
Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware

John Stickley – Emulation Technologist
Petri Solanti – Field Application Engineer, HLS

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 1

Computer Vision/AI Application Challenges
Automotive and other “real-time” applications especially challenging

• Continually changing algorithms and sensors

• Computationally very expensive
– Billions of operations/second

• High responsiveness required
– High-bandwidth and low-latency
– Real-time processing of data required

• Autonomous drive - solution required to
be < 100w

• Each provider wants to add their “secret sauce”

2

ADAS and Driverless Cars

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware

Convolutional Neural Networks: Training vs Inferencing
(Embedded AI)

• Very large datasets and memory, CPU/GPU farms, floating point required

• Uses data from trained network, end system often has real-time requirements, can go to
FPGA/ASIC and dedicated HW, can be reduced to fixed point, can implement low-power

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 3

Catapult High-
level Synthesis
(HLS) fits here

Next-generation Computer Vision Designs
Require Much More Parallelism

• Convolutional Neural Networks use lots of 2-d convolutional filters
– Lots of multiply-accumulate math

• Multiple convolutional layers
• Networks are constant evolving

– Data rates, number of layers, image size, etc..

16 2-d convolutional
filters

36x16 = 576 2-d
convolutional filters

Simple 2-layer CNN for Character Recognition

Feature maps

Fully connected layer
uses matrix
multiplication

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 4

Acceleration of the Architectural Exploration Design Phase

• HLS-synthesized CNN-based machine learning algorithms lend
themselves favorably to take advantage of a highly parallel simulation
engine such as an emulator
– The speed of execution of simulating the design on an emulator does not change

with the addition of more layers to the CNN algorithm
– Whereas with software simulation, performance goes down roughly linearly with

migration of each layer to RTL

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 5

What are the Choices for Hardware Platform?
There is no clear winner today as this market is emerging

• CPU
– Not fast or efficient enough

• DSP
– Good at image processing but not enough performance for Deep AI

• GPU
– Good at training but too power hungry for long term inferencing solution

• FPGA
– Low-power, mostly meets performance/latency, RTL flow not practical, not the lowest power,

eventually cost for volume a problem
• ASIC

– Lowest power, meets performance/latency, high NRE and no field modifications/upgrades,
Algorithms still changing, RTL flow not practical, lowest volume cost

• Dedicated AI and CV processors or accelerators in IP and ASIC
– Popping up like weeds – high performance, locks customer in, many server target

• Some scalable combination of the above
Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 6

Fl
ex

ib
ili

ty
Pow

er

Numerous Possible Hardware/Memory CNN Architectures

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 7

Memory Architecture and Power Considerations

• Keeping data local is key to minimizing
power consumption
– Very important for ASIC

• Floating-point is costly
– Used in training of networks
– Not needed in network inference engine

• Fixed-point doesn't need to be
power-of-two

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 8

*NVIDIA 2017

Catapult HLS is the Only Solution for Rapid Algorithm to RTL

• Enable late functional changes without impacting schedule
– Algorithms can be easily modified and regenerated
– New technology nodes are easy (or FPGA to ASIC)

• Quickly evaluate power and performance of algorithms
– Rapidly explore multiple options for optimal Power Performance Area (PPA)

• Accelerate design time with higher level of abstraction
– 1 Year reduced to a few months
– New features added in days not weeks
– 5X less code than RTL

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 9

void func (short a[N],
for (int i=0; i<N; i++) {
if (cond)
z+=a[i]*b[i];

else

RTL

Why Catapult HLS is So Much More Productive than RTL

• Catapult HLS separates functionality from implementation with
powerful tool capabilities for controlling implementation

Catapult Implementation Control
Automatically

— Builds concurrent RTL from C++ Classes or
Functions

— Adds Interfaces
— Closes Timing
— Memory inferencing and constraints for

architecture
— Resource sharing for minimal area
— Constraints drive parallelism - Unrolling

Functionality
Described in

C++ or
SystemC

+ RTL

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 10

Precise Modeling of Bit-accuracy
• HLS uses exact bit-widths to meet specification and

save power/area
– bit-widths are not always pow2 (1, 8, 16, 32, 64 bits)

• Rapid simulation of true hardware behavior
• RTL is correct by construction

– Precise consistency of representation and simulation results
between C++ algorithm and synthesized RTL

11

C++/SystemC using bit
accurate integer/fixed-point

Measure/VerifyRefine/Explore
Precision

Model
using floating-point

Bit-accurate RTL

Catapult Ultra Verify
The Algorithmic C fixed point
data types are declared as:

ac_fixed<W,I,S> x;

width #integer bits

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 11

RTL Creation and Verification is Still a Bottleneck
• Going from AI development platform to

optimized RTL is not well understood
– How to verify hardware implementation
– How to quantize and optimize the HW

• HLS delivers optimized RTL quickly
but…
– RTL verification is slow
– Hours/days/weeks of simulation on

complex CNN designs

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 12

AI Development
Platforms

HDL Simulator

Stimulus

RTL

code
coverage goal

reached?
no

Add tests

Done
UCDB

Coverage

Exclude
Unreachables

Questa
CoverCheck

?
• Quantization
• Architectural optimization
• RTL verification

Catapult and Veloce Solve the Verification Bottleneck
• Quickly verify synthesizable HLS C++ and RTL in the Tensorflow environment

– Test the quantized HLS against the floating point model in tensorflow

• Reduce RTL verification from hours to minutes

13

AI Development
Platform

HLS Model in C++

Catapult HLS

Optimized RTL

Synthesized RTL model
module yolo_tiny(…)

XlAcChannelMaster
(driver+xactor)

XlAcChannelSlave
(driver+xactor)

Tensorflow Operator
API Wrapper

Driver “proxy”
C++ model

yolo_tiny.run(…)

Veloce

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware

Even “Small” CNNs are Computationally Intensive
• Yolo Tiny*

– used in object detection and classification for cell phones
– Over 70 Billion MAC/Sec
– Over 25 million weights

• Made up of mostly 2-d convolution and pooling layers

* Courtesy of Joseph Redmon, https://pjreddie.com/darknet/yolo
Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 14

Yolo Tiny* progressive refinement

• This “Yolo Tiny” demo is based on the Google TensorFlow open-source
machine learning technology based in Python

• The intent of the demo is to show techniques for progressive
refinement from high-level abstracted TensorFlow CNN layer models
written in Python3 down to HLS-synthesized RTL, i.e.,

Original TensorFlow code HLS “synthesis-friendly” C++ blocks Synthesized RTL blocks

– Then re-validation after each refinement, ultimately deploying an emulator for
validation of synthesized RTL blocks

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 15

* Courtesy of Joseph Redmon, https://pjreddie.com/darknet/yolo

Architectural exploration acceleration and early
tradeoff analysis

• Specifically we're exploring an approach that still keeps the whole flow in the
architectural exploration phase of a machine learning design project, even
while playing with the software/hardware representational tradeoffs
– And, because emulation is deployed, being able to accelerate the RTL verification as

well as starting to look at early power analysis, performance, etc.

• All of this can potentially be done before even thinking about bringing
interface synthesis into the picture and targeting real hardware bus interfaces
– I.e. doing all architectural exploration - even at RTL abstraction while using strictly

abstract bit accurate native HLS data types such as ac_fixed<>, ac_channel<>'s for
communication, etc.

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 16

YoloTiny: Original python3/TensorFlow testbench

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 17

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

maxpool

stage layer

1

2

3

4

5

6

7

8

9

1
2

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

• 9 stage CNN with 9 conv2d layers the first 6 of which are separated by
maxpool layers which then feed densely connected conv2d layers

• First conv2d layer is fed an input tensor ‘x’ which is the 2-dimensional
preprocessed_image from the top level python3 test.py testbench

• 9th stage provides recognized images in the output tensor ‘o9’ which
is fed back up to top the level test.py for post processing of the
output image, with classification and bounding box info included

• Each conv2d image is fed learned weights and biases for that stage
• Where preceded by a maxpool layer, it is fed by the output of that

layer, otherwise simply the output of the preceding conv2d layer

TensorFlow
testbench

Quickly Implement CNN Architectures Using HLS
• Easily code multiple architectures in C++

– Sliding-window architecture processes fmap data in raster
order

– In-place architecture reads weights once

• HLS constraints allow architectural exploration
– Massive parallelism is possible
– Evaluate power, performance, and area PPA across multiple

architectures and microarchitectures

Sliding-
Window

Convolution /
Max Pooling

Sliding-
Window

Convolution/
Max Pooling

FIFO

Sliding-
Window

Convolution/
Max Pooling

…. FIFO

In-place
Convolution/
Max Pooling

Off-chip DRAM
AXI4 stream

Weights and results

FMAP_HEIGHT:for(int r=0;r<IN_HEIGHT;r++){
IN_CHAN:for(int ic=0;ic<IN_CHANNELS;ic++){
FMAP_WIDTH:for(int c=0;c<IN_WIDTH+1;c++){
< Read feature map data stream >
< Sliding window of feature map data >
OUT_CHAN:for(int oc=0;oc<OUT_CHANNELS;oc++){
< Read kernel weights from SRAM >
KERNEL_Y:for(int i=0;i<3;i++){
KERNEL_X:for(int j=0;j<3;j++){
acc += fmap_window[r+i][c+j] * kernel[i*3+j];

}
}
< Write out partial output channel sums >

}
}

}
}

Loops can
be unrolled

36-parallel
multipliers

YOLO Tiny

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 18

Easily Test HW Models and RTL Quickly

• Swap any layer or the entire design
– HLS C++ executable or RTL running on Veloce is a python function call in tensorflow

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 19

catapult
conv2d

Sliding-
Window

Convolution/
Max Pooling

FIFO

Sliding-
Window

Convolution/
Max Pooling

…. FIFO

In-place
Convolution/
Max Pooling

Off-chip DRAMAXI4 stream

Weights and results

Tensorflow Python File
Tensorflow
Operator

wrapper call

Veloce

Tensorflow C++ API
Operator Wrapper

Veloce Driver

Optimized RTL

HLS Model in C++

YoloTiny: Selected layers of TensorFlow testbench broken out to
“HLS-friendly” C++ implementation-targeted algorithms

20

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

conv2dHls 1
2

layer

maxpoolHls

stage

1

HLS C++
code block input

tensor
x

output
tensor

o9

TensorFlow
testbench

1-stage breakout

 Pre-processing of
data input,
weights, biases
 Assembling inputs

into AcChannel
stream to feed
synthesizeable
algorithm

HLS C++
code block

Pre-processing

 Synthesizeable
hardware
implementation-
targeted 9-stage
CNN algorithm

9-stage CNN

 Post-processing of
data output from
AcChannel stream
 Re-format to go

back to Tensorflow
testbench

Post-processing

9-stage breakout

• Here we break out 1
or more of the
original TensorFlow
layers to experiment
with implementation
synthesis

• We still run the new
C++ code prototypes
in the context of the
original TensorFlow
testbench

• We pre-verify the
synthesizeable code
even before we
generate RTL from it

Easy Modeling, Synthesis, and Emulation of Streaming
Interfaces

• AC channel parametrized class allows designers to model streaming data interfaces
in untimed C++

• Easily map ac_channel<> to emulator transactor API, XlAcChannel*Driver for
software/hardware communication
– C++ testbench drives stimulus to emulator

21

data_in
0

data_in
1

data_in
2

data_in
N

Emulator Proxy

XlAcChannel
*Driver

C++
Testbench

ac_channel

Read from
channel

Channel data types

Stream to
driver instead

HLS synthesizeable block

Emulator ac channel
driver API

Veloce

XlAcChannel
*Driver

Interface Synthesis Makes HW Communication with Veloce Easy
• Interface synthesis allows the interface protocol to be defined using the HLS tool
• ac_channel maps to data/ready/valid protocol in hardware (*_wait interface)
• XlAcChannel*Transactor and *_wait interfaces bolt together seamlessly

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 22

Catapult Architectural Constraints View

C++
Testbench

XlAcChannel
*Transactor

Catapult
RTL

*_wait
Interface

ac_channel

YoloTiny: C++ implementations of CNNs replaced with
synthesized RTL blocks

23

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

conv2d

maxpool

maxpool

maxpool

maxpool

maxpool

TensorFlow
testbench

stage layer

1

2

3

4

5

6

7

8

9

3
4

5
6

7
8

9
10

11
12

13

14

15

input
tensor

x

output
tensor

o9

stage

1

HLS C++
code block input

tensor
x

output
tensor

o9

TensorFlow
testbench

1-stage breakout

 Pre-processing of
data input,
weights, biases
 Assembling inputs

into AcChannel
stream to feed
synthesizeable
algorithm

HLS C++
code block

Pre-processing

 C++ driver “proxy”
model

9-stage CNN

 Post-processing of
data output from
AcChannel stream
 Re-format to go

back to Tensorflow
testbench

Post-processing

9-stage breakout

 Here we replace each of the C++
algorithm breakouts shown
previously with actual RTL code
running on the emulator

 The C++ blocks themselves
become AcChannel drivers to
AcChannel BFMs running in the
emulator

 All of this is still running in the
context of the original
python3/TensorFlow testbench

 Cross-process TLM based
XlAcChannelDrivers couple
the TensorFlow and HLS C++
remote client process with the co-
model host process and the
emulator

Catapult
synthesized
conv2dHls

RTL modelXlAcChannel*
(drivers+xactors)

Emulator
C++ driver

“proxy” model

Catapult
synthesized

9 stage
CNN

RTL model

Emulator

XlAcChannel*
(drivers+xactors)

Memory Inference and 0-time Back-Door Memory Accesses

• Large C++ arrays automatically mapped to ASIC or FPGA memories
• Well supported in emulation using general purpose XlMemoryTransactor module
• Arrays on the design interface can be synthesized as memory interfaces
• Internal arrays synthesized to instantiated (black boxed) memories

24

Sythesized RTL

XlMemoryTransactor
(open-kit)

Catapult Architectural Constraints View

SOME CUSTOMER TESTIMONIAL EXAMPLES

25

NVIDIA Cuts Verification Cost by 80%
• 10M gates video decoder for Tegra X1

• Schedule and goals couldn’t be met without adding 20
engineers to a team of already 60

• Invested in Catapult instead
– Improved design productivity by 50%
– Cut verification cost by 80%

• “Saved their skin – Twice”
– Converted VP9/H.265 from 8 to 10 bit color in weeks
– Re-optimized IP from 20nm/500Mhz to 28nm/800Mhz in 3 days

26

Traditional RTL
Full Regression

3 months
1000 CPUs

Time

Resources

Time
HLS C++

Full Regression

2 weeks
14 CPUs

ResourcesSource: NVIDIA white paper
http://go.mentor.com/4N9cP

http://go.mentor.com/4N9cP

NVIDIA Research New Methodology with Catapult
Machine Learning Accelerator SoC using an Object-Oriented HLS flow

• NVIDIA Research with DARPA - New methodology for 10x faster chip
design

• Developing libraries of HLS
components to target 80% of
future NVIDIA chips

• Used in NVDLA HW

• 2 DAC Papers; 2016,2018

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 27

Hardware Accelerator for Mobile Computer Vision Applications

Digital VLSI Flow for High-Productivity SoC Design

http://research.nvidia.com/publication/real-time-energy-efficient-superpixel-hardware-accelerator-mobile-computer-vision
http://research.nvidia.com/publication/2018-06_A-Modular-Digital

• Bosch needed big change to stay #1 in Automotive Safety
• Started new subsidiary for Autonomous Driving
• Decided HLS * lack of resources *quickly react to changes
• Mentor worked as key partner with a focus on success
• Result - Catapult HLS success on time first IP deliverable
• Delivered new designs ahead of schedule in 7 months with evolving

specifications; improved quality over RTL

Bosch Automotive Catapult Success

Using High-level Synthesis and Emulation to Rapidly Develop AI
Algorithms in Hardware

28
BOSCH VISIONTEC Rapidly Brings New Automotive IP to Market using Catapult HLS Platform

http://go.mentor.com/4Uu9a

ST Imaging HLS Success for ISP (Automotive)
• To date created 50+ Image Processing IPs using HLS Imaging Template

• Why they use HLS and Catapult (their words)
– Increase IP value
– Improve IP performance versus power & area
– Reduce project cost

• Experience with HLS
– Less code to write and debug
– Fast integration of new features
– Algorithm and architecture exploration possible
– Fast Verification using C++

• On-Demand Webinar and White Paper

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 29

STMicroelectronics Quickly Brings Automotive Image Signal Processing to Market with High-Level Synthesis

https://www.mentor.com/hls-lp/success/stmicroelectronics

Mentor Automotive DRS360 Using Catapult for Both
Computer Vision and Neural Networking Acceleration

Using High-level Synthesis and Emulation to Rapidly
Develop AI Algorithms in Hardware 30

Sensor Event
Detection
and Fusion

Semantic
Perception

Localization Situational
Awareness

Path Planning

Radar

Lidar

Camera

Sensor

Actuator
Control

• CatapultC is close to SW development
– It is C++ with more constraints

• 3x SW engineers on the market than HW
engineers

Ramp up is reduced dramatically
Produce deployable PoC in short delays
Optimize for production when final

requirements are set

Classic
Development

With CatapultC

Image Filtering 2 man/week
(expert)

1 man/week
(beginner)

Features
Detection

2 man/week
(expert)

1 man/week
(intermediate)

Neural
Network (FF)

2 man/week
(expert)

Few hours

Summary
• Next generation AI algorithms are massively complex
• Delivering optimized RTL with the best PPA on time is very difficult

– Achieving the most optimal architecture is hard to do in hand-code RTL
– Going from AI development platform to RTL is not well understood
– Verify the RTL is too time consuming

• Billions of computations
• Massively parallel hardware

• Catapult and Veloce provide a push-button path from high-level model
to rapidly verified RTL

Using High-level Synthesis and Emulation to
Rapidly Develop AI Algorithms in Hardware 31

	Using High-level Synthesis and Emulation to Rapidly Develop AI Algorithms in Hardware
	Computer Vision/AI Application Challenges�Automotive and other “real-time” applications especially challenging
	Convolutional Neural Networks: Training vs Inferencing (Embedded AI)
	Next-generation Computer Vision Designs�Require Much More Parallelism
	Acceleration of the Architectural Exploration Design Phase
	What are the Choices for Hardware Platform?�There is no clear winner today as this market is emerging
	Numerous Possible Hardware/Memory CNN Architectures
	Memory Architecture and Power Considerations
	Catapult HLS is the Only Solution for Rapid Algorithm to RTL
	Why Catapult HLS is So Much More Productive than RTL
	Precise Modeling of Bit-accuracy
	RTL Creation and Verification is Still a Bottleneck
	Catapult and Veloce Solve the Verification Bottleneck
	Even “Small” CNNs are Computationally Intensive
	Yolo Tiny* progressive refinement
	Architectural exploration acceleration and early tradeoff analysis
	YoloTiny: Original python3/TensorFlow testbench
	Quickly Implement CNN Architectures Using HLS
	Easily Test HW Models and RTL Quickly
	YoloTiny: Selected layers of TensorFlow testbench broken out to�“HLS-friendly” C++ implementation-targeted algorithms
	Easy Modeling, Synthesis, and Emulation of Streaming Interfaces
	Interface Synthesis Makes HW Communication with Veloce Easy
	YoloTiny: C++ implementations of CNNs replaced with synthesized RTL blocks
	Memory Inference and 0-time Back-Door Memory Accesses
	Some Customer testimonial examples
	NVIDIA Cuts Verification Cost by 80%
	NVIDIA Research New Methodology with Catapult�Machine Learning Accelerator SoC using an Object-Oriented HLS flow
	Bosch Automotive Catapult Success
	ST Imaging HLS Success for ISP (Automotive)
	Mentor Automotive DRS360 Using Catapult for Both Computer Vision and Neural Networking Acceleration
	Summary

