
Accellera UVM-AMS
Standard Update

UVM-AMS Working Group
Tom Fitzpatrick, Siemens EDA

Tim Pylant, Cadence Design Systems
© Accellera Systems Initiative 1



Mixed-Signal is Dominant

IBS: Mixed-signal design starts as percent of total

85% of design starts are
mixed signal

Need for more advanced, standard methodologies for modular, scalable, and reusable 
coverage-driven mixed-signal verification



Working Group Participants



Terminology

Digital

Analog
RNM

AMS Simulation
and Verification

Co-Simulation Event-Driven

Modular, Scalable,
Reusable & Interoperable
Verification IP, Stimulus 
and TB Components

Comprehensive Unified AMS 
Verification Methodology based 

on UVM 

AnalogDigital



Unified AMS Methodology Based on UVM
• Define a set of class-based extensions to UVM and an accompanying set 

of components and/or packages in SystemVerilog and/or Verilog-AMS 
• stimulus, tests, sequences, components and analysis functions

• Improve analog/mixed-signal (AMS) and digital mixed-signal (DMS) 
verification

• Define a framework for the creation of analog/mixed-signal verification 
components and test benches by introducing extensions to digital centric 
verification IP

• Based on existing standards
• Promote the use of the UVM-AMS standard among the verification 

community



uvm_test

config

UVM Basics

uvm_env

coverage

config

uvm_agent (UVC)

driver

monitor

sequencer

config in
tf

in
tf

DUT
(Module)

Protocol-Specific

Design-Specific

Scenario-Specific

monitor

coverage

driver

config config



uvm_test

config

UVM for Analog?

uvm_env

coverage

config

uvm_agent (UVC)

driver

monitor

sequencer

config in
tf

in
tfmonitor

coverage

driver

config config



Frequency
Phase

Amplitude
DC Bias

Generating and Driving Continuously Changing 
Analog Signals
• An analog signal that is not simple DC or a slow changing signal, needs to 

be a periodic waveform like a sine 
wave or a sawtooth, or some 
composition of such sources. 

• The properties of the analog signal 
being driven are controlled by real values, generated by the sequencer

• A UVM sequence_item contains fields for all the control parameters. 
• The driver converts the transaction to a setting for the signal generator. 
• Sequence items provide simple control interface for the test writer, 

making it easy to control the generated signal on the fly. 



Multiple Signal Generators
• Ability to combine several signal generators to achieve complex input 

signals. Modulation and noise injection are common cases



uvm_ams_agent (UVC)

in
tf

driver

monitor

sequencer

config

MS Bridge

analog resource

in
tf

DUT

Overall UVM-AMS Methodology

• MS Bridge is the proposed layer that sits between the UVC and the (A)MS DUT
• MS Bridge is a SV module that consists of a proxy API, SV interface, and an analog resource module
• The ‘proxy’ is an API that conveys analog attributes between the UVC and the MS Bridge
• The SV ‘intf’ passes digital/discrete signal values (logic, real, nettype/RNM) between UVC and MS Bridge
• Both ‘proxy’ and ‘intf’ can be used together or individually
• The analog resource (SV, Verilog or Verilog-AMS)

• Communication layer between intf/proxy and the ports of DUT
• Uses the analog attributes from proxy to generate continuously changing values (e.g. ramping voltage 

supply, electrically modeling drive strengths or cap/res loading, etc.)

pr
ox

y

pr
ox

y



MS Bridge

analog resource

DUT

UVM-AMS Analog Resource

• MS testbench may require the behavior and presence of analog components that a 
typical UVM-RTL testbench could not include. These could be:

• Capacitors, Resistors, Inductors, Diodes, current/voltage sources etc. Or a complex passive 
network for multiple DUT pins.

• A piece of Verilog-AMS code 
• Such components will be used to model the analog behavior of PADs, lossy transmission lines, 

loads/impedances, or any other voltage/current conditioning required to accurately model the 
signals connecting to the ports of DUT 

• Those components can be placed inside the analog resource to be controlled by proxy.

uvm_ams_agent (UVC)

driver

monitor

sequencer

config

pr
ox

y

pr
ox

y



UVM-AMS Analog Resource (cont.)

• Proxy is an API used to interact with analog resource to perform the following
• Pull electrical values such as voltage, current, component values.
• Push values such as capacitance value.
• Event generation
• Arbitrary sampling of a continuous signal to update a variable in the proxy.

• The analog resource would have the same number of ports as the DUT for a one-to-one connectivity 
between the ports of analog resource and the DUT

• The API between the proxy and the analog resource must be written using Verilog-AMS language 
constructs which supports all analog resource views (VAMS, SV, etc.)

MS Bridge

DUT

uvm_ams_agent (UVC)

driver

monitor

sequencer

config

pr
ox

y

pr
ox

y analog resource



virtual class pga_bridge_proxy;
…
pure virtual function void setCapacitance(…);
pure virtual function real getCapacitance(…);

…
endclass

module tb;
…
pga_bridge pga_bridge(.OUTP, .OUTN, .INP, .INN, .VCVGA, .VB, .IBB, .VDD, .VSS, .PD);

…
initial begin
uvm_config_db#(pga_bridge_proxy)::set(null,"*pga_uvc*","bridge_proxy",pga_bridge.bridge_proxy);
run_test();

end  
endmodule

module pga_bridge(…);
…
pga_bridge_core #(…) core (…); // AMS model
…
class proxy extends pga_bridge_proxy;
function void config_wave(input real ampl, bias, phase, freq);
core.ampl_in = ampl;
core.bias_in = bias;
core.phase_in = phase;
core.freq_in = freq;

endfunction
endclass

proxy bridge_proxy = new();
…
endmodule

Implement

UVM config setting

Proxy Template (API)

Proxy instance in MS Bridge module

Passes values to analog resource 
to “program” waveform

Instance of analog
resource

Proxy “hook-up”



Push

Pull

Monitored

Proxy  Analog Resource
MS Bridge

class proxy … ;
function void config_wave(…);
core.ampl_in = ampl;
core.bias_in = bias;
core.phase_in = phase;
core.freq_in = freq;

endfunction
function void get_measure(...);
ampl = core.ampl_out;
bias  = core.bias_out;
phase = core.phase_out;
freq = core.freq_out;

endfunction

real min, max;

pga_bridge_core (...);
...
real ampl_in; 
real bias_in; 
real phase_in;
real freq_in;

analog begin
vsin = (ampl_in * sin(`M_TWO_PI * freq_in * $abstime);
...

end

wreal ampl_out;
wreal bias_out;
wreal freq_out;
wreal phase_out;

Vsig = V(sig);
if (Vsig > max_a)
max_a = Vsig;

else if (Vsig < min_a)
min_a = Vsig;

assign bridge_proxy.min = core.min_a;
assign bridge_proxy.max = core.max_a;

Interpolated value

If target is different its seen 
as a D2A event

Analog generates update





Model of Programmable Gain Amp Ports in SV
module pga import rnm_pkg::*; (

input  logic[2:0] VCVGA;  // digital control voltage

input  logic PD;          // powerdown control

output real_net OUTP,OUTN;// differential output

input  real_net INP,INN;  // differential input

input  real_net VB,IBB;   // required bias inputs

input  real_net VDD,VSS;  // power supplies

);



Doubler Example in UVM-AMS (RTL/RNM DUT)

• Analog resource simply acts as pass through between intf and DUT.
• DUT ports should follow the language rules of the analog resource typically 

Verilog-AMS.

uvm_ams_agent (UVC)

in
tf

driver

monitor

sequencer

config

MS Bridge

analog resource

in
tf

Logic or Real

Logic 
or Real

DUT (RTL/RNM)

Logic or Real

Logic or Real



Model of Programmable Gain Amp Ports in SV
module pga ( OUTP,OUTN, INP,INN, VCVGA, VB,IBB, VDD,VSS, PD );

output OUTP,OUTN;       // differential output

electrical OUTP,OUTN;

input INP,INN;          // differential input

electrical INP,INN;

input wire [2:0] VCVGA; // digital control voltage

input VB,IBB;           // required bias inputs

electrical VB,IBB;

input VDD,VSS;          // power supplies

electrical VDD,VSS;

input wire PD;         // powerdown control



Doubler Example in UVM-AMS (VAMS/SPICE DUT) 
Option 1

• Analog resource acts as a short and users relies on Connect Modules (CMs) 
inserted by the simulator to interface between analog and digital domains

• Simple to use but many non-standard requirements; Supply connection, DRS etc.
• No fine control on the analog resources ‘electrical’ interface. 
• DUT/CM supplies generated by another MS Bridge or source.

MS Bridgeuvm_ams_agent (UVC)

in
tf

driver

monitor

sequencer

config

DUT (RTL/RNM)

analog resource

in
tf

CM

CM

Logic or Real

CM

CM



MS Bridge

Doubler Example in UVM-AMS (VAMS/SPICE DUT)
Option 2

• Analog resource takes the logic values and uses bespoke 
code L<->E to translate this to the analog signal

• Proxy used to control analog resource L<->E setup
• Optionally same UVC/MS Bridge could generate Supplies for DUT/L<->E
• Optionally dedicated UVC/MS Bridge could generate Supplies for DUT/L<->E

uvm_ams_agent (UVC)

in
tf

driver

monitor

sequencer

config

pr
ox

y

pr
ox

y

DUT (RTL/RNM)

analog resource

in
tf

L->E

L<-E

Logic or Real

L->E

L<-E



Doubler Example in UVM-AMS (VAMS/SPICE DUT)
Option 2

• Analog resource takes the logic values and uses bespoke 
code L<->E to translate this to the analog signal

• Proxy used to control analog resource L<->E setup
• Optionally same UVC/MS Bridge could generate Supplies for DUT/L<->E
• Optionally dedicated UVC/MS Bridge could generate Supplies for DUT/L<->E

MS Bridgeuvm_ams_agent (UVC)

in
tf

driver

monitor

sequencer

config

pr
ox

y

pr
ox

y

DUT (RTL/RNM)

analog resource

in
tf Logic or Real



Messages for Debug and Error Reporting
• Debugging activity inside a large environment with many UVCs is critical.
• Need to report:

• Errors
• Debug
• Progress

• Messages need to be categorized via severity:
• Fatal, Error, Warning, Info

• Need to link actions with messages
• Stop simulation on fatal or after four errors
• Summarize number of messages reported

• Need a different mechanism than simulator messages to avoid filtering effects



UVM Messaging System



UVM Messaging from Analog Resource
• UVM Reporting macros not supported in Verilog-AMS modules.
• Take advantage of up-scoping to provide solution. (1364-2001 LRM) 
• `include "uvm_ams.vamsh“ in Verilog-AMS file (analog resource)

• localparams to define UVM Verbosity levels as integers to match UVM enum
• `include "uvm_ams.svh“ in SV file (MS Bridge)

• Void functions that wrap `uvm_*() reporting macros into functions of the same name
• Within a digital block of a Verilog-AMS file users call; 

uvm_[info|warning|error|fatal](…)
• Up scoping means it find the function in the MS Bridge file

• Within analog block, many solutions so here is one (calling of digital functions not 
allowed)

• Set string value and toggle integer
• Use absdelta to trigger on toggle and read string to call up-scoping function



UVM Message – Analog block

• Hold UVM component hierarchy path string in proxy class via get_full_name()
• Use *_context reporting macros to direct message to relevant component

localparam string uvm_path = $sformat(uvm_path,”%m”);
localparam string message = $sformat("The Current is above the threshold @ %eA",I_PLUS);  
uvm_info(P__TYPE,message,UVM_MEDIUM,uvm_path);

function void uvm_info(string id, string message, int verbosity_level, string uvm_path);   
`uvm_info_context(id,message,uvm_verbosity'(verbosity_level),uvm_root::get().find(uvm_path))
endfunction: uvm_info

VAMS

SV Bridge

UVM_INFO ../../include/uvm_ams.svh(26) @ 52001.098068ns: uvm_test_top.env.v_agent [i_bridge] 
The Current is above the threshold @ 1.178812e+00A



FAQs & Wrap-Up
• What value will the UVM-AMS standard bring to the community?
• The UVM-AMS WG envisions the availability of an industry-agreed 

analog/mixed-signal verification methodology based on its planned 
UVM-AMS standard.  This will encourage support by tool and IP 
providers, offering ready-to-use analog/mixed-signal verification IP that 
can be integrated easily into a UVM-AMS testbench.  It will raise the 
productivity and quality of analog/mixed-signal verification across 
projects and applications, thanks to the reuse of proven verification 
components and stimuli.



FAQs & Wrap-Up
• I currently use Interface Verification IP which only supports digital 

signals. Should I replace them with AMS Verification IP?
• The objective of the UVM-AMS standard is to introduce dedicated 

capabilities that enable making AMS extensions to digital-centric 
verification IP.  As UVM offers the foundation technology, we could 
benefit from using testbench configuration, factory-based component 
overrides, and virtual interfaces to seamlessly insert AMS components, 
signals and analysis in an existing digital-centric verification IP. Obviously, 
this extension heavily depends on the flexibility and configurability 
offered in the digital VIP itself.



FAQs & Wrap-Up
• Will the UVM-AMS Working Group develop specific AMS verification IP?
• The primary objective of the UVM-AMS Working Group is to develop a 

standard that forms the framework to develop AMS verification 
components or testbenches.  As such, the working group itself will not 
develop these elements.  The internal functionality to drive, monitor, or 
analyze AMS signals should be developed by the verification team. 
However, to explain how to create an AMS verification IP or testbenches 
to the AMS verification community, it is expected that there will be basic 
examples available as part of the deployment of the UVM-AMS standard.



Conclusions
• There is a need for more advanced, standard methodologies for scalable, 

reusable and metric-driven mixed-signal (AMS/DMS) verification
• The UVM-AMS proposal addresses the gaps in current verification 

methodology standards
• Extend UVM class-based approach to seamlessly support the module-

based approach (MS Bridge) needed for mixed-signal verification
• Targeting analog/mixed-signal contents (RNM, electrical/SPICE)
• Application and extension of existing UVM concepts and components

• Sequencer, Driver, Monitor
• MS Bridge / Analog resources
• UVM Messaging System



Questions?

© Accellera Systems Initiative 35


	Accellera UVM-AMS�Standard Update
	Mixed-Signal is Dominant
	Working Group Participants
	Terminology
	Unified AMS Methodology Based on UVM
	UVM Basics
	UVM for Analog?
	Generating and Driving Continuously Changing Analog Signals
	Multiple Signal Generators
	Overall UVM-AMS Methodology
	UVM-AMS Analog Resource
	UVM-AMS Analog Resource (cont.)
	Proxy “hook-up”
	Proxy  Analog Resource
	Slide Number 20
	Model of Programmable Gain Amp Ports in SV
	Doubler Example in UVM-AMS (RTL/RNM DUT)
	Model of Programmable Gain Amp Ports in SV
	Doubler Example in UVM-AMS (VAMS/SPICE DUT) �Option 1
	Doubler Example in UVM-AMS (VAMS/SPICE DUT)�Option 2
	Doubler Example in UVM-AMS (VAMS/SPICE DUT)�Option 2
	Messages for Debug and Error Reporting
	UVM Messaging System
	UVM Messaging from Analog Resource
	UVM Message – Analog block
	FAQs & Wrap-Up
	FAQs & Wrap-Up
	FAQs & Wrap-Up
	Conclusions
	Questions?

