
Using Mutation Coverage for Advanced Bug
Hunting and Verification Signoff

Nicolae Tusinschi

Agenda

Formal Coverage

Example: FIFO Verification

Case Study: I²C Verification

PortableCoverage

Summary

Q&A

The Verification Loop

Requirements

Verification
Plan

Build Test
Bench

Run & Debug

Sign-off

Assessing the Quality of Verification
If you don’t measure, you don’t know

When am I done?

• What part of the design has been exercised by my assertions/covers?

• Have I written good quality assertions?

• Which parts of the design have been checked by my assertions?

• Are all specified functions implemented?

• Are all specified functions verified?

Quantify™

GapFreeVerification™

Coverage & Bug Hunting
Two sides of the same coin

• Both coverage and bug hunting are important

• Where coverage is analytical, bugs are anecdotal

• 100% coverage with bugs in the design is unacceptable

• Extracting coverage should be quick and easy

• Report data must be meaningful

Inconclusive Formal Coverage
COI and proof core (ProofCore, FormalCore)

Cone-of-Influence
• Very over-optimistic
• Much logic not relevant for assertion proof
• Proof engines try to trim irrelevant logic

Proof Core
• Over-optimistic and engine-dependent
• Results hard to interpret*
• Need support from vendor*
• Mismatch with abstraction level of other

forms of coverage*
• Makes review process much harder*

Design

Assertion

Cone-Of-Influence (COI)

Proof Core

* Tutorial – Formal Verification in the Real World, DVCon US 2018, Verilab

Mutation Coverage
Addressing over optimism of proof core

Mutation Analysis Tools
• Insert mutations into DUT
• Control: can the stimulus generator

activate the mutation?
• Observe: does the mutation

propagate to a check that detects it
and fails?

Mutation analysis detects verification errors and gaps

Mutation detected == DUT location observed by the testbench

Reference Model

Stimuli Check

DUT

Activation Propagation Detection

Mutation

Multi-Dimensional Coverage View

• Has the statement been activated/controlled?
• Idea:

– If a statement has not been activated during
verification, it can’t break a check.

– If a statement has been reached, would a check
fail?

• Can measure quality of stimuli

• Has the statement been detected/observed?
• Idea:

 If a statement is modified and activated,
some checks should fail

 Would any check fail if the statement cannot
be reached?

• Can measure quality of checkers

case (state)

…

burst:

if (cancel_i)

done_o <= 1

…
active

case (state)

…

burst:

if (cancel_i)

done_o <= X

…
modify done_o <= v

Been there? Done that!

Mutation

Coverage

Activation /

Control

Coverage

Detection /

Observation

Coverage

done_o <= 1

Mutation Coverage
Multi-dimensional view – quantity and quality

Assessing the quality of verification by providing a quantitative metric

Structural Coverage (Quantity)

Activation & Detection Coverage—provides quantitative assessment

Functional Coverage (Quality)

Assertion Coverage—provides qualitative assessment

Mutation Coverage Use Model for Design Verification
Iterative signoff flow for bug hunting and 100% coverage

Requirements

Verification
Plan

Build
Testbench

Run & Debug

Sign-off

Regular Flow

Used by verification engineers
for signoff

Iterative Flow

Can be used both by designers and
verification engineers for iterative signoff

Coverage Solution: Provide Meaningful Metrics
Continuous feedback for design and verification

Designer Bring Up: Get feedback on the quality of design

• Dead code; reachability

• Redundant code

Verification: When quality and quantity both matter

• Metrics should indicate gaps in verification and show you where these are

– Missing assertions

– Over-constraints

– Find bugs

Mutation Coverage Results
Activation coverage

Result Meaning

Activation /
Controllability

Dead Mutation cannot be activated

Reached Mutation activated by at least one assertion (witness)

Constrained Mutation cannot be activated because of constraints

Important to identify which parts of the design are dead and
which parts are over-constrained.

As the code is dead or over-constrained, one cannot control it.

Mutation Coverage Results
Detection coverage

Important to assess the quality of the assertions

Have we observed all the design signals?

Do we have quality assertions?

Result Meaning

Detection /
Observability

Uncovered Mutation not detected by any assertion

Covered Mutation detected by at least one assertion

Unobserved Mutation activated but not detected

Additional Coverage Results
Identify redundant code, report code excluded from analysis

Important to identify redundant code

Assess if the code is redundant in design, or in verification

User can exclude code from coverage analysis

Result Meaning

Exclusion

Redundant No contribution to design I/O behavior

Verification Only used for verification

Excluded Excluded by user

Overview of Mutation Coverage Results
Result

Activation /
Controllability

Reached

Constrained

Dead

Detection /
Observability

Uncovered

Unobserved

Covered

Exclusion

Redundant

Verification

Excluded

Verification Hole

Quantify Model-Based Mutation Coverage

User Experience
• Accurate, familiar metrics
• Detects verification gaps and errors
• Intuitive interface
• Integrates with simulation metrics
• Supports bounded proofs

Under The Hood
• Includes formal-optimised mutation analysis
• Mutations in the model, not RTL
• Parallel mutations and assertions analysis
• Dedicated algorithms
• Patented technology

Model-Based Mutations

• Mutations inserted in the model (post-compile)
• No RTL instrumentation or recompilation required

Quantify Dashboard - Key Components

Quantify Dashboard
Directly linked to design browser

verified code

verification hole

constrained
code

dead code

Mutation Coverage for Bug Hunting

Example: FIFO

FIFO Interface

clk
resetn

empty

full

rptr wptr

data

w_valid_i

r_valid_i

data_in

data_out

ABCDEFGH.. ABCDEFGH..
Input

Output

ABCDFE GH..

ABCDDEFGH..
ABC EFGH..

r_ack_o

w_ack_o

Requirements for Verification

Ordering is correct

No duplication

No data loss

No data corruption

Empty and full flags activation

Must be empty at the right time

Must be full at the right time

If empty, then eventually full

If full, then eventually empty

Quantify on FIFO Example—I
With no assertions at all

VERIFICATION HOLE

VERIFICATION HOLE

Quantify on FIFO Example—II
Design view

FIFO Verification Strategy
Uses symbolic and data abstraction

• Use two symbolic transactions for tracking all possible data values

• Send these symbolic values in a pre-determined order in the FIFO

• Ensure that they come out of the FIFO in the same order

• Use four sampling registers

– sampled_in_d1

– sampled_in_d2

– sampled_out_d1

– sampled_out_d2

• One side constraint

• One main ordering assertion

FIFO Ordering Properties
Glue logic

//-- Force d1 inside before d2

am_d1_before_d2:

assume property (

@(posedge clk)

!sampled_in_d1 |-> !sampled_in_d2);

//-- End-to-end ordering assertion

as_ordering_check:

assert property (

@(posedge clk) disable iff (!resetn)

sampled_in_d1 && sampled_in_d2 && !sampled_out_d1

|-> !sampled_out_d2);

Quantify on FIFO Example—III
With just ordering assertion

31.82% Design Unobserved

Single Assertion

4.55% Design Uncovered

63.64% design covered

Quantify on FIFO Example—IV
What is still missing?

Missing Coverage
• Unobserved
• Uncovered

Quantify on FIFO Example—V
Let’s add assertions on full and empty

as_empty_to_full:

assert property (@(posedge clk) disable iff (!resetn)

empty_o ##1 (push_i && !pop_i)[*FIFO_DEPTH] |=> full_o);

as_full_to_empty:

assert property (@(posedge clk) disable iff (!resetn)

full_o ##1 (pop_i && !push_i)[*FIFO_DEPTH] |=> empty_o);

as_empty_after_reset:

assert property (@(posedge clk) !resetn |=> empty);

Quantify on FIFO Example—VI
Now, how are we doing?

Vacuous Failure

72.73% design covered

Quantify on FIFO Example—VII
What are the missing coverage targets?

Missing Coverage
• Unobserved code
• Cannot observe “empty”!

Quantify on FIFO Example—VIII
A closer look

This looks buggy …
Let’s go and fix it!

Quantify on FIFO Example—IX
After the fix on r_ack_o, coverage has increased

Still 22.7% design unobserved

77.27% design covered

Coverage has increased to
77.27%

But still missing 22.7%!

Quantify on FIFO Example—X
Let’s dig deeper to find out why

Missing coverage on
w_ack and w_hsk

Unobserved code

Quantify on FIFO Example—XI
Let’s add the remainder properties

//-- Fairness constraints

assume property (@(posedge clk) disable iff (!resetn)

!r_valid_i |-> ##[0:$] r_valid_i);

assume property (@(posedge clk) disable iff (!resetn)

!w_valid_i |-> ##[0:$] w_valid_i);

//-- Liveness assertions

assert property (@(posedge clk) disable iff (!resetn)

!r_hsk |-> ##[0:$] r_hsk);

assert property (@(posedge clk) disable iff (!resetn)

!w_hsk |-> ##[0:$] w_hsk);

Quantify on FIFO Example—XII
How are we doing now?

Still 9.09% design unobserved

90.91% design covered

Coverage has increased to 90.91%

At this stage, if we didn’t have Quantify
we would most certainly signoff the
verification as we have:
• Exhaustive Proofs
• No conflicting constraints
• No vacuous proofs
• A very high metric in 90.91%

But last 10% unobserved makes us think!
• Cannot signoff yet!

Quantify on FIFO Example—XIII
So, what’s going on?

In the cycle, if the FIFO is full, then we should not accept another write.

However, we only delay the write in the following cycle.

So it looks like we are allowing the write to a full FIFO!

But … my proofs should have failed …. Why didn’t the ordering proof fail?

Quantify on FIFO Example—XIV
Let’s look at the constraints

When the FIFO is full, this constraint forces a read in the same cycle when there is a write.

Let’s take this constraint away … and rerun the proofs.

Quantify on FIFO Example—XV
What happens to the proofs? Two assertions fail!

Quantify on FIFO Example—XVI
Let’s look at the failing ordering property

D2 exits FIFO before D1

Quantify on FIFO Example—XVII
What does our coverage look like?

NO PROOF

NO PROOF

36.36% unobserved

Coverage reduced……
from 90.91% to 63.64%

Just as we were about to signoff
at 90.91% we see coverage drop
to 63.64% and failing properties
and more design bugs!

Quantify on FIFO Example—XVIII
Fix the bug, prove, then Quantify

Quantify on FIFO Example—XVIII

No over-constraints
No design bugs
All design statements observed
Quality of assertions is good
Ready for signoff

100% Covered!

Quantify on FIFO Example—XIX
What happened to our constraint?

Constraints are no longer
required

The design is guaranteed not to
accept new data when full, and
cannot be read out when empty

Let’s check that this is indeed the
case

Let’s add additional assertions

Quantify on FIFO Example—XX
What happened to our constraint? It has become an assertion!

Quantify on FIFO Example—XXI
We discover additional requirements on this design

Interface Assertions

Summary of FIFO Example
Using coverage for bug hunting

• Without any test bench: everything uncovered

• Single ordering assertion: Quantify reports 63.64% coverage

• We spotted missing assertions on empty and full

• We add these assertions, prove -> RTL bug found!

• Fix, prove, then Quantify

• Still unobserved design -> need to write more assertions

• Wrote more assertions, re-ran proofs -> expected to see 100% coverage but had 90.91%

• An over-constraint in the test bench was masking another RTL bug!

Summary of FIFO Example
Bugs in your design indicate you do not have 100% coverage

• All proofs marked as proven, AND no property was marked unreachable, AND we had
assertions on all design statements, AND yet the coverage was not 100%

• Missing coverage forced us to think

• Tool gave hints on where the gaps were

• This allowed us to unearth bugs in design and over-constraints in TB

• We fixed the RTL bug

• Constraints are not required, as design is guaranteed to have the behavior

• In fact, we prove this on the design by proving these two additional assertions

• Overall, we find bugs, remove bad constraints, find more bugs, and enrich our test bench
with more good quality assertions

Tracking Coverage
and

Achieving Formal Verification Signoff

Case Study: Verification of I²C Serial Protocol Interface

Systematic Verification Flow
Requirement tracing and coverage are of paramount importance

Tracking Progress in the Verification Plan
Integrating formal and simulation verification

Simulation

Annotate

Verification Plan

Test Benches

Verification Plan Annotated

Simulation

Results Mixed Results

Requirements

Specification

Verification Plan

Un-Annotated

Formal ABV

Assertions

Formal Results

Motivation
How do we verify IP blocks implementing off-chip serial protocols?

Typically used to connect a number of ICs at relatively low data rates

I²C, SPI, UART, CAN, etc.

What would be an ideal approach?

Verify protocol compliance at the interfaces binding a VIP

Make use of a scoreboard to check data integrity

What is the challenge?

Even slow SoCs are running at frequencies starting in the range of 10MHz, while I²C
standard-mode speed is up to 100kHz

• Do the math: The formal tool needs to examine many cycles in order to prove that a
single byte is transferred correctly.

I²C Bus Protocol

SCL

SDA

MCU-A

GATE

ARRAY

LCD DRIVER

ACD

EEPROM

MCU-B

The Verification Process
Verification plan: what needs to be verified?

DUT Spec

I²C – Spec

(UM10204)

V-Plan

The Verification Process
What is the very first verification step?

Language: Verilog

Primary input signals: 8 (17 bits)

Primary output signals: 3 (10 bits)

Primary inout signals: 2 (2 bits)

State bits (flops): 128

Assignments: 258 (1034 bits)

Code branches: 116

FSMs: 2

Adders: 0

Multipliers: 0

Primary clocks: 1

Let’s do an automatic inspection. Why?

• Signal domain violation

• Dead code

• Unreachable FSM states

• Signal toggling

Let’s analyze the design.

Validate results: are failing checks expected?

The Verification Process
What is the verification approach?

Important to have a well-defined flow!DUT Inspect

Bug

Hunting
QuantifyV-Plan

Complete

V-Plan
QuantifyV-Plan

100%

Coverage
Quantify

Review Quantify

Quantify Coverage Results
19.10.201706.10.201729.09.201722.09.201716.09.201729.10.2017

Tracking Progress Over Time

9

0

1

2

3

4

5

6

7

8

9

10

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

06.Sep 20.Sep 21.Sep 22.Sep 27.Sep 28.Sep 29.Sep 01.Oct 02.Oct 06.Oct 09.Oct 10.Oct 19.Oct 23.Oct 26.Oct 27.Oct 29.Oct

Bug
Hunting

Complete
Verification

Plan

Fix
Coverage

Holes

N
o

. B
u

gs

Verification Process Overview

ST-Covered ST-Constrained Vplan-Progress BR-Covered Bugs

Quantify Coverage Results
Detection of over-constrained code

/**/

/* 28 SEP */

/**/

// RD is mutual exclusive to WR

am_read_exclusive_to_write:

assume property(disable iff(!rstn || wb_rst_i)

write_active |-> RD != WR);

/**/

Quantify Coverage Results
Detection of over-constrained code

/**/

/* 29 SEP */

/**/

// RD is mutual exclusive to WR

am_read_exclusive_to_write:

assume property(disable iff(!rstn || wb_rst_i)

write_active |-> !(RD && WR));

/**/

Void message [UM10204-Notes Page.14]

START immediately followed by a STOP is an illegal format

Tracking Progress Over Time
Coverage vs effort

0

10

20

30

40

50

60

70

80

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

06.Sep 20.Sep 21.Sep 22.Sep 27.Sep 28.Sep 29.Sep 01.Oct 02.Oct 06.Oct 09.Oct 10.Oct 19.Oct 23.Oct 26.Oct 27.Oct 29.Oct

Bug
Hunting

Complete
Verification

Plan

Fix
Coverage

Holes

N
o

. o
f

A
ss

er
ti

o
n

s

Coverage vs. Effort

ST-Covered ST-Reached ST-Unknown ST-Unobserved ST-Uncovered ST-Constrained Assertions Constraints

Summary of I²C Case Study

What is the motivation?

Off-chip serial protocols are everywhere, therefore we need to verify protocol
compliance and data integrity

Verifying serial protocols with formal is challenging

Why does the approach matter?

Having a well-defined verification approach helps in achieving great results

Coverage increases confidence and helps us to easily identify over-constrained, not
exercised code

Collecting regression data over time gives a clear view on where effort is being
expended and how things are progressing

Quantify Formal Coverage: Scalable and Automated

Design #Code Lines #Assertions Runtime

FIFO 321 30 100s

FSM-DDR2-Read 839 6 106s

vCore-Processor 295 8 204s

Arithmetic Block 383 2 257s

Real example at Infineon
Quantify identified verification holes and guided assertion development.
New assertions detected critical bugs.

Quantify now used to provide management metrics on all designs!

Interactive use on
single modules to
improve
verification

Design #Code Lines #Assertions

IFX-Aurix-1 25563 85

IFX-Aurix-2 27374 157

IFX-Aurix-3 57253 253

Formal Safety Verification with Qualified Property Sets
Holger Busch at DAC’14 in Accelerating Productivity
Through Formal and Static Methods (Session 38.3)

Interoperable Coverage Solution

Formal-Simulation Seamless Integration

Verification Plan

DUT

Design Specification

AssertionsTestbench

Simulator
Property Checker

Quantify

Test Results Simulation Coverage

Coverage Viewer

Formal Coverage Proof Results

VCI App

CCA App

VPI App

Side-by-Side Analysis of Coverage Contributions
Verification Coverage Integration (VCI) App

Quantify
Formal

Coverage
Simulation
Coverage

VCI App

Summary
Design Bring Up
• Automated checks
• Reachability analysis – find design bugs as you bring up design
• Redundant code – find wasted area in your design
• Designer asserts – get coverage when you have designer asserts

Verification Quality and Metrics
• Metrics indicate gaps in verification and show you ‘where’ these gaps are
• Quantify identifies missing or low quality assertions
• Identify accidental over-constraints, focus on verification
• Pushbutton solution: run frequently and track progress

PortableCoverage
• Integrate formal and simulation coverage
• Accelerate coverage closure
• Track formal coverage results in the verification plan
• Use any simulator, coverage database, verification planning tool

References and Further Reading
Formal Safety Verification with Qualified Property Sets
Holger Busch at DAC’14 in Accelerating Productivity
Through Formal and Static Methods (Session 38.3)

Design Verification Is All About Good Hygiene
https://www.onespin.com/resources/white-papers/

Compatible Qualification Metrics for Formal Property Checking
http://testandverification.com/DVClub/18_Nov_2013/Infineon-HolgerBusch.pdf

Planning Out Verification
https://www.onespin.com/resources/videos/

Thank you!

Questions?

