
EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

UVVM
Bringing UVM to VHDL

DVCon U.S. 2022, 3rd March 2022

▪ Independent Design Centre for Embedded Systems and FPGA

▪ Established 1st of January 2021. Extreme ramp up

• January 2021: 1 person

• January 2022: → 19 persons (SW:6, HW:2, FPGA:10) - And still growing…

▪ Continues the legacy from

• All previous Bitvis technical managers are now in EmLogic

• Verification IP and Methodology provider

• Course provider within FPGA Design and Verification

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)

UVVM

UVVM - Bringing UVM to VHDL2

UVVM = Universal VHDL Verification Methodology

▪ VHDL Verification Library & Methodology

▪ Free and Open Source

▪ Very structured infrastructure and architecture

▪ Significantly improves Verification Efficiency

▪ Assures a far better Design Quality

▪ Recommended by Doulos for Testbench architecture

▪ ESA projects to extend the functionality

▪ IEEE Standards Association Open source project

▪ Included with various simulators

▪ Runs on GHDL

What is UVVM?

UVVM - Bringing UVM to VHDL3

UVVM: UVM for VHDL designers

VHDL

- For VHDL designers
- Low user threshold
- Logical evolution on VHDL
- Low cost solution
- More efficient VHDL designers

UVVM

BUT - According to Wilson research September 2020:

VHDL for FPGA: >50% world-wide

VHDL was declared as "dying" already in 2003
- and in 2007, - and

UVVM - Bringing UVM to VHDL4

UVVM - Bringing UVM to VHDL5

* According to Wilson Research, per Sept. 2020

UVVM – World-wide

2
0
1
8

UVVM
100% up
in 2 years

FPGA Verification Methodologies,
world-wide, all languages

• Number 1 world-wide for VHDL verification *1

• Number 1 in Europe, indep. of language *1

• Number 2 world-wide, indep. of language *1

• By far, the fastest growing, indep. of language*1

Example on test sequencer code
and transcript/log

log(ID_LOG_HDR, "Check Interrupt trigger clear mechanism");

check_value(irq2cpu, '0', "irq2cpu default inactive");

check_stable(irq2cpu, now – v_reset_time, "Stable irq2cpu");

gen_pulse(irq_source, '1', clk_period, "Set IRQ source for clock period");

await_value(irq2cpu, '1', 0 ns, 2* C_CLK_PERIOD, "Interrupt expected");

sbi_write(C_ADDR_ITR, x"AA", "ITR : Set interrupts");

2000.0 ns Check Interrupt trigger clear mechanism

--

110.0 ns check_value() => OK, for std_logic '0'. irq2cpu default inactive

727.5 ns check_stable() => OK. Stable at 0. Stable irq2cpu

1060.0 ns Pulsed to '1'. Set IRQ source for clock period

1117.5 ns await_value(std_logic 1, 0 ns, 20 ns) => OK. Interrupt expected

2020.0 ns SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

clock_generator(clk, GC_CLK_PERIOD);

irq_source(n)

IRQC

/
n

clk

SBI (PIF)

arst irq2cpu

clk gen

test
seque
ncer

Testbench

2000.0 ns Check Interrupt trigger clear mechanism

--

110.0 ns check_value() => OK, for std_logic '0'. irq2cpu default inactive

727.5 ns check_stable() => OK. Stable at 0. Stable irq2cpu

1060.0 ns Pulsed to '1'. Set IRQ source for clock period

1117.5 ns await_value(std_logic 1, 0 ns, 20 ns) => OK. Interrupt expected

2020.0 ns SBI write(A:x"2", x"AA") completed. ITR : Set interrupts

All procedures with:

- Positive acknowledge
If wanted

- Alert message
and mismatch report

- Alert count and ctrl

UVVM - Bringing UVM to VHDL6

UVVM - Bringing UVM to VHDL7

Result in Modelsim

P
r
e
f
i
x

Message
ID

Time
stamp

Scope Message

Alert summary

Testbench infrastructure library

▪ log(), alert(), report_alert_counters()

▪ check_value(), await_value()

▪ check_stable(), await_stable()

▪ clock_generator(), adjustable_clock_generator()

▪ random(), randomize()

▪ gen_pulse()

▪ block_flag(), unblock_flag(), await_unblock_flag()

▪ await_barrier()

▪ enable_log_msg(), disable_log_msg()

▪ to_string(), fill_string(), to_upper(), replace(), etc…

▪ normalize_and_check()

▪ set_log_file_name(), set_alert_file_name()

▪ wait_until_given_time_after_rising_edge()

▪ etc…

UVVM Utility Library

UVVM - Bringing UVM to VHDL8

Simple data communication

May use Utility Library

and provided BFMs

DUT (UART)

p_main (test-sequencer)

RX TXBFM BFM

uart_transmit(x"2A")

sbi_check(C_RX, x"2A")

sbi_write(C_TX, x"B3")
uart_expect(x"B3")

TB: 172 ns. uart_tb uart_transmit(x2A) on UART RX

TB: 192 ns. uart_tb sbi_check(x1, ==> x2A) completed. From UART RX

TB: 192 ns. uart_tb sbi_write(x2, ==> xB3) completed. To UART TX

TB: ERROR:

TB: 192 ns. uart_tb

TB: value was: 'xB2'. expected 'xB3'.

TB: (From uart_expect(xB3))

TB:==

Free, Open source BFMs:

UART, AXI4-lite, SPI, I2C,
Avalon MM, AXI4-stream,
Avalon stream, GPIO, SBI,
GMII, RGMII, ...

SBI

Quick References are provided

UVVM - Bringing UVM to VHDL9

p_main
(test-sequencer)
…
axis…_tx(data, …);
axis…_rx(data, …);

…

▪ No test harness (for simplicity)

▪ Sequencer has direct access
to DUT signals

• Thus BFMs from p_main can
also see the DUT signals

AXI-stream - BFM based TB
- as simple as possible

clock_generator

UVVM_Light (from github)

uvvm_util (library)

log, check_value, await_value, etc…

clock_generator()

axistream_transmit(data, ...) (procedure)

axistream_receive(data, ...) (procedure)

axistream_expect(data, ...) (procedure)

etc…

▪ Simplified UVVM

• For simple usage

▪ Subset of UVVM
No VVCs or VCC support

▪ All BFMs in the same
directory and library

BFM based Testbench

Only need to download from Github (clone or zip) and compile (total 5 min)

UVVM - Bringing UVM to VHDL10

Resulting transcript +Debug

axistream_transmit(v_byte_array, msg, clk, m_axis);

ID_BFM 122.0 ns axistream_expect(3B)=> OK, received 3B.

ID_BFM 106.0 ns axistream_transmit(3B)=> Tx DONE.

axistream_expect(v_exp_array(0 to 2), "", clk, s_axis);

May add more info for debugging

enable_log_msg(ID_PACKET_INITIATE); enable_log_msg(ID_PACKET_DATA);

ID_PACKET_INITIATE 52.0 ns axistream_transmit(3B)=>

ID_PACKET_DATA 52.0 ns axistream_transmit(3B)=> Tx x"00", byte# 0.

ID_PACKET_DATA 68.0 ns axistream_transmit(3B)=> Tx x"01", byte# 1.

ID_PACKET_DATA 82.0 ns axistream_transmit(3B)=> Tx x"02", byte# 2.

ID_PACKET_COMPLETE 106.0 ns axistream_transmit(3B)=> Tx DONE.

May add similar debugging info for data reception

Note: Removed Prefix and Scope to show on a single line.

UVVM - Bringing UVM to VHDL11

Documentation BFM

Similar docs for all BFMs

UVVM - Bringing UVM to VHDL12

Documentation BFM

- Syntax + Overloads
- Examples
- Explanations

Configuration
- Protocol Behaviour
- Compliance checking
- Simulation set-up

Defaults are fine…

UVVM - Bringing UVM to VHDL13

Compiling UVVM Light

vsim -c -do "do ../script/compile.do ../ ."

UVVM - Bringing UVM to VHDL14

BFM procedures are not sufficient

- BFMs are great for simple testbenches

- Dedicated procedures in a simple package

- Just reference and call from a process

- BUT

- A process can only do one thing at a time

- Either execute that BFM

- Or execute another BFM

- Or do something else

- To do more than one thing:
→ Need an entity (or component)

(VC = Verification Component)

BFM: Defined here as a procedure only

uart_expect(x"B3")

sbi_write(C_TX, x"B3")

VVC: VHDL Verification Component (UVVM VC with extended functionality)

UVVM - Bringing UVM to VHDL15

VVC: VHDL Verification Component

SBI_VVC

Testcase

Sequencer SBI_VVC

UART (DUT)

RX

Other Ports

Clocks

Bus interface

TX

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

UVVM - Bringing UVM to VHDL16

RX

BFM to VVC: How?

uart_expect(x"B3")

sbi_write(C_TX, x"B3")sbi_write(SBI_VVCT,1, C_TX, x"B3")

uart_expect(UART_VVCT, 1, RX, x"B3")

TX

UVVM VVCs also include:
Delay-insertion, command queuing, completion detection, activity registration,
multicast & broadcast, termination, set-up, data fetch, multi-channel support,
interface checkers, scoreboards, transaction info, local sequencers, etc …

UVVM - Bringing UVM to VHDL17

AXI-stream - VVC based TB (1)

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream

Slave VVC

AXI4-
Stream

Master VVC

Clock-Gen
VVC

VVC based Test harness

axistream_transmit(target, data, …);
axistream_expect(target, data, …);

UVVM - Bringing UVM to VHDL18

AXI-stream - VVC based TB (2)

UVVM (from github)

uvvm_util (library)

log, check_value, await_value, etc…

▪ Full UVVM (all functionality)

▪ Dedicated library per VVC

• For simpler reuse

▪ All VIP-related functionality
in dedicated VIP directories

▪ Script to compile all UVVM

• Compile all, but
Just include what you need

bitvis_vip_clock_generator (library)

clock_generator_vvc (VVC)

start_clock, ... (procedures / methods)

clock_generator_vvct (global signal)

bitvis_vip_axistream (library)

axistream_vvc (VVC)

axistream_transmit, ... (procedures / methods)

axistream_vvct (global signal) Generic to select Master or Slave

UVVM - Bringing UVM to VHDL19

Resulting transcript +Debug

ID_UVVM_SEND_CMD 50.0 ns TB seq.(uvvm)

->axistream_expect_bytes(AXISTREAM_VVC,1, 512b): 'Expecting 512b' [7]

Note the changing scope

axistream_expect(AXISTREAM_VVCT,1, v_exp_array, "Expecting **** ");

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

ID_UVVM_SEND_CMD 50.0 ns TB seq.(uvvm) axistream_transmit(AXISTREAM_VVC,0, 512 bytes): TX 512B [6] ID_UVVM_SEND_CMD 50.0 ns TB seq.(uvvm)

->axistream_transmit(AXISTREAM_VVC,0, 512 bytes): 'TX 512B' [6]

ID_PACKET_COMPLETE 24346.0 ns AXISTREAM_VVC,0

axistream_transmit(512B)=> Tx DONE. 'TX 512B' [6]

ID_PACKET_DATA 24202.0 ns AXISTREAM_VVC,0

axistream_transmit(512B)=> Tx x"ED", byte# 493. 'TX 512B' [6]

- Plus similar additional verbosity as for Transmit

- Plus for both: Debug-messages when command reaches Interpreter and Executor

UVVM - Bringing UVM to VHDL20

UVVM - Bringing UVM to VHDL21

Documentation VVC

Similar docs for all
BFMs, VVCs,

UVVM and other VIP

UVVM - Bringing UVM to VHDL22

Documentation VVC

- Syntax + Overloads
- Examples
- Explanations

- BFM Config as for BFM

- Additional VVC setup

Defaults are fine…

Compiling UVVM

\script> vsim -c -do "compile_all.do"

UVVM - Bringing UVM to VHDL23

*_VVC

VVC: Easy to extend

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

- Easy to add local sequencers
- Easy to add checkers/monitors/etc

UVVM - Bringing UVM to VHDL24

*_VVC

FIFO

VVC: Easy to extend

Interpreter

- Is command for me?

- Is it to be queued?

- If not:
Case on what to do

Executor

- Fetch from queue

- Case on what to do

- Call relevant BFM(s)
& Execute transaction

Command
Queue

Bit-rate checker

Frame-rate checker

Gap checker

Queue

Response-Executor

- Easy to handle split transactions

- Easy to handle out of order execution

UVVM - Bringing UVM to VHDL25

▪ Simultaneous activity on multiple interfaces

▪ Encapsulated → Reuse at all levels

▪ Queue → May initiate multiple high level commands

▪ Local Sequencers for predefined higher level commands

▪ Only in UVVM VVCs:

• UNIQUE: Control all VVCs from a single sequencer!

• May insert delay between commands – from sequencer
→ The only system to target cycle related corner cases

• Simple handling of split transactions and out of order protocols

• Common commands to control VVC behaviour

• Simple synchronization of interface actions – from sequencer

• May use Broadcast and Multicast

VVC Advantages

Better Overview, Maintenance, Extensibility and Reuse

UVVM - Bringing UVM to VHDL26

VVC

VVC

VVC

VVC

VVC

VVC

VVC

VVC

Keeping the overview

PIF

SPI

P3

ETH ETH

P1

P2

uart

DMA

Intr
ctrl

Test
seq.

FPGA

- May use any number of VVCs

- May use any number of instances of each VVC type

- May control them all simultaneously – and also control command delays

- May control all from a single test sequencer (or two – or more)

- Get total overview by looking at one file of sequential commands only

UVVM - Bringing UVM to VHDL27

• AXI4-lite

• AXI4 Full

• AXI-Stream Transmit and Receive

• UART Transmit and Receive

• SBI

• SPI Transmit and Receive

• I2C Transmit and Receive

• GPIO

• Avalon MM

• Avalon Stream Transmit and Receive

• RGMII Transmit and Receive

• GMII Transmit and Receive

• Ethernet Transmit and Receive

• Wishbone

• Clock Generator

• Error Injector

Lot’s of free UVVM BFMs and VVCs

All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection
of

VHDL Interface Models

VVC: VHDL Verif. Comps.
- Includes the corresponding BFM
Allows:
- Simultaneous interface handling
- Synchronization of interfaces
- Skewing between interfaces
- Additional protocol checkers
- Local sequencers
- Activity detection
- Simple reuse between projects

UVVM - Bringing UVM to VHDL28

The newer stuff – in cooperation with ESA

▪ ESA Extensions in ESA-UVVM-1

• Scoreboards

• Monitors

• Controlling randomisation and functional coverage

• Error injection (Brute force and Protocol aware)

• Local sequencers

• Controlling property checkers

• Watchdog (Simple and Activity based)

• Transaction info

• Hierarchical VVCs - And Scoreboards for these

• Specification Coverage (Requirement/test coverage)

ESA is helping VHDL designers speed up
FPGA and ASIC development and
improve their product quality!

UVVM - Bringing UVM to VHDL29

Transaction info transfer

Some func.

UART SBI

SBI_SB

Seq.

VVC?
VVC?

SBI_VVCUART_VVC

DUT model

Transaction info Inside VVC All UVVM VVCs

UVVM - Bringing UVM to VHDL30

Generic Scoreboard

Compare

Statistics

Expected
data

Actual
data

Queue

Statistics

▪ insert, delete, fetch

▪ ignore_initial_mismatch

▪ indexed on either entry or position

▪ optional source element (in addition to expected + actual)

Counting:

▪ entered

▪ pending

▪ matched

▪ mismatched

▪ dropped

▪ deleted

▪ initial garbage

generic data type

▪ logging/reporting

▪ flushing queue

▪ clearing statistics

Configuration record:

▪ allow_lossy

▪ allow_out_of_order

▪ mismatch_alert_level

▪ etc...

Quick Reference is provided

UVVM - Bringing UVM to VHDL31

Advanced scoreboard-based TB

p_main
(test-sequencer)

…
axis…_tx(target, data, …);
axis…_rx(target, data, …);

…

VVC based Testbench

AXI4-
Stream

Slave VVC

AXI4-
Stream

Master VVC

Clock-Gen
VVC

VVC based Test harness

DUT
Model

AXI4- Stream
Scoreboard

axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);

axistream_receive(AXISTREAM_VVCT,1, v_data_array, "Checking via SB");

UVVM - Bringing UVM to VHDL32

Watchdogs

Some func.

UART SBI

SBI_SB

Seq.

VVC?
VVC?

SBI_VVCUART_VVC

DUT model

Simple WD Inside Util

Activity WD VVCs and UVVM

WD

Activity Watchdog.

activity_watchdog(timeout, num_exp_vvc);

Apply both concurrently

UVVM - Bringing UVM to VHDL33

▪ Assure that all requirements have been verified

1.Specify all requirements

2.Report coverage from test sequencer (or other TB parts)

3.Generate summary report

▪ Solutions exist to report that a testcase finished successfully

• BUT - reporting that a testcase has finished is not sufficient

Specification Coverage (1)

Requirement Label Description

MOTOR_R1 The acceleration shall be ***
MOTOR_R2 The top speed shall be given by ***

MOTOR_R3 The deceleration shall be ***

MOTOR_R4 The final position shall be ***

UVVM - Bringing UVM to VHDL34

▪ What if multiple requirements are
covered by the same testcase?

• E.g. Moving/turning something to a to a given position
R1: Acceleration R2: Speed R3: Deceleration 4: Position etc..

▪ Generates various types of reports

• Coverage per requirement

• Test cases covering each requirement

• Requirements covered by each Test case

▪ Accumulated over multiple Test cases

Specification Coverage (2)

TC1

TC2
TC3
TC4

R1

R2
R3

R4

TC1
R2 R3 R4R1VS

UVVM - Bringing UVM to VHDL35

▪ Enhanced Randomisation

• Advanced randomisation in a simple way

▪ Optimised Randomisation

• Randomisation without replacement

• Weighted according to target distribution AND previous events

→ the lowest number of randomisations for a given target

▪ Functional Coverage

• Based on functional coverage in SV

 But in VHDL, and without all the complexity of SV and UVM

• Fully integrated with UVVM, but may be used stand-alone

The brand new stuff – October 2021

UVVM - Bringing UVM to VHDL36

▪ Well integrated with UVVM

• Alert handling and logging in particular

▪ Strong focus on Overview & Readability

• Adding keywords to ease understanding

▪ Easy to Maintain and Extend

UVVM Enhanced Randomisation

Typing code consumes is an insignificant part of the development time.

Reading and understanding code is repeated over and over again, and

is thus a significant part of the development time

➔ Investing in better code yields a huge return on investment

Quality & Efficiency enablers

UVVM - Bringing UVM to VHDL37

▪ "Standard" approach: Randomisation in one single command

• Simple randomisation is always easy to understand

• More complex randomisation is normally more difficult to understand

BUT – there are ways to significantly improve this

• Similar readability focus for weighting

Single Method approach

addr <= my_addr.rand(0, 18, EXCL,(7));

addr <= my_addr.rand(0, 18);

addr <= my_addr.rand(0, 18, ADD,(30,31));

addr <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

addr <= my_addr.rand_val_weight((0,2),(1,3),(2,5));

addr <= my_addr.rand_range_weight((0,18,4),(19,31,1));

UVVM - Bringing UVM to VHDL38

▪ Extends the functionality of the single method approach

• Single method approach:

• Multi-method - equivalent

• Allows adding more ranges, sets or exclusions

• Allows simple inclusion of future extensions

Multi-method approach (1)

addr_1 <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

addr_2 <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));

my_addr.add_range(0, 18);

my_addr.add_val((30,31));

my_addr.excl_val((7));

addr_1 <= my_addr.randm(VOID);

addr_2 <= my_addr.randm(VOID);

Note: randm()
(For clarity
and to avoid any ambiguity)

my_addr.add_range(48,63);

my_addr.add_range(80,127);

UVVM - Bringing UVM to VHDL39

▪ Define a variable of type t_coverpoint

▪ Add the bins

▪ Tick off bins as their corresponding payload size is used

▪ Continue sending packets until coverage target is reached

Functional Coverage
– Typical Sequence

variable cp_payload_size : t_coverpoint;

cp_payload_size.add_bins(bin(0));

cp_payload_size.add_bins(bin(1));

cp_payload_size.add_bins(bin_range(2,254,1));

cp_payload_size.add_bins(bin(255,256,2));

cp_payload_size.sample_coverage(payload_size);

while not cp_payload_size.coverage_completed(VOID);

UVVM - Bringing UVM to VHDL40

UVVM also has transition coverage

Some reports – out of many

UVVM - Bringing UVM to VHDL41

▪ Pick any Utility Library functionality: (from these plus more)

▪ Pick any BFM - or any VVC – or any combination

▪ Pick any FIFO, Queue, Scoreboard

▪ Pick any Advanced Randomisation and/or Functional Coverage

▪ Pick Specification coverage / Requirements tracking

Pick and choose – No lock

log() alert() error() manual_check()

check_value() check_stable() await_stable()

await_change() await_value() check_value_in_range()

random() randomize() report_***() enable_log_msg()

justify() fill_string() to_upper() replace()

clock_generator() await_unblock_flag() await_barrier()

AXI4-lite

AXI4-stream

I2CSBI SPI UARTGPIO

CLOCK_GENERATOR

AVALON MM Avalon-streamAXI

GMII RGMII Ethernet

UVVM - Bringing UVM to VHDL42

Standardized? – In what way?

- Standard Interface
- Standard Protocol
- Standard common commands
- Standard Status interface
- Standard Config interface
- Standard handling of multiple VVCs
- Standard VVC synchronization
- Standard multicast/broadcast

- Standard VVC internal
architecture

- Standard VVC control of checkers
- Standard queuing system
- Standard handling of

multi-threaded interfaces
- Standard debug support

Simplification

Users know how VVCs behave and how any test harness will work

VVCs from different users will work together

UVVM - Bringing UVM to VHDL43

UVVM vs UVM

▪ UVVM: VHDL (2008) vs UVM: SystemVerilog

▪ UVVM: Component oriented vs UVM: Object oriented

▪ Block diagrams are similar, but different naming and structure

▪ UVM is far more comprehensive and complex than UVVM

• But UVVM is sufficient for almost all testbenches

▪ UVVM user threshold is a fraction of the UVM threshold – for VHDL users

• UVVM is just a step-by-step evolution on VHDL

▪ UVVM allows a gentle introduction to modern verification

• May be used as a first step to UVM – for those who evaluate that

• Is however sufficient in itself for almost all FPGA designs

▪ UVVM can run on any VHDL 2008 compatible simulator

• Is included with Modelsim, Questa and Riviera-PRO

UVVM - Bringing UVM to VHDL44

UVVM targets all of this

UVVM in a nutshell

▪ Huge improvement potential for more structured FPGA verification

UVVM (incl. all) is Open Source

UVVM has the largest collection of
interface models (as BFMs and VVCs)

UVVM may save 200-2000 hours
on a medium complex project

And at the same time improve
TTM, MTBF & LCC

Structure & Architecture
Structure & Architecture

Simplicity

Overview, Readability

Modifiability, Maintainability, Extensibility

Debuggability

Reusability

Usage is exploding

- World-wide number 1 for VHDL
- Fastest growing – of all

UVVM - Bringing UVM to VHDL45

Game changer for efficiency & quality

▪ FPGA (and ASIC) Verification:
'Advanced VHDL Verification – Made simple'

▪ FPGA (and ASIC) Design:
'Accellerating FPGA and Digital ASIC Design'

▪ Courses on demand/request anywhere: On-site, Online, Public,

Courses

Design

- Design Architecture & Structure
- Clock Domain Crossing
- Coding and General Digital Design
- Reuse and Design for Reuse
- Timing Closure
- Quality Assurance - at the right level
- Faster and safer design

Verification

- Verification Architecture & Structure
- Self checking testbenches
- BFMs – How to use and make
- Checking values, time aspects, etc
- Verification components
- Advanced Verif: Scoreboard, Models, etc
- State-of-the-art verification methodology

https://emlogic.no/courses/

UVVM - Bringing UVM to VHDL46

Not included in
the presentation

https://emlogic.no/courses/

