
Unified UVM Testbench: Integrating Random,
Directed and Pseudo-Random Verification

Capabilities
Amitav Mitra, Kilaru Vamsikrishna, Salehabibi

Shaikh, Sushrut B Veerapur

Agenda

• Problem Statement

• Solution

• Implementation

• Results

Problem Statement

• Initial Design Bring-up
scenarios.

• Test targeting specific features
• Step-by-step thread execution

in a pre-defined order with
minimum randomization

• Constrained random
verification

• Protocol compliance
• Design Stress testing
• Modeling real world scenarios
• Thread execution is random,

with each thread running its
operation independently and
randomly in the background

• Edge conditions creation (FIFO
full and stress testing)

• Corner case Error Verification
• FC and CC closure
• Thread randomization and

execution order is controlled
with user specified constraints

Problem Statement (Cont)

• Testbench should scale and fine tune the it’s components (sequences,
etc.) to operate in all these phases is challenging

• Sometimes, these requirements end up creating multiple different
testbenches that leads to:
• Maintenance

• Cost

• resources

• Reusing these verification components across all these phases
requires unified testbench architecture with the capabilities of
random, pseudo-random and directed testcases into single testbench.

Unified UVM Testbench Architecture for Verification

• Centralized Control of Randomization: Enables precise modeling of
specific scenarios by managing randomization across the entire testbench.

• Layered Architecture: Introduces modular layers that progressively unfold
during different phases of the verification cycle, enhancing clarity and
scalability.

• Maximum Reusability: Promotes reuse of components, sequences, and
configurations across multiple projects and verification stages.

• Hybrid Testcase Integration: Seamlessly incorporates deterministic
testcases within the UVM framework, while maintaining extensibility for
constrained random verification.

Solution

How do we implement this ?

Implementation – Test Considerations

• To scale base test for all 3 flavors requires a control object called
“scenario”
• Test Scenario

• Global common configuration class
• Controls the execution of the threads
• Acts as an interface between TB and the testcase writer allowing the control on

randomization and the execution

• Each test mode configures the scenario, and the unified TB performs the
actions based on the selected scenario

• Has all random and non-random variables that control the TB and
Specification

• Base Test with scenario is the Key to the Unified TB Architecture

Implementation - Test Scenario Example

Implementation - Test mode configuration

The test can be configured in any of the 3
modes from the scenario class:
• Directed:

Simple user-defined testcases
• Random:

Fully randomized constrained flow with
parallel running sequences according to
user specification

• Pseudo-random:
Queue operations populated randomly
however user controls number of
operations and enabled features

Implementation - Directed Testcases

•User-defined operations: The user specifies
which operations to push into the queue.
•Flexible test creation: Enables creation of diverse
and custom test scenarios using available
operations.
•Non-random execution: The scenario queue is
made non-random. All applied constraints on the
scenario queue are turned off to ensure fully
directed behavior.

Random testcases do not rely on the operation queue
or the action routing sequence. Instead, it launches
multiple independent sequences in parallel and
exercises the design with a random set of valid stimuli

Implementation - Random Testcases

Implementation - Pseudo-Random Testcases

•Dynamic execution: Pick and push
operations randomly from the list of
available legal operations.
•Protocol-driven control: Selection is
guided by protocol-specific constraints
based on element positions in the
operation queue.
•Protocol-specific logic: Constraints are
tailored for the UCIe protocol to guide
operation sequencing based on valid link
and power states, yet designed modularly
for easy customization

Implementation - Pseudo-Random Testcases

Implementation – Sequence Considerations

• Granularizing or breaking down the main sequences into reusable unit
tasks/functions(APIs)
• Each task/APIs can start sequences

• Layering the sequence body into APIs allows better control (Polymorphism) and
reusability (Inheritance)

• Granularizing helps to achieve fine control thread execution(Events,
Timeouts..etc.)

• APIs are synchronized based on the functional requirements

• Example Granularization
• state transitions, traffic, error injection..etc.

Implementation – APIs

Example sequence broken down to its constituent unit operations

These can be
reused now!

Implementation – APIs Execution and Control

The action routing sequence performs the
following steps to selectively call APIs from
various parts of the TB:

1. Accept populated queue from the scenario class.
2. Pop queue element.
3. Route popped element to its relevant API call

from the operation list.
4. Wait for the operation performed by the API to

finish.
5. Perform steps 2 to 4 till queue elements are

exhausted

Implementation – APIs Execution and Control

Segregated tasks/functions kept in
their specific API classes are labelled
and stored in a header file enclosed in
a case statement.

Implementation - Test Flow Architecture

Results

For UCIe Link State Machine (LSM) verification,

• Initial bringup was done through directed testcases

• Over 50 LSM cases + transition arcs were covered by constrained
random verification

• Final corner case verification (about 5 arcs) was completed using the
pseudo-random flow

All the while using the same set of reused sequences and codebase.

Resulting in 100 percent functional and code coverage closure.

Q&A

Thank You

	Slide 1: Unified UVM Testbench: Integrating Random, Directed and Pseudo-Random Verification Capabilities
	Slide 2: Agenda
	Slide 3: Problem Statement
	Slide 4: Problem Statement (Cont)
	Slide 5
	Slide 6: How do we implement this ?
	Slide 7: Implementation – Test Considerations
	Slide 8: Implementation - Test Scenario Example
	Slide 9: Implementation - Test mode configuration
	Slide 10: Implementation - Directed Testcases
	Slide 11
	Slide 12: Implementation - Pseudo-Random Testcases
	Slide 13: Implementation - Pseudo-Random Testcases
	Slide 14: Implementation – Sequence Considerations
	Slide 15: Implementation – APIs
	Slide 16: Implementation – APIs Execution and Control
	Slide 17: Implementation – APIs Execution and Control
	Slide 18: Implementation - Test Flow Architecture
	Slide 19: Results
	Slide 20: Q&A
	Slide 21: Thank You

