

UVVM Bringing UVM to VHDL

DVCon U.S. 2022, 3rd March 2022

EmLogic.no

The Norwegian Embedded Systems and FPGA Design Centre

- Independent Design Centre for Embedded Systems and FPGA
- Established 1st of January 2021. Extreme ramp up
 - January 2021: 1 person
 - January 2022: \rightarrow 19 persons (SW:6, HW:2, FPGA:10) **And still growing...**
- Continues the legacy from

- All previous Bitvis technical managers are now in EmLogic
- Verification IP and Methodology provider $\bigcup \bigvee \bigvee M$
- Course provider within FPGA Design and Verification
 - Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, ...)
 - Advanced VHDL Verification Made simple (Modern efficient verification using UVVM)

UVVM = Universal VHDL Verification Methodology VHDL Verification Library & Methodology

- Free and Open Source
- Very structured infrastructure and architecture
- Significantly improves Verification Efficiency
- Assures a far better Design Quality
- Recommended by Doulos for Testbench architecture
- ESA projects to extend the functionality
- IEEE Standards Association Open source project
- Included with various simulators
- Runs on GHDL

20

SIEMENS Mentor

UVVM: UVM for VHDL designers

VHDL was declared as "dying" already in 2003 - and in 2007, - and

BUT - According to Wilson research September 2020:

VHDL for FPGA: >50% world-wide

UVVM – World-wide

FEBRUARY 28 - MARCH 3, 2022

Example on test sequencer code and transcript/log

UVVM Utility Library

Testbench infrastructure library

- log(), alert(), report_alert_counters()
- check_value(), await_value()
- check_stable(), await_stable()
- clock_generator(), adjustable_clock_generator()
- random(), randomize()
- gen_pulse()
- block_flag(), unblock_flag(), await_unblock_flag()
- await_barrier()
- enable_log_msg(), disable_log_msg()
- to_string(), fill_string(), to_upper(), replace(), etc...
- normalize_and_check()
- set_log_file_name(), set_alert_file_name()
- wait_until_given_time_after_rising_edge()

• etc...

Simple data communication

AXI-stream - BFM based TB - as simple as possible

- No test harness (for simplicity)
- Sequencer has direct access to DUT signals
 - Thus BFMs from p_main can also see the DUT signals
- Simplified UVVM
 - For simple usage
- Subset of UVVM No VVCs or VCC support
- All BFMs in the same directory and library

Only need to download from Github (clone or zip) and compile (total 5 min)

Resulting transcript +Debug

Note: Removed Prefix and Scope to show on a single line.

May add more info for debugging

e	enable_log_msg(ID_PACK	ET_INITIATE	<pre>s); enable_log_msg(ID_PACKET_DATA);</pre>
	ID_PACKET_INITIATE	52.0 ns	<pre>axistream_transmit(3B) =></pre>
	ID_PACKET_DATA	52.0 ns	<pre>axistream_transmit(3B)=> Tx x"00", byte# 0.</pre>
	ID_PACKET_DATA	68.0 ns	<pre>axistream_transmit(3B) => Tx x"01", byte# 1.</pre>
	ID_PACKET_DATA	82.0 ns	<pre>axistream_transmit(3B) => Tx x"02", byte# 2.</pre>
	ID_PACKET_COMPLETE	106.0 ns	<pre>axistream_transmit(3B) => Tx DONE.</pre>

May add similar debugging info for data reception

Documentation BFM

Similar docs for all BFMs

Documentation BFM

AXI4-Stream BFM – Quick Reference

- Syntax + Overloads
- Examples
- Explanations

AXI4-Stream Master (see page 2 for AXI4-Stream Slave)

axistream_transmit[_bytes] (data_array, [BFM Configuration record 't_axis	tream_bfm_config′	
Example (tdata'length = 16) : axistream_transmit ((x"D0" Example (tdata'length = 8) : axistream_transmit ((x"D0"	Record element	Type	C_AXISTREAM_BFM_CONFIG_DEFAULT
Example: axistream_transmit(v_data_array(0 to v_numByt Example: axistream_transmit(v_data_array(0 to v_numByt Example: axistream_transmit(v_data_array(0 to v_numByt	max_wait_cycles_severity clock_period	t_alert_level time	ERROR -1 ns One Defaults are fine
Example: axistream_transmit(v_data_array(0 to v_numByt	clock_margin_severity	t_alert_level	TB_ERROR
Note! Use axistream_transmit_bytes () when using t_byte_	setup_time	time	-1 ns
Configuration	hold_time	time	-1 ns
	bfm_sync	t_bfm_sync	SYNC_ON_CLOCK_ONLY
	match_strictness	t_match_strictness	MATCH_EXACT
- Protocol Behaviour	byte_endianness	t_byte_endianness	FIRST_BYTE_LEFT
	valid_low_at_word_num	integer	0
	valid_low_multiple_random_prob	real	0.5
- Compliance checking	valid_low_duration	integer	0
	valid_low_max_random_duration	integer	5
- Simulation set-up	check_packet_length	boolean	false
	protocol_error_severity	t_alert_level	ERROR
	ready_low_at_word_num	integer	0
	ready_low_multiple_random_prob	real	0.5
	ready_low_duration ready_low_max_random_duration	integer integer	0 5 '0'
	id_for_bfm	t_msg_id	ID_BFM

Compiling UVVM Light

- avalon_st_btm_QuickKet.pdf
 axi_bfm_QuickRef.pdf
 axilite_bfm_QuickRef.pdf
 axistream_bfm_QuickRef.pdf
 gmii_bfm_QuickRef.pdf
- gpio_bfm_QuickRef.pdf
- li2c_bfm_QuickRef.pdf
- internal_uvvm_guide.docx

vsim -c -do "do ../script/compile.do ../ ."

BFM procedures are not sufficient

BFM: Defined here as a procedure only

- BFMs are great for simple testbenches
 - Dedicated procedures in a simple package
 - Just reference and call from a process
- BUT
 - A process can only do one thing at a time
 - Either execute that BFM
 - Or execute another BFM
 - Or do something else
- To do more than one thing:
 → Need an entity (or component)
 (VC = Verification Component)

sbi_write(C_TX, x"B3")
uart_expect(x"B3")

VVC: VHDL Verification Component (UVVM VC with extended functionality)

VVC: VHDL Verification Component

BFM to VVC: How?

UVVM VVCs also include:

Delay-insertion, command queuing, completion detection, activity registration, multicast & broadcast, termination, set-up, data fetch, multi-channel support, interface checkers, scoreboards, transaction info, local sequencers, etc ...

AXI-stream - VVC based TB (1)

axistream_transmit(target, data, ...);
axistream_expect(target, data, ...);

AXI-stream - VVC based TB (2)

Resulting transcript +Debug

Note the changing scope

<pre>axistream_transmit(AXISTREAM_VVCT,0, v_data_array, msg);</pre>	
ID_UVVM_SEND_CMD 50.0 ns TB seq.(uvvm) ->axistream_transmit(AXISTREAM_VVC,0, 512 bytes): 'TX 512B' [6]	
ID_PACKET_DATA 24202.0 ns AXISTREAM_VVC,0 axistream_transmit(512B)=> Tx x"ED", byte# 493. 'TX 512B' [6]	
ID_PACKET_COMPLETE 24346.0 ns AXISTREAM_VVC,0 axistream_transmit(512B)=> Tx DONE. 'TX 512B' [6]	

axistream_expect(AXISTREAM_VVCT,1, v_exp_array, "Expecting **** "); ID_UVVM_SEND_CMD 50.0 ns TB seq.(uvvm) ->axistream_expect_bytes(AXISTREAM_VVC,1, 512b): 'Expecting 512b' [7] - Plus similar additional verbosity as for Transmit - Plus for both: Debug-messages when command reaches Interpreter and Executor

Documentation VVC

Similar docs for all BFMs, VVCs, UVVM and other VIP

Documentation VVC

VVC procedure details 1

P	rocedure	Description							
a	xlstream_transmit[_bytes]()	axistream_transmit[_bytes] (VVCT, vvc_instance_idx, data_array, [user_array, [strb_array, id_array, dest_array]], msg, [scope])							
		The axistream_transmit(commands have comple the AXI4-Stream BFM Q The axistream_transmit('GC_MASTER_MODE' to) VVC procedure adds a transmit command to the AXI4- ted. When the command is scheduled to run, the execut uickRef.) procedure can only be called when the AXISTREAM V o true.	Stream VVC exe for calls the AXI4 VC is instantiated - Examples - Explanations					
		Examples:							
ſ	3 VVC Configuration								
	Record element	Туре	C_AXISTREAM_BFM_CONFIG_DEFAULT	Description					
	inter_bfm_delay	t_inter_bfm_delay	C_AXISTREAM_INTER_BFM_DELAY_DEFAULT	Delay between any requested BFM accesses towards the DUT.					
	DEM Config of			- TIME_START2START: Time from a BFM start to the next BFM start					
-	• BFM Config as t	OL REM	Dofaults are fine	(A TB_WARNING will be issued if access					
			Delauits are fille	takes longer than TIME_START2START).					
_	Additional V/VC	setun		Any insert_delay() command will add to the above minimum delays, giving for instance					
4		Setup		the ability to skew the BFM starting time.					
	cmd_queue_count_max	natural	C_CMD_QUEUE_COUNT_MAX	Maximum pending number in command queue before queue is full. Adding additional					
				commands will result in an ERROR.					
	cmd_queue_count_threshold	natural	C_CMD_QUEUE_COUNT_THRESHOLD	An alert with severity "cmd_queue_count_threshold_severity" will be issued if command					
				queue exceeds this count. Used for early warning if command queue is almost full. Will					
-	and more provide the sheld a second	A alast laval		be ignored if set to 0.					
	cmd_queue_count_threshold_seventy	t_alert_level	C_CMD_QUEUE_COUNT_THRESHOLD_SEVERITY	Severity of alert to be initiated if exceeding cmd_queue_count_threshold Maximum number of unfetched results before result, queue is full.					
	result_queue_count_threshold	natural		Maximum number of untetched results before result_queue is full.					
	lesuit_queue_count_uneshold	naturai	C_NESOET_QOEDE_COONT_THRESHOED	queue exceeds this count. Used for early warning if result queue is almost full. Will be					
ignored if set to 0.									
	result _queue_count_threshold_severity	t_alert_level	C_RESULT_QUEUE_COUNT_THRESHOLD_SEVERITY	Severity of alert to be initiated if exceeding result_queue_count_threshold					
	bfm_config	t_axistream_bfm_config	C_AXISTREAM_BFM_CONFIG_DEFAULT	Configuration for AXI4-Stream BFM. See quick reference for AXI4-Stream BFM					
	msg_id_panel	t_msg_id_panel	C_VVC_MSG_ID_PANEL_DEFAULT	VVC dedicated message ID panel. See section 16 of					
				uvvm_vvc_framework/doc/UVVM_VVC_Framework_Essential_Mechanisms.pdf for how					
	The configuration second are been	encoded from the Control	Taskanah Osayanaa kasush ka ahaa duusishis	to use verbosity control.					
	The configuration record can be accessed from the Central Testbench Sequencer through the shared variable array. e.g.:								

shared_axistream_vvc_config(1).inter_bfm_delay.delay_in_time := 50 ns; shared_axistream_vvc_config(1).bfm_config.clock_period := 10 ns;

Compiling UVVM

	100/04	
~	UVVIVI-master	bitvis_vip_gpio
	supplementary_doc	bitvis_vip_hvvc_to_vvc_bridge
>	bitvis_irqc	bitvis_vip_i2c
>	bitvis_uart	bitvis_vip_rgmii
>	bitvis_vip_avalon_mm	bitvis_vip_sbi
>	bitvis_vip_avalon_st	bitvis_vip_scoreboard
>	bitvis_vip_axi	bitvis_vip_spi
>	bitvis_vip_axilite	bitvis_vip_uart
>	bitvis_vip_axistream	bitvis_vip_wishbone \script> vsim -c -do "compile_all.do"
>	bitvis_vip_clock_generator	script
>	bitvis_vip_error_injection	uvvm_util
>	bitvis_vip_ethernet	
>	📙 bitvis_vip_gmii	
>	hitvis_vip_gpio	GETTING_STARTED.md
>	bitvis_vip_hvvc_to_vvc_bridge	
>	bitvis_vip_i2c	The easiest way to complie the complete UVVM with everything (Utility Library,
	V	C Framework, BFMS, VVCS, etc.) is to go to the top-level script directory and
	ri	<pre>in 'compile_all.do' inside Modelsim/Questasim/RivieraPro/ActiveHDL.</pre>

VVC: Easy to extend

Easy to add local sequencers Easy to add checkers/monitors/etc

VVC: Easy to extend

- Easy to handle split transactions
- Easy to handle out of order execution

VVC Advantages

- Simultaneous activity on multiple interfaces
- Encapsulated \rightarrow Reuse at all levels
- Queue \rightarrow May initiate multiple high level commands
- Local Sequencers for predefined higher level commands

• Only in UVVM VVCs:

- UNIQUE: Control all VVCs from a single sequencer!
- May insert delay between commands from sequencer
 → The only system to target cycle related corner cases
- Simple handling of split transactions and out of order protocols
- Common commands to control VVC behaviour
- Simple synchronization of interface actions from sequencer
- May use Broadcast and Multicast

Better Overview, Maintenance, Extensibility and Reuse

Keeping the overview

- May use any number of VVCs

- May use any number of instances of each VVC type
- May control them all simultaneously and also control command delays
- May control all from a single test sequencer (or two or more)
- Get total overview by looking at one file of sequential commands only

Lot's of free UVVM BFMs and VVCs

- AXI4-lite
- AXI4 Full
- AXI-Stream Transmit and Receive
- UART Transmit and Receive
- SBI
- SPI Transmit and Receive
- I2C Transmit and Receive
- GPIO
- Avalon MM
- Avalon Stream Transmit and Receive
- RGMII Transmit and Receive
- GMII Transmit and Receive
- Ethernet Transmit and Receive
- Wishbone
- Clock Generator
- Error Injector

All:

- Free
- Open Source
- Well documented
- Example Testbenches

The largest collection of VHDL Interface Models

VVC: VHDL Verif. Comps.

- Includes the corresponding BFM Allows:

- Simultaneous interface handling
- Synchronization of interfaces
- Skewing between interfaces
- Additional protocol checkers
- Local sequencers
- Activity detection
- Simple reuse between projects

The newer stuff – in cooperation with ESA

- ESA Extensions in ESA-UVVM-1
 - Scoreboards
 - Monitors
 - Controlling randomisation and functional coverage
 - Error injection (Brute force and Protocol aware)
 - Local sequencers
 - Controlling property checkers
 - Watchdog (Simple and Activity based)
 - Transaction info
 - Hierarchical VVCs And Scoreboards for these
 - **Specification Coverage** (Requirement/test coverage)

ESA is helping VHDL designers speed up FPGA and ASIC development and improve their product quality!

Transaction info transfer

Transaction info Inside VVC All UVVM VVCs

esa

Generic Scoreboard

- insert, delete, fetch
- ignore_initial_mismatch
- indexed on either entry or position
- optional source element (in addition to expected + actual)

deleted

Watchdogs

activity_watchdog(timeout, num_exp_vvc);

- Assure that all requirements have been verified
 - 1. Specify all requirements

Requirement Label	Description
MOTOR_R1	The acceleration shall be ***
MOTOR_R2	The top speed shall be given by ***
MOTOR_R3	The deceleration shall be ***
MOTOR_R4	The final position shall be ***

2.Report coverage from test sequencer (or other TB parts)3.Generate summary report

- Solutions exist to report that a testcase finished successfully
 - BUT reporting that a testcase has finished is not sufficient

Specification Coverage (2)

etc..

What if multiple requirements are covered by the same testcase?

Requirement Label	Description
MOTOR_R1	The acceleration shall be ***
MOTOR_R2	The top speed shall be given by ***
MOTOR_R3	The deceleration shall be ***
MOTOR_R4	The final position shall be ***

• E.g. Moving/turning something to a to a given position R1: Acceleration R2: Speed R3: Deceleration 4: Position

- Generates various types of reports
 - Coverage per requirement
 - Test cases covering each requirement
 - Requirements covered by each Test case
- Accumulated over multiple Test cases

The brand new stuff – October 2021

- Enhanced Randomisation
 - Advanced randomisation in a simple way
- Optimised Randomisation
 - Randomisation without replacement
 - Weighted according to target distribution AND previous events
 - \rightarrow the lowest number of randomisations for a given target
- Functional Coverage
 - Based on functional coverage in SV
 - But in VHDL, and without all the complexity of SV and UVM
 - Fully integrated with UVVM, but may be used stand-alone

UVVM Enhanced Randomisation

Well integrated with UVVM

- Alert handling and logging in particular
- Strong focus on Overview & Readability
 - Adding keywords to ease understanding
- Easy to Maintain and Extend

Quality & Efficiency enablers

Structure & Architecture	Simplicity			
Overview, Readab	ility			
Modifiability, Maintainability	, Extensibility			
Debuggability				
Reusability				

Single Method approach

"Standard" approach: Randomisation in one single command

Simple randomisation is always easy to understand

addr <= my_addr.rand(0, 18);</pre>

 More complex randomisation is normally more difficult to understand BUT – there are ways to significantly improve this

Similar readability focus for weighting

Multi-method approach (1)

- Extends the functionality of the single method approach
 - Single method approach:

```
addr_1 <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));
addr_2 <= my_addr.rand(0, 18, ADD,(30,31), EXCL,(7));</pre>
```

Multi-method - equivalent

```
my_addr.add_range(0, 18);
my_addr.add_val((30,31));
my_addr.excl_val((7));
addr_1 <= my_addr.randm(VOID);
addr_2 <= my_addr.randm(VOID);</pre>
```

Note: rand**m**() (For clarity and to avoid any ambiguity)

Allows adding more ranges, sets or exclusions

```
my_addr.add_range(48,63);
my_addr.add_range(80,127);
```

Allows simple inclusion of future extensions

Functional Coverage – Typical Sequence

2-254

Define a variable of type t_coverpoint

variable cp_payload_size : t_coverpoint;

Add the bins

```
cp_payload_size.add_bins(bin(0));
cp_payload_size.add_bins(bin(1));
cp_payload_size.add_bins(bin_range(2,254,1));
cp_payload_size.add_bins(bin(255,256,2));
```

Tick off bins as their corresponding payload size is used

cp_payload_size.sample_coverage(payload_size);

Continue sending packets until coverage target is reached

while not cp_payload_size.coverage_completed(VOID);

UVVM also has transition coverage

Some reports – out of many

# UVV	M: =====										
# UVV	UVVM: 0 NS *** COVERAGE SUMMARY REPORT (NON VERBOSE): IB seq. ***										
# UVV	M:										
# UVV	M. Cover	point:		Hitc: 76 478							
# UVV	M: cover	age (IOI goal 100). Din	5. 00.00%,	HILS: 70.47%	/						
# UVV	M:	BINS	HITS	MIN HITS	HIT COVERAGE		NAME	ILLEGAL/IGNORE			
# UVV	M:	(256 to 511)	1	N/A	N/A	ille	egal_addr	ILLEGAL			
# UVV	M:	(0 to 125)	6	8	75.00%	mem_	_addr_low	-			
# UVV	M:	(126, 127, 128)	3	1	100.00%	mem_	_addr_mid	-			
# UVV	M:	(129 to 255)	14	4	100.00%	mem_	_addr_high	-			
# UVV	M:	(0->1->2->3)	0	2	0.00%	trar	nsition_1	-			
# UVV	M:	transition_2	2	2	100.00%	trar	nsition_2	-			
# UVV	M:										
# UVV	M: trans	ition_2: (0->15->127->2	48->249->25	0->251->252->2	53->254)						
# UVV	M: =====										
	# UVVM:										
	# UVVM:	0 ns ** OVERALL COVER	AGE REPORT	/ERBOSE): TB s	eq. ***						
	# UVVM:	Coverage (for goal 100): Covpts: S	50.00%, Bins:	73.68%, Hit	s: 76.00%					
	# UVVM:										
	# UVVM:	COVERPOINT COVE	RAGE WEIGHT	COVERED BINS	5 COVERAGE(E	BINS (HITS)	GOAL(BINS HITS)	% OF GOAL(BINS HIT	rs)		
	# UVVM:	Covpt_1	1	3 / 5	60.00%	76.47%	50% 100%	100.00% 76.479	6		
	# UVVM:	Covpt_2	1	3/3	100.00%	100.00%	100% 100%	100.00% 100.00	3%		
	# UVVM:	Covpt_3	1	6/6	100.00%	100.00%	100% 100%	100.00% 100.00	3%		
	# UVVM:	Covpt_4	1	0/4	0.00%	0.00%	100% 100%	0.00% 0.00%			
	# UVVM:	Covpt_5	1	0 / 1	0.00%	0.00%	100% 100%	0.00% 0.00%			
	# UVVM:	Covpt_6	1	4 / 4	100.00%	100.00%	100% 100%	100.00% 100.00	3%		
	# UVVM:	Covpt_7	1	0/3	0.00%	0.00%	100% 100%	0.00% 0.00%			
	# UVVM:	Covpt_8	1	12 / 12	100.00%	100.00%	100% 100%	100.00% 100.00	3%		
	# UVVM:										
DESIGN AND VE	2022	11		M - Bringing UN	M to VHDI						
		41	0001	Diffiging OV					bgi		

VIRTUAL FEBRUARY 28 - MARCH 3, 2022

Pick and choose – No lock

Pick **any** Utility Library functionality: (from these plus more)

log()			alert() error()			<pre>manual_check()</pre>				
	check	_value	e ()	chec	x_stable()			<pre>await_stable()</pre>		
<pre>await_change()</pre>				await_value() check			< <u>value_in_range()</u>			
random() rando			andom	ize()	rep	eport_***()			enable_log	_msg()
justify() fi clock_generator()			fi	ll_string	to_upper())	replace()		
			<pre>await_unblock_flag()</pre>				await_barrier			

Pick any BFM - or any VVC – or any combination

AXI4-lite		GPIO	SPIO SBI		SPI		I2C	
AXI		AVALO	AVALON MM		AXI4-stream		Avalon-stream	
CLOCK	GENERATOR	GMI	I	RGMI	I	Ethernet		

- Pick any FIFO, Queue, Scoreboard
- Pick any Advanced Randomisation and/or Functional Coverage
- Pick Specification coverage / Requirements tracking

Standardized? - In what way?

Simplification

VVCs from different users will work together

Users know how VVCs behave and how any test harness will work

UVVM vs UVM

- UVVM: VHDL (2008) vs UVM: SystemVerilog
- UVVM: Component oriented
 vs UVM: Object oriented
- Block diagrams are similar, but different naming and structure
- UVM is far more comprehensive and complex than UVVM
 - But UVVM is sufficient for almost all testbenches
- UVVM user threshold is a fraction of the UVM threshold for VHDL users
 - UVVM is just a step-by-step evolution on VHDL
- UVVM allows a gentle introduction to modern verification
 - **May** be used as a first step to UVM for those who evaluate that
 - Is however sufficient in itself for almost all FPGA designs
- UVVM can run on any VHDL 2008 compatible simulator
 - Is included with Modelsim, Questa and Riviera-PRO

UVVM in a nutshell

Huge improvement potential for more structured FPGA verification

Courses

FPGA (and ASIC) Verification: 'Advanced VHDL Verification – Made simple'

- FPGA (and ASIC) Design:
 'Accellerating FPGA and Digital ASIC Design'
- Courses on demand/request anywhere: On-site, Online, Public,

<u>Design</u>

- Design Architecture & Structure
- Clock Domain Crossing
- Coding and General Digital Design
- Reuse and Design for Reuse
- Timing Closure
- Quality Assurance at the right level
- Faster and safer design

Verification

- Verification Architecture & Structure
- Self checking testbenches
- BFMs How to use and make
- Checking values, time aspects, etc
- Verification components
- Advanced Verif: Scoreboard, Models, etc
- State-of-the-art verification methodology

https://emlogic.no/courses/

