accellera DV LN
SYSTEMS INITIATIVE

Agenda

Formal Coverage

Example: FIFO Verification
Case Study: I°C Verification
PortableCoverage

Summary
Q&A

SYSTEMS INITIATIVE

EEEEEEEEEEEEEEEEEEEEEEE

The Verification Loop

Requirements \

Build Test
Run & Debug Bench
i enc A0l L
DVCON

acceller " DVLUIN

SYSTEMS INITIATIVE

Assessing the Quality of Verification

If you don’t measure, you don’t know

When am | done?

 What part of the design has been exercised by my assertions/covers?‘
* Have | written good quality assertions? — Quantify™
* Which parts of the design have been checked by my assertions?

Are all specified functions implemented?

GapFreeVerification™
Are all specified functions verified? } P

IIIIIIIIIIIIIIIIIIIIIII

accellera DV

SYSTEMS INITIATIVE

Coverage & Bug Hunting

Two sides of the same coin

 Both coverage and bug hunting are important
 Where coverage is analytical, bugs are anecdotal
 100% coverage with bugs in the design is unacceptable
* Extracting coverage should be quick and easy

 Report data must be meaningful

IIIIIIIIIIIIIIIIIIIIIII

accellera DV

Inconclusive Formal Coverage

COIl and proof core (ProofCore, FormalCore)

Cone-of-Influence

* Very over-optimistic
* Much logic not relevant for assertion proof
* Proof engines try to trim irrelevant logic

Proof Core
* Over-optimistic and engine-dependent
e Results hard to interpret*

* Need support from vendor* @ Design
 Mismatch with abstraction level of other Assertion
forms of coverage* @ cCone-Of-Influence (COI)

. *
 Makes review process much harder Proof Core

accellera * Tutorial — Formal Verification in the Real World, DVCon US 2018, Verilab

SYSTEMS INITIATIVE

2018

DESIGN AND VERIFICATION™

DVCON

EEEEEEEEEEEEEEEEEEEEEEE

Mutation Coverage

Addressing over optimism of proof core

] / Mutation Analysis Tools
Insert mutations into DUT
e Control: can the stimulus generator
activate the mutation?
* Observe: does the mutation

Reference Model propagate to a check that detects it
and fails?

Mutation detected == DUT location observed by the testbench

Mutation analysis detects verification errors and gaps
2018

N AND VERIFICAT

accellera DVB':'N

SYSTEMS INITIATIVE

Multi-Dimensional Coverage View

. . @
69 4> llllliiiiiiiiillll 69 4>
case (state) Coverage case (state)
/\ Done that!
burst:

) / if (cancel i)
Detection done o <= v

Been there?
burst:
if (cancel i)

Activation /

done_p <=1

Observation
Coverage

Control

Y Coverage v,

* Has the statement been activated/controlled? * Has the statement been detected/observed?
* |dea: * |dea:
— If a statement has not been activated during — |If a statement is modified and activated,
verification, it can’t break a check. some checks should fail

— If a statement has been reached, would a check — Would any check fail if the statement cannot
fail? be reached?

* Can measure quality of stimuli e Can measure quality of checkers

2018

DESIGN AND VERIFICATION™

DVCON

accellera

SYSTEMS INITIATIVE

Mutation Coverage

Multi-dimensional view — quantity and quality

Assessing the quality of verification by providing a quantitative metric

Structural Coverage (Quantity)

Activation & Detection Coverage—provides quantitative assessment

Functional Coverage (Quality)

Assertion Coverage—provides qualitative assessment

accellera DV

SYSTEMS INITIATIVE

Mutation Coverage Use Model for Design Verification

Iterative signoff flow for bug hunting and 100% coverage

. Verification

Build
l

»

Regular Flow Iterative Flow
Used by verification engineers Can be used both by designers and
for signoff verification engineers for iterative signoff

2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Coverage Solution: Provide Meaningful Metrics

Continuous feedback for design and verification

Designer Bring Up: Get feedback on the quality of design
* Dead code; reachability
* Redundant code

Verification: When quality and quantity both matter

* Metrics should indicate gaps in verification and show you where these are
— Missing assertions
— Over-constraints
— Find bugs

IIIIIIIIIIIIIIIII

Mutation Coverage Results

Activation coverage

I S
Mutation cannot be activated

Activation /

- Reached Mutation activated by at least one assertion (witness)
Controllability

Mutation cannot be activated because of constraints

Important to identify which parts of the design are dead and
which parts are over-constrained.

As the code is dead or over-constrained, one cannot control it.

2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Mutation Coverage Results

Detection coverage

E—

Uncovered Mutation not detected by any assertion

Detection /
Observability

Covered Mutation detected by at least one assertion

Unobserved Mutation activated but not detected
Important to assess the quality of the assertions
Have we observed all the design signals?

Do we have quality assertions?
2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Additional Coverage Results

|Identify redundant code, report code excluded from analysis

I T T

Verification Only used for verification

Excluded Excluded by user

Important to identify redundant code
Assess if the code is redundant in design, or in verification

User can exclude code from coverage analysis
2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Overview of Mutation Coverage Results
.

Activation /
Controllability

Reached
Constrained
Dead

— Verification Hole

Uncovered
Detection /

Observability

Unobserved

Covered

Verification

Excluded

accellera DV

SYSTEMS INITIATIVE

Quantify Model-Based Mutation Coverage

User Experience Under The Hood

e Accurate, familiar metrics * Includes formal-optimised mutation analysis
» Detects verification gaps and errors Mutations in the model, not RTL

* Intuitive interface * Parallel mutations and assertions analysis

* Integrates with simulation metrics * Dedicated algorithms

Supports bounded proofs Patented technology

v
Qc
20
)

Model-Based Mutations
 Mutations inserted in the model (post-compile)

e No RTL instrumentation or recompilation required = csssvgwevesrcamon-
agcellerd) P a DVELN

EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Quantify Dashboard - Key Components

Structural Coverage Overview

Status Statements Branches
DT vz Ei0% 4 10000%
R reached 0 0.00% 0 0.00%
u unknown 0 0.00% 0 0.00%
OR unobserved 3 20.00% 0 0.00%
0 |uncoered [0 oo
0 Iooo% 0 Iooo%
DR o bo 0 oo
Sum quantify targets 15 _ 4 _
Code Status Statements Branches
Xu excluded by user 0 0.00% 0 0.00%
Xr excluded redundant code 0 0.00% 0 0.00%
Xv excluded verification code 15 50.00% 8 66.67%
0/1/U quantify targets 15 50.00% 4 33.33%
Sum total code 30 12
Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified
0 sva/as_empty_from_full assert
1 sval/as_full from empty assert
2 sval/u_fifo /as_ordering check assert

2018

DESIGN AND VERIFICATION™

accellera DVCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Quantify Dashboard

Directly linked to design browser

SYSTEMS INITIATIVE

verified code

|

fsm state next == error;

verification hole l

if (error i)

begin
. ' flerror cond code//f
constrained l cfg reg <= 4'd10;
COde / counter <= 4'd@n;
fsm state next == idle;
end
else
‘ fsm state next <= idle;
dead code default:

fsm state next == idle;

endcase

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Mutation Coverage for Bug Hunting

Example: FIFO

DESIGN AND VERIF TION™
accellera DVLOIN
SYSTEMS INITIATIVE

FIFO Interface

/_——\

resetn 7/ \\\
clk | |
| | » empt
w_valid i . | pty
w_ack_o i i > full
r_valid_i Aﬂi i » data_out
r ack o - > data - i
data_in A,l\ /:
Input Output N
ABCDEFGH.. ABCDEFGH..
ABCDFE GH.. %
ABC EFGH.. %
ABCDDEFGH.. ¥
oo 2018
(accellera DVB':'N

SYSTEMS INITIATIVE

Requirements for Verification

Ordering is correct
No duplication

No data loss

No data corruption

Empty and full flags activation

Must be empty at the right time

Must be full at the right time

If empty, then eventually full

If full, then eventually empty 2018

accellera DV

SYSTEMS INITIATIVE

Quantify on FIFO Example—I
With no assertions at all

Staws Statements Branches
I GEE o oo o oo
R reached 0 0.00% 0 0.00%
U unknown 0 0.00% 0 0.00%
orR unobsenved 0 0.00% 0 0.00%
22 f L VERIFICATION HOLE |
str: 0 Jo.o0% 0 Jo.00%
0 Jo.oo% 0 Jo.0o%
Sum quantify targets 2 [7 I
Statements Branches
22 [7] mmm
Assertion Coverage
Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified

Id File Language Kind Full Name

0 fifo.v verilog design fhome/onespin/my_labsfifo_guantify_demo_v2ino_checks/riififo.v 2 O] 8

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Quantify on FIFO Example—Ii

Design view

8B

“ if (lresetn)

45 w_mck 1'hl;

4% e if (1fulld

47 w_nck = 1'b1;

48 el=e if (full)

L] w_ack «= 1'hb0;

50

51 assign w_ack_o = w_ack;

52 mssign r_ack_o = empry T 1'bd : (full * 1'bd : 1'bl1);

53 mesign w_hak = w_valid_i & w_nck_o;

54 assign r_hsk mlid 1 && r_mck_o;

55 assign nit_wptr wptr + w_hsk;

5 gn nxt_rptr rptr + r_hsk;

57 assign nxt_enpty = lempty || r_hsk) & lw_hsk &8 (nxt_rptr == nxrt_

58

59 /--- R ed calculations for empty, wptr and rptr

ii0 posedge clk or negedge resetn)

il

fi2

63 ¥ 1'b1;

64 <= {DEPTH_BITS{1'b&l}};

i <= {DEFTH_BITS{1'b}};

113

67]
8

9 P — [
m = nxt_wptr;]
7l nEt_rptr; [}
L

3

74

™ if (w_hskl 0
] datalwptr] = data_i []
7 --- Remd the dats on & r_|

78 always @ ge cli)

™ 1f (r_hsk)]
60 data_int «— datalrptr]; 0
Bl mssign full = lempty &8 (rptr == wptr); []
B2 assign empty_o = empty;]
i3 assign full_s = full; 0 20] 8
4 assign data_o = data_int; 0 DESIGN AND VERIFICATION™

accellera — DVCOIN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

FIFO Verification Strategy

Uses symbolic and data abstraction

* Use two symbolic transactions for tracking all possible data values
* Send these symbolic values in a pre-determined order in the FIFO
* Ensure that they come out of the FIFO in the same order
* Use four sampling registers

— sampled_in_d1

— sampled_in_d2

— sampled_out _d1

— sampled out_d2
* One side constraint
* One main ordering assertion

IIIIIIIIIIIIIIIIIIIIIII

accellera DV

SYSTEMS INITIATIVE

FIFO Ordering Properties

Glue logic

//-- Force dl inside before d2
am dl before d2:
assume property (
Q@ (posedge clk)
!sampled in dl |-> !sampled in d2);

//-- End-to-end ordering assertion
as_ordering check:
assert property (
@ (posedge clk) disable iff (!resetn)
sampled in dl && sampled in d2 && !sampled out dl

| -> !sampled out d2); o

accellera - = DV

SYSTEMS INITIATIVE

Quantify on FIFO Example—III

With just ordering assertion

accellera

SYSTEMS INITIATIVE

Structural Coverage Overview

Statements

feovered NN 1+ eEEE%

R reached 0 0.00% 0 0.00%
] unknown 0 0.00% 0 0.00%
unobserved 7 31.82% 2 28.57%
T
0 oo
o oo 0 fooon
Sum quantify targets 2 s | 7 ||

Excluded Code Overview

Code Status Statements Branches

Xu excluded by user 0 0.00% 0 0.00%

Xr excluded redundant code 0 0.00% 0 0.00%

Xv excluded verification code 14 38.89% 4 36.36%
0/1/U quantify targets 22 61.11% 7 63.64%
Sum total code 36 1

File Statements Branches

fto. 22 [7 [
fifo_sva.sv 14 4

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified
1 sva/u fifo /fam d1 before d2 assume FORMAL_ASSUMPTION infinite 0 N/A
2 sva/u fifo /fam intf full assume FORMAL_ASSUMPTION infinite N/A 0 N/A
3 sva/u fifo /fam stable d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
4 sva/u fifo /am stable d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

File Status

Id File Language Kind Full Name
0 fifo.v verilog design /home/onespin/my_labs/fifo_quantify _demo_v2/Step2_ordering_check_only/rtl/fifo.v
1 fifo_sva.sv verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step2_ordering_check_only/svalfifo_sva.sv

31.82% Design Unobserved

4=mmmmmm Single Assertion

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Quantify on FIFO Example—IV

What is still missing?

accellera

SYSTEMS INITIATIVE

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

if (lresetn)
w_ack <= 1°b1;

else if (!full)
w_ack <= 1°b1;

else if (full)
w_ack <= 1'be;

assign w_ack_o = w_ack;

//assign r_ack o = empty ? 1'be: 1'b1;

assign w_hsk = w_valid_i && w_ack_o;

//--- Registered calculations for empty, wptr and rptr
always @(posedge clk or negedge resetn)

begin
empty <= 1'bl;

end

begin

end
//--- Write the data on a w_hsk
always (@(posedge clk)

//--- Read the data on a r_hsk
always @(posedge clk)

assign empty_o = empty;

assign full_ o = full;

endmodule

- Missing Coverage
e Unobserved
o e Uncovered

2018

0R DESIGN AND VERIFICATION™

o DVGCON

CONFERENCE AND EXHIBITION

Quantify on FIFO Example—V

Let’s add assertions on full and empty

as_empty to full:
assert property (@ (posedge clk) disable iff (!'resetn)
empty o ##1 (push i && !'pop i) [*FIFO DEPTH] |=> full o);

as full to empty:
assert property (@ (posedge clk) disable iff (!'resetn)
full o ##1 (pop i && 'push i) [*FIFO DEPTH] |=> empty o0);

as _empty after reset:
assert property (@ (posedge clk) !resetn |=> empty)

2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Quantify on FIFO Example—VI

Now, how are we doing?

accellera

SYSTEMS INITIATIVE

Structural Coverage Overview
Statements

R v e

n coverec

R reached 0 0.00% 0
u unknown 0 0.00% 0 0.00%
unobserved 6 27.27% 3 42.86%
0 Jo.0o% 0 Jo.00%
0 [o.00% 0 [o.00%
0 Jo.00% 0 Jo.00%
Sum quantify targets 22 s 7

Excluded Code Overview

Code Status Statements Branches

Xu excluded by user 0 0.00% 0 0.00%

Xr excluded redundant code 0 0.00% 0 0.00%

Xv excluded verification code 14 38.89% 4 36.36%
0/1/U quantify targets 22 61.11% 7 63.64%
Sum total code 36 "

File Statements Branches

fio.y 22 N 7]
fifo_sva.sv 14 4

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified

0 sva/u fifo /fas empty after reset assert

1 sval/u fifo /fas empty to full assert _—

4 svalu fifo fam d1 before d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

5 svalu fifo fam intf full assume FORMAL_ASSUMPTION infinite N/A 0 N/A

6 sva/u fifo /fam stable d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

7 sva/u fifo fam stable d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
 Flesttoss |

Id File Language Kind Full Name

0 fifo.v verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step3 with_empty_full _checks/rilffifo.v

1 fifo sva.sv verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step3 with_empty_full_checks/svalfifo_sva.sv

Vacuous Failure

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Quantify on FIFO Example—VIi

What are the missing coverage targets?

accellera

SYSTEMS INITIATIVE

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

[
~

if (!resetn) 0R
w_ack <= 1°b1; O0R
else if (!full) 0R
w_ack <= 1°b1; O0R
else if (full) 0R
w_ack <= 1'be; O0R
assign w_ack_o = w_ack;

assign w_hsk = w_valid_i && w_ack_o;

[] [J
//--- Registered calculations for empty, wptr and rptr M lSSI ng Cove ra ge

always @(posedge clk or negedge resetn)

CoEfresetn)
 Unobserved code
 Cannot observe “empty”!

end

//--- Write the data on a w_hsk
always @(posedge clk)

//--- Read the data on a r_hsk

always @(posedge clk)

2018

0R DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

assign empty_o = empty;

endmodule

Quantify on FIFO Example—VIII

A closer look

42
43
44
45
46
47
48
49
50
51

I'I
R
R
R
R
R
[
R

This looks buggy ...
Let’s go and fix it!

accellera DV LI
EUROPE]

IIIIIIIIIIIIIIIII

Quantify on FIFO Example—IX

After the fix on r_ack o, coverage has increased

accellera

SYSTEMS INITIATIVE

Structural Coverage Overview

Statements Branches
covered 7T TT2m% 77.27% design covered
reached 0 0.00% 0 0.00%
U unknown 0 0.00% 0 0.00%
uncbserved 5 22.73% 3 42.86%
uncovered 0 Jo.0o% 0 Jo.co%
0 Jo.0o% 0 Jo.0o%
Sum quantify targets 2 s 7
Excluded Code Overview
Code Status Statements Branches
Xu excluded by user 0 0.00% 0 0.00%
Xr excluded redundant code 0 0.00% 0 0.00%
Xv excluded verification code 14 38.89% 4 36.36%
0/1/U quantify targets 22 61.11% 7 63.64%
Sum total code 36 1
File Statements Branches
fioy 22] 7 I
fifo_sva.sv 14 4

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified
3 sva/u_fifo /as ordering check assert _—_
4 sva/u fifo /am d1 before d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
5 svalu fifo /am_intf full assume FORMAL _ASSUMPTION infinite N/A 0 N/A
6 svalu fifo /am_stable d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
7 svalu fifo /am stable d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
| Fiestatus |
Id File Language Kind Full Name
0 fifo.v verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step4_ordering_empty_and_full_checks_but_fix_rack_o/rtl/fifo.v
1 fifo_sva.sv verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step4_ordering_empty_and_full_checks_but_fix_rack_o/svalfifo_sva.sv

Still 22.7% design unobserved

Coverage has increased to
77.27%

But still missing 22.7%!

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Quantify on FIFO Example—X

Let’s dig deeper to find out why

accellera

SYSTEMS INITIATIVE

43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

if (lresetn) OR
w_ack <= 1'bl; OR
else if (!full) O0R
w_ack <= 1'b1; OR
else if (full) OR
w_ack <= 1'b@; OR
assign w_ack_o = w_ack; OR
//--- Let's fix the r_ack_o

assign w_hsk = w_valid i && w_ack_o;

//--- Registered calculations for empty, wptr and rptr

always @(posedge clk or negedge resetn)

Missing coverage on
w_ack and w_hsk

i}
=}
a

begin

Unobserved code

//--- Write the data on a w_hsk
always @(posedge clk)

//--- Read the data on a r_hsk
always @(posedge clk)

2018

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

endmodule

Quantify on FIFO Example—XI
Let’s add the remainder properties
//-- Fairness constraints

assume property (@ (posedge clk) disable iff (!resetn)
'r valid i |-> ##[0:$8] r wvalid i);

assume property (@ (posedge clk) disable iff (!resetn)
'w valid i |-> ##[0:$5] w _wvalid i);

//-- Liveness assertions
assert property (@ (posedge clk) disable iff (!resetn)
'r hsk |-> ##[0:5] r hsk);

assert property (@ (posedge clk) disable iff (!'resetn)
'w_hsk |-> ##[0:$] w _hsk);, e 2018 .

accellera DV

SYSTEMS INITIATIVE

Quantify on FIFO Example—XIl

How are we doing now?

accellera

SYSTEMS INITIATIVE

Structural Coverage Overview

Status Statements
e 9 i

T e w0 90.91% design cov
R reached 0 0.00% U.0U7%

] unknown 0 0.00% 0 0.00%

o . .

S 2 Moo Still 9.09% design unobserved
[0 [owowres [bt
o oo o koo
EECCEE o 0 oo

sum quantity targets 2 I 7

Excluded Code Overview

Code Status Statements Branches

Xu excluded by user 0 0.00% 0 0.00%

Xr excluded redundant code 0 0.00% 0 0.00%

Xv excluded verification code 14 38.89% 4 36.36%

0/1/U quantify targets 22 61.11% 7 63.64%

Sum total code 36 1

Structural Coverage by File

File Statements Branches
ffo 22] 7
fifo_sva.sv 14 4

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified
0 svalu_fifo_/as_empty_after_reset assert
1 svalu_fifo_/as_empty_to_full assert
2 svalu_fifo_/as_full_to_empty assert
3 svalu_fifo_/as_ordering_check assert
4 sva/u_fifo_/as_rhsk_infinitely_often assert
5 svalu_fifo_/as_whsk_infinitely_often assert
6 sva/u_fifo_/am_d1_before_d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
7 svalu_fifo_/am_fair_rvalid assume FORMAL_ASSUMPTION infinite N/A 0 N/A
8 sva/u_fifo_/am_fair_wvalid assume FORMAL_ASSUMPTION infinite N/A 0 N/A
9 svalu_fifo_/am_intf_full assume FORMAL_ASSUMPTION infinite N/A 0 N/A
10 sva/u_fifo_/am_stable_d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
1" svalu_fifo_/am_stable d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
Id File Language Kind Full Name
0 fifo.v verilog design /home/onespin/my_labs/fifo_quantify_demo_v3/Step&/rti/fifo.v

fifo_sva.sv verilog design /home/onespin/my_labs/fifo_quantify_demo_v3/Step5/svaffifo_sva.sv

Coverage has increased to 90.91%

At this stage, if we didn’t have Quantify
we would most certainly signoff the
verification as we have:

* Exhaustive Proofs

* No conflicting constraints

* No vacuous proofs

* Avery high metricin 90.91%

But last 10% unobserved makes us think!
e Cannot signoff yet! 5018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Quantify on FIFO Example—XIli

So, what’s going on?

43 if (!resetn) OR
44 w_ack <= 1'b1l; OR
o elsedf (MRAD
T B
47 else if (full) OR
48 w_ack <= 1'bo; OR

In the cycle, if the FIFO is full, then we should not accept another write.
However, we only delay the write in the following cycle.
So it looks like we are allowing the write to a full FIFO!

But ... my proofs should have failed Why didn’t the ordering proof fail? 557

accellera DV

SYSTEMS INITIATIVE

Quantify on FIFO Example—XIV

Let’s look at the constraints

33

34 //--- Interface contraints

35 am_intf_full: assume property (full o |-> !'w_hsk || r_hsk);
36

When the FIFO is full, this constraint forces a read in the same cycle when there is a write.

Let’s take this constraint away ... and rerun the proofs.

2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Quantify on FIFO Example—XV
What happens to the proofs? Two assertions fail!

Session Setup File Edit CC/MV EC Tools Window Help

FO-EH0 S s2RX > "EQAX T DU AAN &

& Design Explorer[] | ‘@& Lint Browser [Auto Checks [Dead-Code Checks] ‘&' Assertion Checks £
Proof Status: ﬂj Validity: up to date
|In5tance | Name Proof Status |N|tness Statu'l Validity

©-[[top] E] E] <any status - [I] <any s - E] <any validity> -

= Assertlons

- sva/u_fifo_/as_empty_after_reset hold pass (1) up_to_date
sva/u_fifo_/as_empty_to_full _ pass (1) up_to_date
sva/u_fifo_/as_full_to_empty hold pass (5) up_to_date
sva/u_fifo_/as_ordering_check _ pass (2) up_to_date
sva/u_fifo_/as_rhsk_infinitely_often hold pass (2) up_to_date
- sva,/u_fifo_/as_whsk_infinitely_often hold pass (2) up_to_date

- Constraints

|

11 items total, 11 selected by filter

Shell
& Shell € Messages @[l Progress

-l- Computing witness for 'sva/u_fifo_/as_rhsk_infinitely_often'

-R- Witness computation for 'sva/u_fifo_/as_rhsk_infinitely_often’ successful (withess found within 2 cycles from reset) (0.04 sec CPU, 46
-l- Computing witness for "sva/u_fifo_/as_whsk_infinitely_often’

-R- Witness computation for 'sva/u_fifo_/as_whsk_infinitely_often' successful (witness found within 2 cycles from reset) (0.04 sec CPU, 4!
=

accellera

SYSTEMS INITIATIVE

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Quantify on FIFO Example—XVI

Let’s look at the failing ordering property

File Edit Signals View

g u_fifo_/d:

SYSTEMS INITIATIVE

-y
it 47

t##-8

D2 exits FIFO before D1

Waveform Viewer: sva/u-fifo-/as-ordering-check

- A QXF

tH#-7 H#-6 t##-5 tH#-4 t##-3 tH#-2

/ I—-
———— [— I—-
n [ooanm 003 N N [R R
TG N | | [N [—
e s R [A B

2018

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Quantify on FIFO Example—XVIi

What does our coverage look like?

Structural Coverage Overview

Status Statements Branches

R reached 0 0.00% 0 0.00%

U unknown 0 0.00% 0 0.00%

OR unobserved 8 36.36% 36.36% unobserved
sum quantify targets 22 [7
Excluded Code Overview

Code Status Statements Branches

Xu excluded by user 0 0.00% 0 0.00%

Xr excluded redundant code 0 0.00% 0 0.00%

Xv excluded verification code 14 38.89% 4 36.36%
0/1U quantify targets 22 61.11% 7 63.64%
Sum total code 36 1"

File Statements Branches

fifo.v 22] 7]

fifo_sva.sv 14 4

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified
0 svalu_fifo_/as_empty_after_reset assert _—_

1 svalu_fifo_/as _empty to_full assert FORMAL_NONE _— witness

2 svalu_fifo_/as full_to_empty assert

3 svalu_fifo_/as_ordering_check assert FORMAL NONE N 0 P ROO F
4 svalu_fifo_fas_rhsk_infinitely_often assert _

5 svalu_fifo_/as_whsk_infinitely often assert _—_—

6 svalu_fifo fam_d1_before_d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

7 |_fifo_fam_fair_t assume FORMAL_ASSUMPTION infinite N/A 0 N/A

8 svalu_fifo_fam_fair wvalid assume FORMAL_ASSUMPTION infinite N/A 0 N/A

9 svalu_fifo_fam_stable_d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

10 svalu fifo /fam stable d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

ll Id File Language Kind Full Name
acce em 0 fifo.v verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step4_|looknig_for_bugs_over_constr/rtlffifo.v

1 fifo_sva.sv verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step4_looknig_for_bugs over_constr/sval/fifo_sva.sv

SYSTEMS INITIATIVE

Coverage reduced......
from 90.91% to 63.64%

Just as we were about to signoff
at 90.91% we see coverage drop
to 63.64% and failing properties
and more design bugs!

NO PROOF

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Quantify on FIFO Example—XVIII

Fix the bug, prove, then Quantify

40
41

DESIGN AND VERIF TION™
accellera DVLOIN
SYSTEMS INITIATIVE B2 :

Quantify on FIFO Example—XVIII

(accellera

SYSTEMS INITIATIVE

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

100% Covered!

No design bugs

== No over-constraints

All design statements observed

end—- Quallty of assertions is gOOd

//--- Write the data on a w_hsk

Ready for signoff

2018

N AND VER FICAT

DVI:I:IN

EEEEEEEEEEEEEEEEEEEEEEE

Quantify on FIFO Example—XIX

What happened to our constraint?

accellera

SYSTEMS INITIATIVE

Structural Coverage Overview

Status Statements Branches

U overed a9 q0000% + OO0

R reached 0] 0.00% 0 0.00%

U unknown 0] 0.00% 0 0.00% .

Ui e o lo.00% o fo.00% Constraints are no |onger
CHICI. o boos required

Sum__quantily targets 1 I + I

Excluded Code Overview

Code Status Statements Branches . o

X luded b 0 0.00% 0 0.00%

— . o e The design is guaranteed not to
Xv excluded verification code 14 42.42% 4 50.00%

0/1/U quantify targets 19 57.58% 4 50.00% t d t h f ” d
o e X daCcCept new data wnen tull, an
cannot be read out when empty
File Statements Branches

ffo.v 19] A

fifo_sva.sv 14 4

Assertion Coverage

Let’s check that this is indeed the

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified

0 svalu_fifo /as empty after reset assert

1 svalu_fifo_/as_empty to_full assert C a S e

2 svalu_fifo_/as_full_to_empty assert

3 svalu_fifo /as intf empty assert

4 svalu_fifo /as intf full assert

5 svalu_fifo /as ordering check assert

6 svalu_fifo /as rhsk_ infinitely often assert) o, .

7 svalu_fifo /as whsk_infinitely often assert Let S a d d a d d It I O n a I a S S e rt I O n S

8 svalu_fifo /am d1 before d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A 2 O '| 8

9 svalu_fifo /am_fair rvalid assume FORMAL_ASSUMPTION infinite N/A 0 N/A DESIEN AND VERIEICATION
10 svalu_fifo /am_fair_wvalid assume FORMAL_ASSUMPTION infinite N/A 0 N/A

" svalu_fifo /am_stable d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A DVB D N
12 svalu_fiio_fam_stable_d2 assume FORMAL_ASSUMPTION infinite N/A 0 NIA CONFERENGEAND EXHIBITION

Quantify on FIFO Example—XX

What happened to our constraint? It has become an assertion!

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius
0 sva/u_fifo /as_empty after reset assert

1 sva/u_fifo_/as_empty_to_full assert

2 sva/u_fifo /as_full_to_empty

3 sva/u_fifo_/as_intf_empty

4 sva/u_fifo /as_intf full

5 sva/u_fifo_/as_ordering_check

6 sva/u_fifo /as_rhsk_infinitely often assert

7 sva/u_fifo_/as_whsk_infinitely often assert

8 sva/u_fifo /am_d1_before_d2 assume FORMAL_ASSUMPTION infinite N/A 0
9 sva/u_fifo_/am_fair_rvalid assume FORMAL_ASSUMPTION infinite N/A 0
10 sva/u_fifo /am_fair_wvalid assume FORMAL_ASSUMPTION infinite N/A 0
11 sva/u_fifo_/am_stable_d1 assume FORMAL_ASSUMPTION infinite N/A 0
12 sva/u_fifo_/am_stable_d2 assume FORMAL_ASSUMPTION infinite N/A 0

2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Quantify on FIFO Example—XXi

We discover additional requirements on this design

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius
0 sva/u_fifo /as _empty after reset assert

1 sva/u_fifo /as_empty to_full assert

2 sva/u_fifo /as full to _empty assert

3 sva/u_fifo /as_intf _empty assert

4 sva/u_fifo _/as _intf full assert

5 sva/u_fifo_/as_ordering_check assert

1 34 // Interface Assertions

i

| 35 - as_intf_empty: assert property (empty o |-> !r_hsk);
1 36 as_intf full: assert property (full o |[-> !w_hsk);
1 7

DESIGN AND VERIQFQA.LéN“‘
accellera DV

SYSTEMS INITIATIVE

Summary of FIFO Example

Using coverage for bug hunting
* Without any test bench: everything uncovered

* Single ordering assertion: Quantify reports 63.64% coverage

* We spotted missing assertions on empty and full

* We add these assertions, prove -> RTL bug found!

* Fix, prove, then Quantify

* Still unobserved design -> need to write more assertions

* Wrote more assertions, re-ran proofs -> expected to see 100% coverage but had 90.919

* An over-constraint in the test bench was masking another RTL bug!

SYSTEMS INITIATIVE

Summary of FIFO Example

Bugs in your design indicate you do not have 100% coverage

* All proofs marked as proven, AND no property was marked unreachable, AND we had
assertions on all design statements, AND yet the coverage was not 100%

* Missing coverage forced us to think

* Tool gave hints on where the gaps were

* This allowed us to unearth bugs in design and over-constraints in TB

* We fixed the RTL bug

* Constraints are not required, as design is guaranteed to have the behavior

* In fact, we prove this on the design by proving these two additional assertions

* QOverall, we find bugs, remove bad constraints, find more bugs, and enrich our test bench
with more good quality assertions

IIIIIIIIIIIIIIIIIIIIIII

accellera DV

SYSTEMS INITIATIVE

Tracking Coverage
and
Achieving Formal Verification Signoff

Case Study: Verification of 1°C Serial Protocol Interface

DESIGN AND VERIF TION™
accellera DVLOIN
SYSTEMS INITIATIVE

Systematic Verification Flow

Requirement tracing and coverage are of paramount importance

Individual requirements broken down into features,
implementations, verification goals and metrics

Requirements Specification

Implementation Plan Assertion-based formal verification
ideal for this task

Verification Plan

e T

Coverage Coverage

Coverage Models & Database

{ER{
[3 L

Req1 < Feat1 <> Feat1.1 «— Goal1 Directed Test

Y Feat1.2 «—» Goal2 Code Coverage

Feat1.3 Q Goal3 Functional Coverage

Goal4 Assertion Passing

' Assertion Coverage

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

EUROPE]

(accellera
S’

SYSTEMS INITIATIVE

Tracking Progress in the Verification Plan

Integrating formal and simulation verification

) @\ W) Cg

Verification Plan
Un-Annotated

O
Requirements
Specification

Test Benches Assertions
D 4 v

wr
)
N’
=

- D
=P = «

Simulation Formal Results

Results Mixed Results

D 4

S
b |§E| b o 2018
acceller?) =@ DV

NNNNNNNNNNNNNNNNNNNNNNN
Verification Plan Annotated
SYSTEMS INITIATIVE

Motivation

How do we verify IP blocks implementing off-chip serial protocols?

Typically used to connect a number of ICs at relatively low data rates
12C, SPI, UART, CAN, etc.

What would be an ideal approach?

Verify protocol compliance at the interfaces binding a VIP
Make use of a scoreboard to check data integrity

What is the challenge?

Even slow SoCs are running at frequencies starting in the range of 10MHz, while 12C
standard-mode speed is up to 100kHz

Do the math: The formal tool needs to examine many cycles in order to prove that a =y

single byte is transferred correctly. Ry e AR I
accellera DVEOMN

SYSTEMS INITIATIVE

12C Bus Protocol

LCD DRIVER EEPROM

GATE

SCL

SDA

accellera DV

SYSTEMS INITIATIVE

The Verification Process

1.a Read read-only registers

Verification plan: What needs to be VerifiEd? i::;:{:z:tr::nt;:er;ii;::ttransfermmplete,urarbitratiun lost

1.d Reset registers

2. Reset functionality
3. Arbitration lost interrupt, with automatic transfer cancelation
3.a Core drives SDA high, but other master keeps SDA line high
3.b Incoming stop detected, but not requested
4.Condition generation
4.a Start condition generation
4.b Repeated-Start condition generation
4.c Stop condition generation
5. Bus busy detection
5.a Incoming start detection
5.b Incoming stop detection

DUT Spec 6. Data validity

6.2 SDA line must be stable when SCL line high
7. Clock synchronization, between two masters engaging the bus at the same time

7.2 SCL line held LOW by the device with longest LOW period

7.b SCL line held HIGH by the device with shortest HIGH period
8. Clock stretching, slave introduces wait states

8.a During transfer master drives SCL high, but slave keeps SCL low
9. 5lave address transfer

9.a 7hit addressing mode

9.b 10bit addressign mode
10. Data transfer

10.a Write operation

10.b Read operation
11. Acknowledge detection from slave - write operation
12. Acknowledge generation to slave - read operation
13. Interrupt handling

|2C - S pec 14. Range of input frequencies
(UM10204) 2018

DESIGN AND VERIFICATION™

accellera DVCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

The Verification Process

What is the very first verification step?

Let’s analyze the design. ~ lansuage: Verilog
Primary input signals: 8 (17 bits)

. . . Primary output signals: 3 (10 bits)
Let’s do an automatic inspection. Why?

Primary inout signals: 2 (2 bits)
State bits (flops): 128
Assignments: 258 (1034 bits)

Code branches: 116
e Unreachable FSM states ESMs: 2
e Signal toggling Adders: 0
Multipliers: 0
Primary clocks: 1

e Signal domain violation
e Dead code

Validate results: are failing checks expected?

full case checks: 2 | 2 hold, O fail,

parallel case checks: 3 | 3 hold, O fail,

resolution x checks: 2 | 0 hold, 2 fail,

signal domain checks: 2| 0 hold, 2 fail,

init checks: 128 | 118 hold, 10 fail,

fsm checks: 2 | 2 hold, 0 fail, 2018

dead code checks: 134 | 134 hold, 0 fail, CESTER ey S oK
accellera stick checks: 108 | 106 hold, 2 fail, Dveon

SYSTEMS INITIATIVE

The Verification Process

What is the verification approach?

Important to have a well-defined flow!

A
A\
Bug
| Hunting
] A,

A
Complete
V-Plan

J AA

A
100%
Coverage
A
4,
accellera ON

EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Quantify Coverage Results

Quantify MDV Overview

Overview Structural Coverage Overview Structural Coverage by File

Asseriion Coverage

File Sialus

29.10.2017

Additional Information

Status
T

R reached
U unknown
OR unobserved

0 [cowes
0w

Sum quantify targets

Statements

245 NG5

3.15%
0.00%
0.00%

fo.00%

fo.00%
fo-00%

o O O O O

23 IS

11
0
1
0
0
0
0

112

Structural Coverage Overview

Branches

0.00%
0.89%
0.00%

fo.00%

fo-00%

File
i2c_master bit cirlv

i2c_masier byie cirlv
12c_master top.v

Statements
133

65

56

Structural Coverage by File

SYSTEMS INITIATIVE

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Tracking Progress Over Time

Verification Process Overview

100.00% 10
90.00% ' - 9
80.00% 8
70.00% 7
60.00% 6

&
50.00% 5 @
o
=z
40.00% 4
30.00% 3
20.00% 2
10.00% !
0.00% — — _— — — — — — — — — — — — — — 0
06.Sep 20.Sep 21.Sep 22.Sep 27.Sep 28.Sep 29.Sep 01.0ct 02.0ct 06.0ct 09.0ct 10.0ct 19.0ct 23.0ct 26.0ct 27.0ct 29.0ct
Bug Complete Fix
Hunting Verification Coverage
Plan Holes

o ST-Covered BB ST-Constrained — essssm\/plan-Progress esss=wBR-Covered emmmmBugs

018

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

EUROPE

accellera

SYSTEMS INITIATIVE

Quantify Coverage Results

Detection of over-constrained code

begin
/**/

/* 28 SEP */

/**/

end

begin
// RD is mutual exclusive to WR

am read exclusive_to _write:

assume property(disable iff(!rstn || wb_rst i) end
write active |-> RD != WR);

/**/

ST_STOP;
*12C_CMD_STOP;

core_cmd <

end

2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Quantify Coverage Results

Detection of over-constrained code

begin

/**/

/* 29 SEP */ end
/**/

begin
// RD is mutual exclusive to WR
am read exclusive to write:
assume property(disable iff(!'rstn || wb_rst i)

write active |-> ! (RD && WR)) ;
/**/

end

begin

Void message [UM10204-Notes Page.14]

end

START immediately followed by a STOP is an illegal format

begin

end

2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Tracking Progress Over Time

Coverage vs effort

90.00%

Coverage vs. Effort

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%
06.Sep 20.Sep 21.Sep 22.Sep 27.Sep 28.Sep 29.Sep 01.0ct 02.0ct 06.0ct 09.0ct 10.0ct 19.0ct 23.0ct 26.0ct 27.0ct 29.0ct
Bug Complete Fix
Hunting Verification Coverage
Plan Holes
mmm ST-Covered [ST-Reached ST-Unknown ST-Unobserved s ST-Uncovered N ST-Constrained — essssAssertions — esssssConstraints

SYSTEMS INITIATIVE

80

70

(%2

0

iy
o

w
o

No. of Assertions

2018

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

Summary of 1°C Case Study

What is the motivation?

Off-chip serial protocols are everywhere, therefore we need to verify protocol
compliance and data integrity

Verifying serial protocols with formal is challenging

Why does the approach matter?

Having a well-defined verification approach helps in achieving great results
Coverage increases confidence and helps us to easily identify over-constrained, not
exercised code

Collecting regression data over time gives a clear view on where effort is being
expended and how things are progressing 2018

IIIIIIIIIIIIIIIIIIIIIII

accellera DV

SYSTEMS INITIATIVE

Quantify Formal Coverage: Scalable and Automated

a2 — Interactive use on
FSM-DDR2-Read 839 6 106s single modules to
P
vCore-Processor 295 8 204s Improve
verification
Arithmetic Block 383 2 257s
Real example at Infineon

IFX-Aurix-1 25563 85 Quantify identified verification holes and guided assertion development.
IEX-Aurix-2 27374 157 New assertions detected critical bugs.
IFX-Aurix-3 57253 253 Quantify now used to provide management metrics on all designs!

Formal Safety Verification with Qualified Property Sets
Holger Busch at DAC’14 in Accelerating Productivity 2018

36'08//8!’3 Through Formal and Static Methods (Session 38.3) QM&QEN@

SYSTEMS INITIATIVE

Interoperable Coverage Solution
PortableCoverage

‘q Integrate formal and Simulation Verification Verification Plan : EE
.‘ simulation coverage _I_I_I_ (Optional)

*\ Accelerate

.‘ coverage closure Formal Verification Coverage Database @

*\ Track formal results Verification Coverage
@)’/ in verification plan Integration App
Coverage Closure Coverage Closure
PortableCoverage™ Accelerator App
Verification Planning W
Integration App
Use any simulator Quantify™ Model-Based o _
2018

DESIGN AND VERIFICATION™

accellera DVEDN

SYSTEMS INITIATIVE

Formal-Simulation Seamless Integration

Design Specification

Verification Plan

I\ Property Checker
m Q) cca s ity

m ———
_ ¥
4‘\‘ VCI App

|
e
(accellera

SYSTEMS INITIATIVE

Side-by-Side Analysis of Coverage Contributions
Verification Coverage Integration (VCI) App

Simulation

Coverage

accellera

SYSTEMS INITIATIVE

/ Aldec Coverage Report X \\ \

a _

c ‘ @ file:///C:/Users/nt88/Documents/results_22112017/Aldec_SimReport/index.html

25 Apps ‘@M OneSpin Intranet "‘. My View - Mantis N NerdWallet: Get mor

4\ Deep Learning Onrar

»

/ Aldec Coverage Report X

(2] = m| X
C ‘ @ file:///C:/Users/ntB8/Documents/results_22112017/QTF_Riviera_Report/index.html @ | i
i Apps @ OneSpin Intranet "‘. My View - Mantis N NerdWallet: Get mor- A Deep Learning Onra »

¥ Design

l < Summary - work.i2c_master_byte_ctrl [Statement - work.i2c_master_b >

i. @ cumulative : SC 48% : BC

M work.i2c_master_top :

M work.i2c_master_byte «
i M work.i2¢_master_bit_ctr

4 3

~ Hierarchy Units >

Er @nssienz167_o@
B @assienz170_1@
EF @aLwarsz173 2@
EF @ALwarsz184 3@
§ @assioNz194_4@
& @ALWAYS#201 5@

4

4.. M work.i2c_master_byte_ctrl 2

ZUT
202
203
204
205
206
207
208
209
210
211
212
213

1

e e

e S

i

diwdys € \pUocUgs CLK UL [Nogouge [IRSoo)
if (!nReset)
begin

core_cmd <= “I2C_CMD NOP;

core txd <= 1'bO0:
shift <= 1'b0;
1d <= 1'b0:
cmd ack <= 1'b0:
c state <= ST IDLE;
ack_out <= 1'b0;
end
else if (rst | i2c al)
begin

end

begin

// initially reset all signals

core_txd <= sr[7];
shift <= 1'b0;
1d <= 1'b0;
cmd_ack <= 1'b0;

case (c_state) // synopsys full case paral

ST IDLE:
if (go)
begin
if (start)
begin
c_state <=
core_cmd <=

end

ST_START;
“IZC_CMD_STER

-

* Design <

Summary - work.i2c_master_byte_ctrl

Statement - work.i2c_master_ >

4. @ Cumulative : SC 100% : BC

b M work.i2c_master_top : !
M work.i2c_master_byte_c
i M work.i2c_master_bit_ctr

] 3

~ Hierarchy Units >

A M work.i2c_master_byte ctrl
’@ @ASSIGN#167_0@
9 @ASSIGN#170_1@
@ @ALWAYS#173_2@
@‘ @ALWAYS#184_3@
@ @ASSIGN#194_4@
@ @ALWAYS#201_5@

] »

~ | Statement Branch >

—o < TIWoy o G lPoo-age Cin L e geage e oo o7

*I2C_CMD_NOZ®;
1'b0?

= 1'b0:

= 1'b0;

= 1'b0;

= ST _IDLE:

= 1'bO:

*I2C_CMD NOE;
1'b0;

1'b0;

1'b0;

1'b0;

ST IDLE;
1'b0;

reset all signals
sr[71;

1'b0;

1'b0;

1'b0;

case (c_state) // synopsys full case

(start)
begin
c state <=
core cmd <=
end B
se 1if (read)
begin
c state <=
core cmd <=
end B
se 1f (write)

ST_STAR
12C_CM

ST_REAT
12C_CM

202 *1 if (!nReset)

203 begin

204 1 core_cmd <=
205 1 core txd <=
206 1 shift <
207 1 1d <
208 1 cmd_ack <
209 1 c_state <
210 1 ack out <
211 end B

212 *]1 slse if (rst | i2c_al)
213 begin

214 1 core_cmd <=
215 1 core txd <=
216 1 shift <=
217 1 1d <=
218 1 cmd_ack <=
219 1 C _state <=
220 1 ack out <=
221 end -

222 else

223 begin

224 // initially
225 (1) core_txd <=
226 (1) shift <=
227 (1) 1d <=
228 (1) cmd ack <=
229 -

230 (1)

231 ST _IDLE:
232 (1) if (go)
233 begin
234 (1) if
235

236 (1)

237 (1)

238

239 (0) el
240

241 (0)

242 (0)

243

244 (0) el
243

begin

-

e

Q

VCl App

2018

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

Summary

Design Bring Up
* Automated checks
* Reachability analysis — find design bugs as you bring up design
* Redundant code — find wasted area in your design
* Designer asserts — get coverage when you have designer asserts

Verification Quality and Metrics
* Metrics indicate gaps in verification and show you ‘where’ these gaps are

* Quantify identifies missing or low quality assertions

* |dentify accidental over-constraints, focus on verification

* Pushbutton solution: run frequently and track progress
PortableCoverage

* |Integrate formal and simulation coverage

* Accelerate coverage closure
* Track formal coverage results in the verification plan
* Use any simulator, coverage database, verification planning tool

SYSTEMS INITIATIVE

References and Further Reading

Formal Safety Verification with Qualified Property Sets
Holger Busch at DAC’14 in Accelerating Productivity
Through Formal and Static Methods (Session 38.3)

Design Verification Is All About Good Hygiene
https://www.onespin.com/resources/white-papers/

Planning Out Verification
https://www.onespin.com/resources/videos/

Compatible Qualification Metrics for Formal Property Checking
http://testandverification.com/DVClub/18 Nov_2013/Infineon-HolgerBusch.pdf

2018

DESIGN AND VERIFICATION™

accellera DV

SYSTEMS INITIATIVE

Thank you!

Questions?

DESIGN AND VERIF TION™
accellera DVLOIN
SYSTEMS INITIATIVE

