
Taking Design Automation to the next 
level with User Experience Design

Jamie Lai, Bodo Hoppe
IBM R&D Germany GmbH



The Team



The IBM Telum Processor

> 5 GHz
frequency

> 22 Billion
Transistors on a module

> 19 Miles
of wires on a module



Development of the IBM Telum
Processor

1,500,000,000,000,000
Simulation Cycles in software Simulation

> 500K
unique discrete coverage events in the
design

+ Millions of
cross-product events



Logic Designers and Verification Engineers 
spend a huge amount of time on

• Defining coverage

• Implementing coverage

• Debugging coverage

• Analyzing coverage holes

• Hitting important coverage events



Fast time to market
—

Design

© 2022 IBM Corporation

Concept

Logic Design

Block Simulation

Specification

Processor Core Simulation

Physical Design

System Simulation

Tape-Out

Power-
On

Concept

Logic Design

Block Simulation

Specification

Processor Core Simulation

Physical Design

System Simulation

Tape-Out

Power-
On



Potential of Functional Coverage
—

Design

© 2022 IBM Corporation

Concept

Logic Design

Block Simulation

Specification

Processor Core Simulation

Physical Design

System Simulation

Tape-OutParallel Process

• Faster time-to-market

• Higher Quality

• Less (Compute) Cost



We use various functional coverage types

ü Interface coverage

ü (Micro-)Architectural cross product 

coverage

üConfiguration coverage

üDiscrete design events

üTestbench coverage

Functional Coverage
Types



We have (some) collaboration

ü Mark as waived/deferred/impossible 

ü Analyze 

ü Prioritize

ü Comment

Collaboration



We have the technology

üTemplate Aware Coverage

ü Coverage Driven Generation 

ü Finding unhittable events 

ü Coverage hole analysis

ü Grading events & test templates

ü Identifying aged out events

Automation

https://research.ibm.com/publications/template-aware-coverage-taking-coverage-analysis-to-the-next-level
https://research.ibm.com/publications/automatic-scalable-system-for-the-coverage-directed-generation-cdg-problem

https://research.ibm.com/publications/template-aware-coverage-taking-coverage-analysis-to-the-next-level
https://research.ibm.com/publications/automatic-scalable-system-for-the-coverage-directed-generation-cdg-problem


But…

• Many months are still spent on coverage closure

• In the critical path for tape-out

• We‘re still not seeing the forest because of all the trees

• Missing potential bugs

• Still wasting compute cycles



Let’s automate more …

… and we can also …



Collaboration Automation

Functional Coverage
Types

The
User



Our tech and our tools can assist, but they 

cannot replace



How do we use the tools and tech we have in 

a way that will enhance and augment the 

user’s abilities?



Introducing… UX design!



“Design a vase”



“Design a better 
way for someone 
to enjoy flowers”



We look to these ways of questioning our problem 

spaces, to open up our creativity and scope, and to 

ask the Right Questions



Enterprise design thinking: The loop
Observe Reflect Make



UX design: An umbrella term

UX research

Observe Reflect Make



UX design: An umbrella term

UX design
Systems design
Service design
Product design

Observe Reflect Make



UX design: An umbrella term

UI design
Visual design
Content design

Observe Reflect Make



The original scope

• Improve the coverage data 
analysis experience

• Show user actions like 
waiving, deferring, marking 
impossible…



”What’s the point?”

”We already have something similar”
“This is just a facelift”



What we were doing: treating the 
symptom of functional coverage



A quick reminder…

https://scrolller.com/ui-vs-ux-3iy0tb43v4



What we should’ve been doing: 
investigating the underlying issue…



Why are there so many irrelevant and 

confusing events in the first place?



“Design a way to 
improve the 
coverage data 
analysis experience”



“Design a way to 
improve the 
coverage data 
analysis experience”



“Design a way to 
close the design of 
the microprocessor 
faster”



Coverage 
analysis

Feature 
definition

Feature 
implementation

Coverage closure



Floral fantasy at Gardens by the Bay, singapore
by: @unique_singapore [IG]



Observe Reflect Make



User research questions

• What is the overall process, 
from feature definition to 
coverage closure?

• Where are the collaboration 
touchpoints between VE and 
LD?

• What are the pain points in this 
collaboration process?

Coverage 
analysis

Feature 
definition

Feature 
implementation

Coverage 
closure

Pain points?



Design toolbox: Personas

Eddie
Logic Designer

Works with architects to define the new features of the chip

Creates the logic design of the hardware
Defines spaces that need verification, using things called 
“events”

Vi
Verification Engineer

Creates test cases in C++ that stress the design of the chip

Looking to improve their test bench to hit all important coverage 
events to find all bugs in the HW

Sorts through all the events generated by the Verification Cockpit 
(VC) to look for the most interesting events

Jobs to be done?
Collaboration?
Pain points?



Research
Step 1: Observe

What does the user think/do?

Step 2: Gather insights

What common attitudes and 
behaviors do our users 
collectively have?

Step 3: Synthesize into big ideas

What are the main ideas we 
can gather from this?



EDT toolkit: As-is scenario



Designer toolkit: As-is scenario overview
Phase 1

Feature definition

• Main feature and 
design are defined 
here

• Eddie draws up the 
specs and designs 
with the architects

• Vi takes a back seat 

Phase 2
Feature implementation

Simulation bring-up

• Designs are created, 
simulation testing 
begins

• Eddie begins coding his 
designs

• Vi looks at the design 
specs in order to begin 
crafting her testbench 
scenarios

Phase 3
Coverage analysis

• Analysis of the 
testbench and discrete 
events begins

• Eddie and Vi 
collaborate to analyze 
the results.

Phase 4
Coverage closure

• Coverage must meet 
the expected quality 
requirements

• Vi writes special cases 
and continues to 
improve the testbench 
until the coverage 
percentage is high 
enough

• Eddie improves his 
designs



Designer toolkit: As-is scenario overview
Phase 1

Feature definition
Phase 2

Feature implementation
Simulation bring-up

Phase 3
Coverage analysis

Phase 4
Coverage closure

• Main feature and 
design are defined 
here

• Eddie draws up the 
specs and designs 
with the architects

• Vi takes a back seat 

• Designs are created, 
simulation testing 
begins

• Eddie begins coding his 
designs

• Vi looks at the design 
specs in order to begin 
crafting her testbench 
scenarios

• Analysis of the 
testbench and discrete 
events begins

• Eddie and Vi 
collaborate to analyze 
the results.

• Coverage must meet 
the expected quality 
requirements

• Vi writes special cases 
and continues to 
improve the testbench 
until the coverage 
percentage is high 
enough

• Eddie improves his 
designs

Eddie is often asked to deliver 

both good design and good 

coverage

Vi does not participate in 

design scoping

Because Eddie must focus on 

his designs, this often results 

in the creation of improperly 

documented coverage

Vi is blocked from coverage 

until after the implementation 

of the designs be Eddie

Vi, in turn, struggles with 

understanding the intent of 

events coded by Eddie

There is no central repository 

for proper collaboration

Vi has no set definition of 

“done”

Eddie discovers bugs super 

late in the implementation 

phase because they were not 

caught by the testbench 

earlier



Designer toolkit: As-is scenario overview
Phase 1

Feature definition
Phase 2

Feature implementation
Simulation bring-up

Phase 3
Coverage analysis

Phase 4
Coverage closure

• Main feature and 
design are defined 
here

• Eddie draws up the 
specs and designs 
with the architects

• Vi takes a back seat 

• Designs are created, 
simulation testing 
begins

• Eddie begins coding his 
designs

• Vi looks at the design 
specs in order to begin 
crafting her testbench 
scenarios

• Analysis of the 
testbench and discrete 
events begins

• Eddie and Vi 
collaborate to analyze 
the results.

• Coverage must meet 
the expected quality 
requirements

• Vi writes special cases 
and continues to 
improve the testbench 
until the coverage 
percentage is high 
enough

• Eddie improves his 
designs

Eddie is often asked to deliver 

both good design and good 

coverage

Vi does not participate in 

design scoping

Because Eddie must focus on 

his designs, this often results 

in the creation of improperly 

documented coverage

Vi is blocked from coverage 

until after the implementation 

of the designs by Eddie

Vi, in turn, struggles with 

understanding the intent of 

events coded by Eddie

There is no central repository 

for proper collaboration

Vi has no set definition of 

“done”

Eddie discovers bugs super 

late in the implementation 

phase because they were not 

caught by the testbench 

earlier



Observe Reflect Make



EDT toolkit: To-be scenario



How might we activate the users 
through collaboration?

Pain points

• Eddie often asked to deliver both 
good design and good coverage

• Vi does not participate in design 
scoping

To-be scenario

• Eddie defines the events without 
implementation, along with the 
scope of the stories

• Vi collaborates earlier to 
understand the scope and maps 
the events to the features created



How might we activate the users through 
collaboration?

Pain points

• Because Eddie must focus on his 
designs, this often results in the 
creation of improperly 
documented coverage

• Vi struggles to understand the 
coverage created by Eddie

To-be scenario

• Eddie provides the details of the 
coverage space and the expected 
results to Vi 

• Vi implements the coverage
defined by Eddie in her testbench 
in order to create thorough and 
well-architected coverage



How might we activate the users through 
collaboration?

Pain points

• There is no central repository for 
proper collaboration

To-be scenario

• All past tooling and features are 
integrated into 1 collaborative-
centric platform

• The experience and the views on 
this platform are standardized for 
easier access by both personas



Observe Reflect Make

Design a prototype



Overview
To-be scenario: All past tooling 
and features are integrated into 1 
collaborative-centric platform

• Implemented with a 
standardized design system

• The user can see important 
metadata in order to provide 
the necessary context of the 
event

• Advanced filtering



Coverage details
To-be scenario: Eddie provides the 
details of the coverage space and 
the expected results to Vi 

• A new “more info” page gives 
more detailed info about the 
coverage point

• This is where Vi would find 
information about coverage, 
fleshed out by Eddie

• History/log of events and 
comments can be found here



Request Coverage
To-be scenario: Eddie defines the 
events without implementation, 
along with the scope of the 
stories

• Eddie is able to request 
coverage and give a detailed 
blueprint of how it should be 
implemented

• Vi will take this blueprint to 
implement coverage into her 
testbench



Enabling Collaboration using Python
@vsc.covergroup
class my_weak_pht_cnt_cg(object):

def __init__(self):
self.with_sample(

a = uint8_t(5)
b = uint8_t(5)

)
self.cp1 = vsc.coverpoint(self.a, bins=dict(

A = vsc.bin_array([],1,2,3,4)),
illegal_bins=dict(

illegal_Val = vsc.bin(5)
)

self.cp2 = vsc.coverpoint(self.b, bins=dict(
A = vsc.bin_array([],[5,31]))

)
self.cp1x2 = vsc.cross([self.cp1, self.cp2])

Credits to Matt Balance’ PyVSC library:
https://pyvsc.readthedocs.io/en/latest/introduction.html

• Python is a common
language
• Open Source 

Development
• System Verilog

Constructs well proven
over years



Observe Reflect Make

Implement a e2e prototype



Develop an end-2-end prototype in 2 
weeks

Define Implement Collect Analyze



Architecture Mockup

Node.js + react

Carbon design

User

Python backendAPI API

”Our client” – starts 
tests, submits hit data, 
submits event info on 

trigger

Calc1 example

Simulator (MESA)

Relational database 
(metadata + hit 

count)



Summary

Enterprise Design Thinking is key
ü With the user in the loop

UX design is key to
ü Deeply understand the developers‘ needs

ü taking a holistic view at the process

ü fast prototyping

ü Drive usability testing



Conclusions

üUX design and Prototyping allow fast iterations

üCan change the way how we work! 
better

better together

ü Allows the developer to take full advantage of the available
technology

ü Can significantly improve the overall develpment effort and schedule



Questions?


