
Unified Architecture of L1 L2 Cache with Low Power
Extensions for MultiCore UVM-based Library Package

Avnita Pal, Priyanka Gharat, Puranapanda Sastry, Darshan Sarode

Agenda

2

Problem Statement
Can we optimize the low power verification process by integrating it into the earlier
stages of power functional without compromising on the verification quality?

Development Cycle

Solution
• The current approach of incorporating Power

Architecture after Functional Verification is not optimal.
It should be integrated into the strategy from the
beginning, along with Methodologies based Functional
Verification and Coverage, and Low Power
Implementation.

• The potential of a unified platform like UVM has
empowered to create library components
encompassing low-power strategies, functional
methodologies, and UPF-based low-power architecture.

• Expanding the use of UVM-based Object Classes to
include UVM-based Classes for Cores, Multi-Cores, Bus
Interface for signals Memory and Devices.

UVM
Power

Strategies

The Key Components of the necessary
approach

5

The Challenges

• The challenges associated with Power Verification

Multi-Cores have …

• Power designs integrated
within the Design and
accessible with
Verification Bench

Power Validation is …

• At all stages of process – RTL, GLS,
GDSII

Integrating Design within
Verification Methodologies

• Low Power is a Design activity
• EDA tools Validate the design

Recommended Use Model
Using multi-Core inbuilt Power State

7

UVM Low Power Package Architecture
• An effective Power Management structure

can be built using UVM classes that create
power domains, define scopes, and provide
nodes for each domain.

• These classes can be used as a library and
expanded to match the device's architecture.
By using these classes, the Power
Management structure can be easily
managed and customized to meet the
device's requirements.

• The Power Management structure relies on
the Power state of each domain, activating
different virtual methods and sub-routines.

8

Execution of Low Power Utilization in Multi-Cores

9

Functional Description of Power Domains

10

｛｝
PD_CORTEX

PD_CPU

<N>

PD_L2

PD_SOC

Implementation of multi Core

• Multi-Core incorporates low-power principles, including UPF concepts, and provides
API calls for managing multi-core operations and transitioning between states.

• Multi-Core has created Power Domains such as PD_CPU, PD_L1, PD_L2, and
PD_CORTEX, which can be managed using register bit enabling and output clamps
activation/deactivation, eliminating the need for UPF-based Power Domains.

• Power Domain Classes are extended to the Low Power UVM Package as a library,
enabling their use in the Power Management architecture for Memories, Bus
Interface cores, and other components.

• Multi-Core provides assembly code instructions for executing PowerUp and
PowerDown routines, supporting multiple core states such as Ready(D3_Hot), Normal,
Standby, Retention, Dormant, Deep Sleep (D3_Cold).

11

Integration of L1 and L2 Cache using Package

• The power management system efficiently handles turning off and on by using Power
Domain categories in the setup.

• For the L2 cache, there's a special control bit called STANDBYWFIL2. This bit is crucial
because it tells us if both the individual cores and the L2 memory system are in a
power-saving idle state.

• When the STANDBYWFIL2 bit is set, it tells the power management system that
everything, including the cores and L2 memory, is in an energy-efficient idle state. This
is the right time to start saving power by shutting down the processor.

• To make this happen, we use DPI import statements in UVM classes, which indirectly
call functions defined by multi-core. We'll explain these DPI calls in more detail later in
the presentation.

12

Instructions for L1 and L2 Cache

13

UVM Low Power ASM Routines

14

15

UVM Low Power DPI Package

16

UVM Low Power Scenario Package

Results
• The result of the research is that the focus of the implementation is mainly on a

multi-core low power environment. The full implementation needs to be done in
a multi-Core environment in close collaboration and cooperation with multi-Core
development environment. So, that would permit us to power up and power
down cores. As we have made use of some system tasks to verify the operation or
execution of the task with in extension of sv classes.

• Here, the role of ASM is essential for machine code insgtrauctions to test the low
power environment. Integrating low power strategies within methods of UVM
classes would help in verifying the low power aspects along with functional
verification process concept like functional coverage, assertions as it gives
additional advantage in the terms of verification of design.

17

Conclusion and Summary
• In the conclusion, we proposes the use of multi-Core ASM environment for

designing Low Power routines for multi-Core as a case study, which can also be
applied to other multi-Cores like Intel or ARC.

• The routines can be built for Bus Interface signals, Memory, and Device needs to
be written, as the need for smaller and low power designs increase.

• The approach emphasizes the importance of implementing power architecture
strategy and verification as an integral part of the design process, rather than an
afterthought post-functional verification, to avoid unwanted re-spins that can be
detrimental to costs and time-to-market guidelines.

• The presentation concludes by recommending that low power classes for multi-
Core should be available in the low power extension of UVM Libraries to enable
SOC designs to have a UVM-like verification test bench.

18

Thank You!

Questions?

19

