
Daniel Große, Lucas Klemmer
Institute for Complex Systems (ICS)

Web: jku.at/ics | wal-lang.org

Email: daniel.grosse@jku.at, lucas.klemmer@jku.at

Unleash the Full Potential of
Your Waveforms
From Extra-functional Analysis to Functional Debug
via Programs on Waveforms

2

… Potential of Your Waveforms …

3
R

T
L
 S

im
u

la
ti
o
n

F
P

G
A

 P
ro

to
ty

p
e

V
ir
tu

a
l
P

ro
to

ty
p

e

Synthesis / manual

Chip

System model

Partitioning

TLM Model

RTL Model

Logic synthesis

Phys. Implementation

Operating

System

Driver

Application

Software

Custom &

IP-Cores

Specification

Hardware Software

Integration / Verification

Design Flow

4
R

T
L
 S

im
u

la
ti
o
n

F
P

G
A

 P
ro

to
ty

p
e

V
ir
tu

a
l
P

ro
to

ty
p

e

Synthesis / manual

Chip

System model

Partitioning

TLM Model

RTL Model

Logic synthesis

Phys. Implementation

Operating

System

Driver

Application

Software

Custom &

IP-Cores

Specification

Hardware Software

Integration / Verification

Design Flow

5

Design Flow

Waveforms
• HW block is alive

• HW shows expected behavior

• Communication works

• Assembler instructions run

• Performance as expected

• …

😊

7

Waveforms

• Waveforms are great!

• A central data format for HW development

◦ Produced by simulators, formal tools, logic analyzers, …

• They contain incredible amounts of information

◦ performance, correctness, data/control flow, optimization, …

• However

◦ 100% manual process

◦ Only small slice of data visible at once

◦ Only for “simple” signal relations

◦ Analysis not automated

◦ Data without analysis just noise

Data is not

Information

8

WAL: Waveform Analysis Language

• WAL is Domain Specific Language (DSL) to express HW analysis problems

• Specialized language constructs for HW domain:
◦ Waveform signals, Time, Hierarchy, Signal relations (bus interfaces)

• Not just true/false expressions, much more than SVA, PSL, …

• Full capabilities of scripting languages (functions, external libraries, …)

• Quickly analyze waveforms

• Alternative to

• Custom testbench extensions

• Custom scripts

9

How to Read WAL Expressions

• This is a number

◦ 5

• These are also numbers

◦ 0xff, 0b1101

• This is a variable

◦ my_var

• And these are also variables

◦ RD-START, top.core1.run

• This is a string

◦ “hello, DVCON Europe!”

• The same in Python

◦ 5

n
◦ 0xff, 0b1101n

◦ my_var
N
◦ RD-START, top.core1.run?

n
◦ “hello, DVCON Europe!”

10

How to Read WAL Expressions (2)

• This is a list

◦ (5 1 abc)

• If the first element is a function name

the list is a function application

◦ (+ 1 2)
◦ (+ 1 2 3 …)
◦ (print “hello”)
◦ (print “Sum: “ (+ 1 2))

• The same in Python

◦ [5, 1, abc]

N

◦ 1 + 2
◦ 1 + 2 + 3 + . + ..
◦ print(“hello”)
◦ print(“Sum: “, 1 + 2)

11

How to Read WAL Expressions (2)

• This is a list

◦ (5 1 abc)

• If the first element is a function name

the list is a function application

◦ (+ 1 2)
◦ (+ 1 2 3 …)
◦ (print “hello”)
◦ (print “Sum: “ (+ 1 2))

• The same in Python

◦ [5, 1, abc]

N

◦ 1 + 2
◦ 1 + 2 + 3 + . + ..
◦ print(“hello”)
◦ print(“Sum: “, 1 + 2)

function(a, b)

(function a b)

12

Arithmetic and Logic Operators

• Arithmetic Operators

◦ +, -, *, /

◦ (+ 1 2) => 3

◦ (+ 1 (- 4 2)) => 3

• Logic Operators

◦ !, &&, ||, =, !=, >, <, >=, <=

◦ (&& #t #t) => #t

◦ (! (&& #t #t)) => #f

◦ (> 5 4) => #t

13

How to get WAL

• The “original” WAL Interpreter

• Written in Python

• Basis for our research

• Easy to extend, experiment

• Limited performance but proven to be useful

• https://github.com/ics-jku/wal/

• The “new” Interpreter

• Written in Rust

• Goals: Top performance and usability

• Focus on real-life problems

• Wider range of platforms

https://github.com/ics-jku/wal/

14

Tutorial Website

• This tutorial is very hands on

• Online Waveform Explorer
◦ Integrated waveform viewer

◦ Prepared examples

◦ Run programs, read output

◦ Everything runs locally

◦ Drop in your own waveforms

• No installation, no downloads

• Enabled by web assembly and Rust

• Runs on phones too!

https://app.wal-lang.org

Install the Python version

to follow examples

15

Tutorial Website

16

Tutorial Website

17

Tutorial Website

18

Tutorial Website

19

Tutorial Website

20

Hands-On: Shell Examples

>-> clk

1

>-> WAL prompt

Enter expression

WAL Shell

Result of expression

21

Hands-On: First Steps

>-> 1

1

>-> (+ 1 2)

3

>-> (= 1 2)

#f

Selecting a different example:

22

Side note: Surfer Waveform Viewer

• Modern open-source waveform viewer

• Co-developed with LIU, Sweden

• Very fast, customizable, flexible

• Traditional mouse based navigation

• OR

• Keyboard driven UI

• VSCode inspired command line

• press <SPACE>

• variable_add …

• scope_add …

• Visit https://surfer-project.org

https://surfer-project.org/

23

The WAL Idea

• This is a signal access!

• Free variables are signals in waveforms

• Value depending on:

◦ Loaded waveform

◦ Time index in the waveform

• In simple terms:

◦ WAL programs run over a waveform and collect information

• What does this do?

a = 5
print(a + b)

Traceback (most recent call last):
File "error.py", line 2, in <module>
print(a + b)

NameError: name 'b' is not defined

(define a 5)
(print (+ a b))

Ouch!

24

Reading Signal Values (Example)

• We have a simple counter

• index = 0, after waveform is loaded

• Read a signal by typing it’s name

• Move the index with (step)

0: >-> clk ⇒ 1

>-> (step 1)

1: >-> clk ⇒ 0

>-> (step 5)

6: >-> clk ⇒ 1

6: >-> counter ⇒ 2

Hands-On: Reading Signal Values

>-> clk

1

>-> (step 1)

#t

>-> INDEX

1

>-> clk

0

>-> (step 5)

#t

>-> counter

2

26

Relative Evaluation

• Index can be locally modified with expr@offset syntax

• Evaluate at next timestamp signal@1

• Detect value change (!= signal signal@1)

• @ can be applied to every expression (not just signals)

• Is x larger than 5 two indices ahead? (> x 5)@2

27

Hands-On: Relative Evaluation

>-> counter

2

>-> counter@-1

1

>-> counter@2

3

>-> (= counter 4)@2

#f

28

Variables

• Define a new variable using define

◦ (define x 5)

• Change variables using set!

◦ (set! [x 22])

• Create local bindings using let

◦ (let ([x 10]) x)

◦ (let ([x 10] [y 20]) (+ x y))

29

Hands-On: Variables

>-> (define x 5)

5

>-> x

5

>-> (+ x 1)

6

>-> (set! x “DVCON”)

“DVCON”

>-> x

“DVCON”

>-> (+ x 1)

“DVCON1”

30

Special Functions

• Signal events

◦ (rising x) => (&& (= x 1) (= x@-1 0))

◦ (falling x) => (&& (= x 0) (= x@-1 1))

◦ (stable x) => (= x x@-1)

• Step over waveform and evaluate body whenever condition is true

◦ Starts at the current INDEX

◦ (whenever condition body+)

• Find all indices at which condition is true

◦ (find condition)

• Count how often condition is true

◦ (count condition)

Hands-On: Whenever

>-> (whenever clk (print INDEX “ “ counter))

6 2

8 3

10 4

…

Hands-On: Find, Count

>-> (find (= counter 2))

(6 7 38 39 70 71)

>-> (count (= counter 2))

6

Example: Average Delay

• Calculate average delay on handshaking bus

• Two states:
◦ Waiting: (&& req (! ack))

◦ Sending: (&& req ack)

• Count states

• Result = |waiting| / |sending|

(whenever clk
… always evaluated when clk = 1 …)

Example: Average Delay (1)

• Calculate average delay on handshaking bus

• Two states:
◦ Waiting: (&& req (! ack))

◦ Sending: (&& req ack)

• Count states

• Result = |waiting| / |sending|

(3+2+1+2) / 4 = 8/4 = 2

(whenever (rising clk)
(when (&& req (! ack)) (inc wait))
(when (&& req ack) (inc packets)))

(print (/ wait packets))

Groups

• HW designs ideal for writing generic code!

◦ Handshaking is common

◦ Standardized interfaces (AXI, AHB, Wishbone, SPI, …)

• For example, two instances of the handshaking bus

• Write expressions only using the shared suffix of the name

• Expand #suffix to full name

◦ #req => either comp1.req or comp2.req

• clk
• comp1.req
• comp1.ack
• comp2.req
• comp2.ack

• comp1.
• comp2.

Hands-On: Groups

>-> SIGNALS

(… "comp1.clk" "comp1.ready" "comp1.valid"

"comp2.clk" "comp2.ready" "comp2.valid")

>-> (groups clk ready valid)

("comp1." "comp2.")

>-> (groups clk)

("" "comp1." "comp2.")

Example: Average Delay (2)

• Wrap analysis in in-groups function

• Expression evaluated in each group

• #signal expanded to full name
(in-groups (groups req ack)
(whenever (rising clk)
(when (&& #req (! #ack)) (inc wait))
(when (&& #req #ack) (inc packets))))

(print (/ wait packets))

((3+2+1+2) + (4+2+1)) / 7 = (8 + 7) / 7 = 15/7  2.1

(groups req ack) ⇒ (comp1. comp2.)

Other WAL Features

• Data Structures

◦ Lists:
▪ (first list), (second list), (rest list), …

▪ list[i], list[h:l]

▪ fold, map, for , …

◦ Hashmaps:
▪ (geta symbol key1 key2 …)

▪ (seta symbol key1 key2 … data)

• Extracting bits from signals

◦ signal[i], signal[h:l]

• WAL as a compilation target from other languages

Applications: Reports of Processors, Buses

"tb.dut.mem_wrapper.axi4_source1": {
transactions: [

{
"id": 0,
"start": 1511,
"addr": f028,
"duration": 5234,
...

}
{

"id": 1,
"start": 1541,
"addr": f032,
"duration": 3234,
...

}
]

}
"tb.dut.mem_wrapper.axi4_source2": {

transactions: [
...

]
}

Applications: Pipeline Explorer

(require pipeline)

(stage fetch
(value tb.dut.dp.instrf@1)
(stall tb.dut.dp.stallf)
(log stallf

tb.dut.dp.stallf)
(log pc tb.dut.dp.pcf))

(stage decode
(update (!

tb.dut.dp.stalld))
(stall tb.dut.dp.stalld)
(flush tb.dut.dp.flushd)

(log pc fetch-pc@-1)
(log rd tb.dut.dp.rdd)
(log rs1 tb.dut.dp.rs1d)
(log rs2 tb.dut.dp.rs2d))

(stage execute
(update (!

tb.dut.dp.flushe))
(flush tb.dut.dp.flushe)
(log pc decode-pc@-1))

(stage memory)

(stage writeback)

Applications: SVA on Waveforms

42

You tried WAL and we listened

• WAL is available now for 3+ years

• We got a lots of feedback since then

• Now we want to make production-ready waveform analysis real

• We are working on a new Product based on your feedback
◦ Intuitive C-style syntax

◦ Support for much larger waveforms

◦ Ready-to-use libraries (AMBA, Ethernet, …)

◦ Tight waveform viewer integration

• Initial release early next year

• Interested, ideas, wishes? Let’s talk over a coffee/beer later!

43

Take-home Message

If you work with waveforms try WAL online or the

Python version, reach out, and stay tuned!

Daniel Große, Lucas Klemmer
Institute for Complex Systems (ICS)

Web: jku.at/ics | wal-lang.org

Email: daniel.grosse@jku.at, lucas.klemmer@jku.at

Unleash the Full Potential of
Your Waveforms
From Extra-functional Analysis to Functional Debug
via Programs on Waveforms

Papers

• Lucas Klemmer and Daniel Große. An Extensible and Flexible Methodology for Analyzing the Cache Performance of Hardware Designs.

In FDL, 2024. https://ics.jku.at/files/2024FDL_WAL-Cache-Performance-Analysis.pdf

• Lucas Klemmer and Daniel Große. WAVING Goodbye to Manual Waveform Analysis in HDL Design With WAL. In IEEE Transactions on

Computer Aided Design of Circuits and Systems (TCAD), 2024. https://ieeexplore.ieee.org/document/10496480 (open access PDF).

• Lucas Klemmer and Daniel Große. Towards a highly interactive design-debug-verification cycle. In ASP-DAC, 2024.
https://ics.jku.at/files/2024ASPDAC_WAL-VirtualSignals.pdf

• Lucas Klemmer, Frans Skarman, Oscar Gustafsson, and Daniel Große, "Surfer: a waveform viewer as dynamic as RISC-V,"

In RISC-V Summit Europe, 2024. https://ics.jku.at/files/2024RISCVSummit_Surfer.pdf

• Daniel Große, Lucas Klemmer, and Dominik Bonora, "Using formal verification methods for optimization of circuits under external

constraints," in DATE, 2024. https://ics.jku.at/files/2024DATE_FSYN.pdf

• Lucas Klemmer and Daniel Große. Waveform-based performance analysis of RISC-V processors: late breaking results.

In DAC, pages 1404-1405, 2022. https://ics.jku.at/files/2022DAC_LBR-Waveform-based-Performance-Analyisis-for-RISC-V.pdf

• Lucas Klemmer, Eyck Jentzsch, and Daniel Große. Programmable analysis of RISC-V processor simulations using WAL.

In DVCon Europe, 2022. https://ics.jku.at/files/2022DVCon_Programmable_Analysis_of_RISC-V_Processor_Simulations_using_WAL.pdf

• Lucas Klemmer and Daniel Große. A DSL for visualizing pipelines: A RISC-V case study. In RISC-V Summit Europe, 2023.
https://ics.jku.at/files/2023RISCVSummit_DSLforVisualizingPipelines.pdf

• Frans Skarman, Lucas Klemmer, Oscar Gustafsson, and Daniel Große. Enhancing compiler-driven HDL design with automatic waveform

analysis. In FDL, 2023. https://ics.jku.at/files/2023FDL_Enhancing-Compiler-Driven-HDL-Design-with-WAL.pdf

• Lucas Klemmer and Daniel Große. WAL: a novel waveform analysis language for advanced design understanding and debugging.

In ASP-DAC, pages 358-364, 2022. https://ics.jku.at/files/2022ASPDAC_WAL.pdf

https://ics.jku.at/files/2024FDL_WAL-Cache-Performance-Analysis.pdf
https://ieeexplore.ieee.org/document/10496480
https://ics.jku.at/files/2024ASPDAC_WAL-VirtualSignals.pdf
https://ics.jku.at/files/2024RISCVSummit_Surfer.pdf
https://ics.jku.at/files/2024DATE_FSYN.pdf
https://ics.jku.at/files/2022DAC_LBR-Waveform-based-Performance-Analyisis-for-RISC-V.pdf
https://ics.jku.at/files/2022DVCon_Programmable_Analysis_of_RISC-V_Processor_Simulations_using_WAL.pdf
https://ics.jku.at/files/2023RISCVSummit_DSLforVisualizingPipelines.pdf
https://ics.jku.at/files/2023FDL_Enhancing-Compiler-Driven-HDL-Design-with-WAL.pdf
https://ics.jku.at/files/2022ASPDAC_WAL.pdf

