UVM mixed signal extensions Sharing Best Practice and Standardization Ideas

Joen Westendorp, NXP Semiconductors Sebastian Simon, Infineon Technologies AG Joachim Geishauser, NXP Semiconductors

Agenda

- Introduction 5 min
- UVM Mixed Signal Verification Experience Sharing sessions:
 - UVM-MS mixed signal extensions 30 min
 - Joen Westendorp, NXP Semiconductors
 - A-UVM A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior – 30 min
 - Sebastian Simon, Infineon Technologies AG
- General discussion on outcome 25 min

Agenda

• Introduction

- UVM Mixed Signal Verification Experience Sharing sessions:
 - UVM-MS mixed signal extensions
 - Joen Westendorp, NXP Semiconductors
 - A-UVM A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior
 - Sebastian Simon, Infineon Technologies AG
- General discussion on outcome

Introduction

UVM is a SystemVerilog base class library that standardizes common functions like testbench class structure, testbench component communication and data automation features, like packaging, copy compare, debug

- 2009 Accellera voted to establish UVM standard based on OVM2.1.1 developed by Cadence Design Systems and Mentor Graphics.
- 2011 Accellera approved the 1.0 version of UVM
- 2014 Accellera released version 1.2 of UVM
- 2017 IEEE release of UVM LRM as IEEE 1800.2-2017

Introduction

- Goal of this tutorial
 - Show current best practices used by different companies
 - focus on advantages of practice

© Accellera Systems Initiative

- disadvantages/workarounds/future plans, best in light missing STDs/EDA tools
- Discuss audience experience in AMS verification with UVM
- Discuss if creation of an UVM-AMS Accellera working group is something that would be supported by the audience

5

Agenda

- Introduction
- UVM Mixed Signal Verification Experience Sharing sessions:
 - UVM-MS mixed signal extensions
 - Joen Westendorp, NXP Semiconductors
 - A-UVM A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior
 - Sebastian Simon, Infineon Technologies AG
- General discussion on outcome

UVM-MS mixed signal extensions

Joen Westendorp, NXP Semiconductors

Contents

- Introduction
- Layers of a verification environment
- Rationale
- UVM Mixed signal
- The analog mixed signal Verification Component
- Mixed signal UVC
- Required definitions
- Questions

Introduction

- Mixed signal integration verification is about functional verification of analog and digital circuits together.
- Digital only verification is much more developed and methodical than analog verification
- Functional verification of mixed signal circuits is biased to use digital verification methodologies, like UVM
- UVM provides a structured and layered verification methodology, however UVM is not the only existing verification methodology
 - The UVM layers are not defined to deal with analog signals
- This is about **extending** digital verification environments into the AMS domain, to enable MS verification instead of simulation (use UVC's).

Rationale

- Extendibility
 - New functionality can be added without changing existing functionality, a new component can be created by deriving it from an existing one
- Maintainability
 - The architecture is modular and everything is in a logic place, later changes will not affect already existing use models
- Configurability
 - Functionality can be selected and modified without changing the code, a test bench does not need to be changed when another signal is required

UVM-Mixed Signal

DESIGN AND VERIFIC.

CONFERENCE AND EXHIBITION

JROP

AMS Verification component

Mixes signal UVC

© Accellera Systems Initiative

14

Advantages of Approach

• TBA

Disadvantages/Workarounds/Future Plans Definitions required

- Addition mixed signal verification components
 - Meters
 - Models
 - Primitives
 - Transactors
- Structure
 - Agent
 - Agent extension
- Interfaces between layers
 - Translation from transaction level to the signal layer is well defined through sequences
 - Definition of flexible API's between the physical and signal level layer still needed (also a common interface to connect to 3rd party VIP)

Questions

Agenda

- Introduction
- UVM Mixed Signal Verification Experience Sharing sessions:
 - UVM-MS mixed signal extensions
 - Joen Westendorp, NXP Semiconductors
 - A-UVM A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior
 - Sebastian Simon, Infineon Technologies AG
- General discussion on outcome

A-UVM — A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior

Sebastian Simon Infineon Technologies AG

Outline

Traditional Analog/Mixed-signal Verification

- Mixed-signal top-level verification means ...
 - ... confirming functional correctness with respect to the specification
 - ... analysing waveforms in the time domain
- Traditional analog verification approach has a couple of **limitations**:
 - Directed testing \rightarrow Critical scenarios might be left out
 - No metrics for functional coverage \rightarrow Are we done?
 - Waveforms are often manually inspected → Has to be repeated after each regression

→ Error-prone, inefficient and time-consuming!
 → We need automation and reusability!

2018-10-24

Automation in the Analog Domain

2018-10-24

Copyright © Infineon Technologies AG 2017. All rights reserved.

Outline

A-UVM (Analog-UVM)

accel

SYSTEMS INITIATIVE

DESIGN AND VERIFIC

CONFERENCE AND EXHIBITION

A-UVM: Transaction

A-UVM (Analog-UVM)

accelle SY2018MG-2NITIATIVE 2018

A-UVM: Driver & Monitor Algorithms

CONFERENCE AND EXHIBITION

Copyright © Infineon Technologies AG 2017. All rights reserved.

A-UVM: Trigger Mechanism

A-UVM: Stimulus generation

Beta distribution can be used for constrained-random stimulus:

- > Symmetric vs. asymmetric
- > Unimodal vs. bimodal
- > Concave vs. convex

A-UVM: Comparison of Analog Signals

- Comparison of analog waveforms can be performed using different metrics
- Provides real value between 0.0 and 1.0 representing degree of similarity
- Waveform checks assume lower limit for similarity result \rightarrow pass/fail

A-UVM: Analog Coverage Collection

> Basic concept of analog coverage collection:

A-UVM: Other Features

Sanity check: is applied on the interface to check whether signals exceed a allowed value

Plotter/scanner: stores/reads signal information in/from separate files

More user/project-specific features can be added

Outline

Application: IGBT Gate Driver

- High-voltage IGBT gate driver designed for motor drives above 5kW (e.g. xEV)
- On-chip galvanic insulation via coreless transformer

DESIGN AND VE

CONFERENCE AND EXHIBITIO

accelle

SYSTEMS INITIATIVE

Application: Specification

SYSTEMS INITIATIVE

- Extracting signal features for two-level turn-on
 - Start-trigger for monitoring: posedge of digital input signal
 - Algorithm to extract time _ and voltage parameters based on stable level regions
 - Stop-trigger for monitoring: VCC2 level is reached

Two-level turn-on during simulation:

Application: Configurations

- Why spending so much effort on automated feature extraction and automated checking?
 - Plateau level and plateau length can be configured via SPI in register fields

- Possible configurations just for turn-on: 7.246 = 1722
- Narrowed down to interesting scenarios (e.g. extreme cfgs):
 - 42 conf's · 5 seeds · 5 turn-on events/conf/seed =
 1050 turn-on waveforms (to be checked after each regression)
 - Not realizable without automated extraction and checking!

2018-10-24

Outline

Advantages of Approach

A-UVM Features	Available?
Analog (real-valued) transactions	\checkmark
Driving analog constrained-random stimulus	\checkmark
Monitoring analog signal features	\checkmark
Automated analog checks with pass/fail criteria	\checkmark
Similarity analysis of analog signal features	\checkmark
Analog Functional Coverage	\checkmark

Disadvantages/Workarounds/Future Plans

• TBA

Agenda

- Introduction
- UVM Mixed Signal Verification Experience Sharing sessions:
 - UVM-MS mixed signal extensions
 - Joen Westendorp, NXP Semiconductors
 - A-UVM A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior
 - Sebastian Simon, Infineon Technologies AG
- General discussion on outcome

General Discussion on Outcome

• To be filled

