(2025

DESIGN AND VERIEICATION ™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Unified UVM Testbench: Integrating Random,
Directed and Pseudo-Random Verification
Capabilities

Amitav Mitra, Kilaru Vamsikrishna, Salehabibi
Shaikh, Sushrut B Veerapur

ol

Agenda

 Problem Statement
e Solution
* Implementation

e Results

Problem Statement

Design and Testbench Maturity increases

Verification Phase 1 Verification Phase 2 Verification Phase 3

Simple Directed tests —>» Fully flushed out complex randomized tests ——3 Directed tests to cover corner case scenarios

e Constrained random
verification

* Protocol compliance

* Design Stress testing

* Edge conditions creation (FIFO
full and stress testing)
e Corner case Error Verification

e Initial Design Bring-up
scenarios.

» Test targeting specific features

Step-by-step thread execution
in a pre-defined order with
minimum randomization

Modeling real world scenarios
Thread execution is random,
with each thread running its
operation independently and
randomly in the background

e FCand CC closure

Thread randomization and
execution order is controlled
with user specified constraints

(2025

// DESIGN AND VERIFEICATION ™

/ \ DVCON

CONFERENCE AND EXHIBITION

Problem Statement (Cont)

* Testbench should scale and fine tune the it’s components (sequences,
etc.) to operate in all these phases is challenging

* Sometimes, these requirements end up creating multiple different
testbenches that leads to:
* Maintenance
* Cost
® resources

* Reusing these verification components across all these phases
requires unified testbench architecture with the capabilities of
random, pseudo-random and directed testcases into single testbench.

Solution

Unified UVM Testbench Architecture for Verification

* Centralized Control of Randomization: Enables precise modeling of
specific scenarios by managing randomization across the entire testbench.

* Layered Architecture: Introduces modular layers that progressively unfold
during different phases of the verification cycle, enhancing clarity and
scalability.

 Maximum Reusability: Promotes reuse of components, sequences, and
configurations across multiple projects and verification stages.

* Hybrid Testcase Integration: Seamlessly incorporates deterministic
testcases within the UVM framework, while maintaining extensibility for
constrained random verification.

How do we implement this ?

Implementation — Test Considerations

* To scale base test for all 3 flavors requires a control object called
“scenario”

* Test Scenario
* Global common configuration class
* Controls the execution of the threads

e Acts as an interface between TB and the testcase writer allowing the control on
randomization and the execution

e Each test mode configures the scenario, and the unified TB performs the
actions based on the selected scenario

 Has all random and non-random variables that control the TB and
Specification

* Base Test with scenario is the Key to the Unified TB Architecture

Implementation - Test Scenario Example

Scenario
Class

UVM Test

UVM ENV

lass cdn_ucie strm_scenario extends uvm_object;

rand operatio y > scenario _queue [$];

string test_mode = "FULL_RANDOM";

rand cdn_ucie_xdi_protocol_ flitfmt_e target_flit_format;

rand linkTransitio : ondition e linkTransition entry condition;

rand int min_state_transition_delay;

rand int max_state_transition_delay;

(2025

DESIGN AND VERIFEICATION ™

DVGCON

CONFERENCE AND EXHIBITION

Implementation - Test mode configuration

The test can be configured in any of the 3
modes from the scenario class:

Directed:

Simple user-defined testcases

Random:

Fully randomized constrained flow with
parallel running sequences according to
user specification

Pseudo-random:

Queue operations populated randomly
however user controls number of
operations and enabled features

randomize_scenario();

top_scenario.scenario_@.scenario_queue.rand_mode(0);
top_scenario.scenario_@.rand_scenario_queue_operation_c.constraint_mode(0);

top_scenario.scenario_@.test_mode = "DIRECTED";

randomize_scenario();

f (!(randomize(top_scenario) with
{
top_scenario.scenario_0.target_protocol == CDN_UCIE_XDI_PROTOCOL_STREAMING;

top_scenario.scenario_0.target_flit_format == CDN_UCIE_XDI_PROTOCOL_FLITFMT_6;

top_scenario.scenario_@.is_rp == is_rp;
})) be
tal(get_type_name(), tr ¢ ")

top_scenario.scenario_0.test_mode =

randomize_scenario();
f (!(randomize(top_scenario) with
ario_@.target_protocol == CDN_UCIE_XDI_PROTOCOL_STREAMING;
nario_0.target_flit_format == CDN_UCIE_XDI_PROTOCOL_FLITFMT_6;

fatal(get_type_name(),

enario.scenario_0.test_mode

(2025

DESIGN AND VERIFEICATION ™

DVGCON

CONFERENCE AND EXHIBITION

Implementation - Directed Testcases

scenario.test_mode == DIRECTED

scenario_gqueue

ENTER_ACTIVE
Start Action routin —
—> ENTER_PM_L1 > 9 | » sSequence —»{End Test
Test sequence
SEND_MAILBOX_REQ_D2D End

WAIT_100_CLOCK_CYCLES

SEND_MAILBOX_REQ_DVSEC

eUser-defined operations: The user specifies
which operations to push into the queue.
eFlexible test creation: Enables creation of diverse
and custom test scenarios using available
operations.

eNon-random execution: The scenario queue is
made non-random. All applied constraints on the
scenario queue are turned off to ensure fully
directed behavior.

virtual function void randomize_scenario();

top_scenario.scenario_@.scenario_queue.

rand_mode(0);

top_scenario.scenario_@.rand scenario_queue operation_c.constraint_mode(9);

top_scenario.scenario_@.test_mode = "DIRECTED";

if (!(randomize(top_scenario) with

{

top_scenario.scenario_@.target_

protocol == CDN_UCIE_XDI_PROTOCOL_STREAMING;

top_scenario.scenario @.target flit format == CDN_UCIE_XDI PROTOCOL FLITFMT 6;

top_scenario.scenario_@.is _rp == 1;

})) begin
“uvm_fatal(get_type name(), "Could not randomize scenario 8")
end

top_scenario.scenario_@.scenario_queue.
top_scenario.scenario_@.scenario_queue.
top_scenario.scenario_@.scenario_queue.
top_scenario.scenario_@.scenario_queue.
top_scenario.scenario_@.scenario_queue.
top_scenario.scenario_@.scenario_queue.

endfunction

push_back(ENTER_ACTIVE S@);
push_back(ENTER_PM_L1 _S@);
push_back(ENTER_ACTIVE_S®@);
push_back(SEND_MAILBOX REQUEST D2D REG);
push_back(WAIT 108 _CLOCK_CYCLES);

push_back(SEND_MAILBOX_REQUEST DVSEC_REG);

(2025

DESIGN AND VERIFEICATION ™

DVGCON

CONFERENCE AND EXHIBITION

Implementation - Random Testcases

Thread 1: rand_Ism_seq
—®» rand_lsm_seq_en
if (p_sequencer.scenario.test_mode != "FULL_RANDOM") begin
action_routing_seq = cdn_ucie_strm_base_action_routing seq::type_id::create("actior
. action_routing_seq.start(p_sequencer);
. wait(p_sequencer.action_routing_seq_done);
Thread 2: traffic_seq
— irafiic_seq_en »> end
if (p_sequencer.scenario.continue_random_test) begin
Start Thread 3: de_SIdeband_seq Gracen.” “uvm_do_on(strm_config_seq, p_sequencer)
——> fdi_sideband_seq_en »Sequence(s)—» End Test ork
Test e
rand_lsm_seq = cdn_ucie_strm_random_lsm_seq::type_id::create("rand_lsm_seq");
End
rand_lsm_seq.start(p_sequencer);
Thread 4: ram_error_seq =
— [aIm_EITor_seq egin
start_dev_operation_vseq();
Thread 5: mailbox_seq begin
—» mailbox_seq_en start_fdi_sideband_seq();
end
Random testcases do not rely on the operation queue a i s
or the action routing sequence. Instead, it launches .
1 1 1 ‘;f (p_sequencer.scenario.do_mailbox_access == 1) begin
multiple independent sequences in parallel and (el il

exercises the design with a random set of valid stimuli

join

/ DESIGN AND VE‘F?@IFIOEN 2
’ 4 \ DVCON

CONFERENCE AND EXHIBITION

Implementation - Pseudo-Random Testcases

eDynamic execution: Pick and push ‘ | .

operations randomly from the list of Seuiris, R A1AR() < A erations paritact;

available legal operations. s e e e)

eProtocol-driven control: Selection is soFaach (scanaria soali))

guided by protocol-specific constraints e s e e S A S B S
based on element positions in the }

operation queue. T (acamario auem115] insioe (HTER LSS, BIERPRLL SO

eProtocol-specific logic: Constraints are }

if (scenario_queue[i] inside {ENTER_DISABLED_S@, ENTER_LINKRESET_S@, ENTER_LINKERROR_SO}) {

ta||0red for the UC|e prOtOCOI to gL”de I(scenario_queue[i+1] inside {SEND_MAILBOX_REQUEST D2D_REG, SEND_MAILBOX_ REQUEST DVSEC_REG, SEND_10_MB_PACKETS, SEND_RAND_MB_PACKETS});

}

operation sequencing based on valid link

. if (scenario_queue[i] inside {WAIT_100_CLOCK_CYCLES, WAIT_1000_CLOCK_CYCLES}) {
and power StateS’ yet deS|gned modularly : I(scenario_queue[i+1] inside {WAIT 100 _CLOCK_ CYCLES, WAIT 1000 CLOCK_CYCLES});
for easy customization

(2025

// DESIGN AND VERIFEICATION ™

DVGCON

CONFERENCE AND EXHIBITION

Implementation - Pseudo-Random Testcases

Start
Test

scenanio.test_mode ==
PSEUDO _RANDOM

SCENarno_gueue
constraints

Randomized elements

scenario_queue

e cueseseey 0 Thread 1: action routing seu’

i Thread 2: rand_Ism_se

Thread 3: traffic_seq >

» traffic_seq en

ENTER_ACTIVE

ENTER_PM_L1

SEND_MAILBOX_REQ_DZD

WAIT_100_CLOCK_CYCLES

SEND_MAILBOX_REQ_DVSEC

% fdi_sideband_seq_en Thread 4: fdi_sideband Seq,

——» ram_eror_seq Thread 5: ram_error_seq >

Graceful
Sequence(s)
End

—>

End Test

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Implementation — Sequence Considerations

e Granularizing or breaking down the main sequences into reusable unit
tasks/functions(APIs)
e Each task/APIs can start sequences

* Layering the sequence body into APIs allows better control (Polymorphism) and
reusability (Inheritance)

* Granularizing helps to achieve fine control thread execution(Events,
Timeouts..etc.)

* APIs are synchronized based on the functional requirements

* Example Granularization
* state transitions, traffic, error injection..etc.

Implementation — APIs

Example sequence broken down to its constituent unit operations

Task 1

Bring up the link to ACTIVE state

Sequence

Task 2

Bring up the link to ACTIVE state Send Traffic
Send traffic

Task 3 These can be
Move to a power management state ' > >‘

L Move to a PM state reused now!
Inject a fatal error
Wait for the link to move to an error state Task 4

Inject a fatal error
Bring up the link to ACTIVE state .

Task 5

Check if error state is reached

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Implementation — APIs Execution and Control

The action routing sequence performs the
following steps to selectively call APIs from

various parts of the TB:

1. Accept populated queue from the scenario class.

2. Pop queue element.

3. Route popped element to its relevant API call
from the operation list.

4. Wait for the operation performed by the API to
finish.

5. Perform steps 2 to 4 till queue elements are
exhausted

Y
'*i Link State Transition

)
APIs Y
_z‘

T -

Error Injection
APls

Queue populated manually or via the
internal random operation resolver

Action Routing
Sequence

Send a

-POP element Moveto | Send 10 register
ACTIVE packets access

packet

Move to a
link down
state

Feqgister Access
APls

(. Traffic Control

APls

(2025

DESIGN AND VERIFEICATION ™

DVCCOIN

CONFERENCE AND EXHIBITION

Implementation — APIs Execution and Control

body();
.body();
(get_name(),$psprintf(

operation_queue = p_sequencer.scenario.scenario_queue;

nfo(get_name(),$psprintf(
(operation_queue.size() != 0)
(get_name(),$psprintf(

perform_operation(operation_queue.pop_front());

(get_name(),$psprintf(
p_sequencer.action_routing_seq_done = 1;
body

launch_operations(
(operations[i])
automatic j=1;

perform_operation(operations.pop_front());
)} (get_name(),$psprintf(1se_a

perform_operation(
nfo(get_name(),$psprintf(
(operation)

,» p_sequencer.scenario.scenario_queue),UVM_LOW)

it eq rati] , operation_queue),UVM_LOW)

, operation_queue),UVM_LOW)

), UVM_LOW)

operations[$]);

, Pp_sequencer.scenario.scenario_queue),UVM_LOW)

Segregated tasks/functions kept in
their specific API classes are labelled
and stored in a header file enclosed in
a case statement.

ENTER_RESET_S@
ENTER_ACTIVE_S@
ENTER_PM_L1_S@
ENTER_PM_L2_S@
ENTER_RETRAIN_S@
ENTER_LINKRESET_S@
ENTER_DISABLED_S@
ENTER_LINKERROR_S@

operation);
t , operation.name()),UVM_LOW)

: move_to_state(CDN_UCIE_XDI_STS_RESET, 8);

: move_to_state(CDN_UCIE_XDI_STS_ACTIVE, @);

: move_to_state(CDN_UCIE_XDI_STS L1, @);

: move_to_state(CDN_UCIE_XDI_STS L2, @);

: move_to_state(CDN_UCIE_XDI_STS RETRAIN, 8);

: move_to_state(CDN_UCIE_XDI_STS_LINKRESET, ©);
: move_to_state(CDN_UCIE_XDI_STS_DISABLED, @);
: move_to_state(CDN_UCIE_XDI_STS_LINKERROR, ©);

SEND_MAILBOX_REQUEST_D2D_REG
SEND_MAILBOX_REQUEST_DVSEC_REG
WAIT_10@_CLOCK_CYCLES
WAIT_10@0_CLOCK_CYCLES
SEND_1@_MB_PACKETS

: generate_mailbox_request(CDN_UCIE_ADPTR_REG, CDN_UCIE_REG_D2D,
: generate_mailbox_request(CDN_UCIE_ADPTR_REG, CDN_UCIE_REG_DVSEC,
: p_sequencer.misc_if.wait_cycle(108);

: p_sequencer.misc_if.wait_cycle(1000);

: begin

traffic_seq;
traffic_seq = rm_mb_traffic_|
“uvm_do_on(traffic_seq, p_sequencer);
traffic_seq.send_ob_traffic(1e);

"uc

ucie_dv

ec_link_statu

>_d2d_error_link_test_cntl”, @, reg_rd_data)

reg_rd_data);

(2025

DESIGN AND VERIFEICATION ™

DVGCON

CONFERENCE AND EXHIBITION

Implementation - Test Flow Architecture

TEST
Config Vars
ENV
h 4
Global Scenario Config Vars VIPENV
Scenario I N w
duete A > Driver
Traffic type, \ J
Test Mode enflags, etg. 3
°fg \ > Scoreboard VIP(s)
A o
TB/DUT - {)
Related Cfg Top Virtual Sequencer Assertions + Custom <
Variables Seq enable ENV Checks
J
flags N \
-~ ~
Sequence(s) Coverage Model
A 4
Enable flags T
Enable flags

(2025

DESIGN AND VERIFEICATION ™

DVGCON

CONFERENCE AND EXHIBITION

Results

For UCle Link State Machine (LSM) verification,
* Initial bringup was done through directed testcases

* Over 50 LSM cases + transition arcs were covered by constrained
random verification

 Final corner case verification (about 5 arcs) was completed using the
pseudo-random flow

All the while using the same set of reused sequences and codebase.
Resulting in 100 percent functional and code coverage closure.

SYSTEMS INITIATIVE

Thank You

	Slide 1: Unified UVM Testbench: Integrating Random, Directed and Pseudo-Random Verification Capabilities
	Slide 2: Agenda
	Slide 3: Problem Statement
	Slide 4: Problem Statement (Cont)
	Slide 5
	Slide 6: How do we implement this ?
	Slide 7: Implementation – Test Considerations
	Slide 8: Implementation - Test Scenario Example
	Slide 9: Implementation - Test mode configuration
	Slide 10: Implementation - Directed Testcases
	Slide 11
	Slide 12: Implementation - Pseudo-Random Testcases
	Slide 13: Implementation - Pseudo-Random Testcases
	Slide 14: Implementation – Sequence Considerations
	Slide 15: Implementation – APIs
	Slide 16: Implementation – APIs Execution and Control
	Slide 17: Implementation – APIs Execution and Control
	Slide 18: Implementation - Test Flow Architecture
	Slide 19: Results
	Slide 20: Q&A
	Slide 21: Thank You

