UVM mixed signal extensions
Sharing Best Practice and Standardization Ideas

Joen Westendorp, NXP Semiconductors
Sebastian Simon, Infineon Technologies AG
Joachim Geishauser, NXP Semiconductors
Agenda

• Introduction - 5 min
• UVM Mixed Signal Verification Experience Sharing sessions:
 – UVM-MS mixed signal extensions – 30 min
 • Joen Westendorp, NXP Semiconductors
 – A-UVM — A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior – 30 min
 • Sebastian Simon, Infineon Technologies AG
• General discussion on outcome – 25 min
Agenda

• Introduction

• UVM Mixed Signal Verification Experience Sharing sessions:
 – UVM-MS mixed signal extensions
 • Joen Westendorp, NXP Semiconductors
 – A-UVM — A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior
 • Sebastian Simon, Infineon Technologies AG

• General discussion on outcome
Introduction

UVM is a SystemVerilog base class library that standardizes common functions like testbench class structure, testbench component communication and data automation features, like packaging, copy compare, debug

- 2009 Accellera voted to establish UVM standard based on OVM2.1.1 developed by Cadence Design Systems and Mentor Graphics.
- 2011 Accellera approved the 1.0 version of UVM
- 2014 Accellera released version 1.2 of UVM
- 2017 IEEE release of UVM LRM as IEEE 1800.2-2017
Introduction

• Goal of this tutorial
 – Show current best practices used by different companies
 • focus on advantages of practice
 • disadvantages/workarounds/future plans, best in light missing STDs/EDA tools
 – Discuss audience experience in AMS verification with UVM

 – Discuss if creation of an UVM-AMS Accellera working group is something that would be supported by the audience
Agenda

• Introduction
• UVM Mixed Signal Verification Experience Sharing sessions:
 – UVM-MS mixed signal extensions
 • Joen Westendorp, NXP Semiconductors
 – A-UVM — A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior
 • Sebastian Simon, Infineon Technologies AG
• General discussion on outcome
UVM-MS
mixed signal extensions

Joen Westendorp, NXP Semiconductors
Contents

• Introduction
• Layers of a verification environment
• Rationale
• UVM Mixed signal
• The analog mixed signal Verification Component
• Mixed signal UVC
• Required definitions
• Questions
Introduction

• Mixed signal integration verification is about functional verification of analog and digital circuits together.
• Digital only verification is much more developed and methodical than analog verification
• Functional verification of mixed signal circuits is biased to use digital verification methodologies, like UVM
• UVM provides a structured and layered verification methodology, however UVM is not the only existing verification methodology
 – The UVM layers are not defined to deal with analog signals
• This is about extending digital verification environments into the AMS domain, to enable MS verification instead of simulation (use UVC’s).
VE Layers
Rationale

- **Extendibility**
 - New functionality can be added without changing existing functionality, a new component can be created by deriving it from an existing one

- **Maintainability**
 - The architecture is modular and everything is in a logic place, later changes will not affect already existing use models

- **Configurability**
 - Functionality can be selected and modified without changing the code, a test bench does not need to be changed when another signal is required
UVM-Mixed Signal

- Uses standard UVM layers
- Uses standard UVM components
- Complemented with mixed signal components
AMS Verification component
Mixes signal UVC
Advantages of Approach

• TBA
Disadvantages/Workarounds/Future Plans

Definitions required

• Addition mixed signal verification components
 – Meters
 – Models
 – Primitives
 – Transactors

• Structure
 – Agent
 – Agent extension

• Interfaces between layers
 – Translation from transaction level to the signal layer is well defined through sequences
 – Definition of flexible API’s between the physical and signal level layer still needed (also a common interface to connect to 3rd party VIP)
Questions
Agenda

• Introduction

• UVM Mixed Signal Verification Experience Sharing sessions:
 – UVM-MS mixed signal extensions
 • Joen Westendorp, NXP Semiconductors
 – A-UVM — A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior
 • Sebastian Simon, Infineon Technologies AG

• General discussion on outcome
A-UVM — A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior

Sebastian Simon
Infineon Technologies AG
Outline

1. Motivation
2. A-UVM: Analog extension to UVM
3. Application: IGBT driver
4. Summary
Traditional Analog/Mixed-signal Verification

• Mixed-signal top-level verification means ...
 – ... confirming functional correctness with respect to the specification
 – ... analysing waveforms in the time domain

• Traditional analog verification approach has a couple of limitations:
 – Directed testing → Critical scenarios might be left out
 – No metrics for functional coverage → Are we done?
 – Waveforms are often manually inspected → Has to be repeated after each regression

→ Error-prone, inefficient and time-consuming!
→ We need automation and reusability!
Automation in the Analog Domain

Frequency
Slewrate
Voltage level

Automated Signal Parameter Extraction

Automated checks:
Pass?
Fail?

Specification
Outline

1. Motivation
2. A-UVM: Analog extension to UVM
3. Application: IGBT driver
4. Conclusion
A-UVM (Analog-UVM)

- **Digital**
 - UVM
 - UVM transaction: signal value
 - Transaction collected on signal changes or events
 - Comparison: Bit-wise

- **Analog**
 - Analog/Mixed-Signal Extension to UVM
 - “Shape” of signals, parameters to describe a shape, with a time duration
 - Monitor recognizes events to determine the start and end of one transaction
 - Comparison of real-value vectors using specific mathematical algorithms

A-UVM
A-UVM: Transaction

UVM Transaction

```
Input_a = 1'b1;
Input_b = 1'b0;
```

A-UVM Transaction

Name: sine
Freq: 200kHz
Ampl: 5V
Dur: 5us
Phase: 10°
A-UVM (Analog-UVM)

Test case

Environment

Agent

Scoreboard

Agent

Driver

Monitor

Monitor

Trans: Name: sine
Freq: 200kHz
Ampl: 2V
Dur: 5us

Trans: Name: sine
Freq: 400kHz
Ampl: 2V
Dur: 5us

Trans: Name: sine
Freq: 200kHz
Ampl: 2V
Dur: 5us

DUT

Copyright © Infineon Technologies AG 2017. All rights reserved.
A-UVM: Driver & Monitor Algorithms

Driver

- **Ramp**
 - **Trans**: level, increment, duration
 - **Driver algorithm**: sample rate

- **Sine**
 - **Trans**: frequency, phase, amplitude, offset, duration
 - **Driver algorithm**: sample rate

- **Constant**
 - **Trans**: level, duration
 - **Driver algorithm**: sample rate

- **Sampling**
 - **Trans**: signal values, duration
 - **Driver algorithm**: sample rate, interpolation mode

- **Fourier**
 - **Trans**: real and imaginary values
 - **Driver algorithm**: sample rate

Monitor

- **Ramp**
 - Monitor calculates level and increment

- **Sine**
 - Monitor calculates phase frequency, amplitude, and offset

- **Constant**
 - Monitor collects one value in one transaction as new level

- **Sampling**
 - Monitor samples signal in one transaction using defined sample rate

- **Fourier**
 - Monitor samples signal and performs Fourier transformation
A-UVM: Trigger Mechanism

Start Trigger

Stop Trigger

Cancel Trigger

Example: using crossing of two signals as trigger condition

Transaction

Level Trigger

Event

Callback Trigger

Logic

Recursive Trigger

Real-time

Time Trigger

Jump Trigger
A-UVM: Stimulus generation

Analog Constrained Random Stimulus

- Signal features can be randomized based on distributions
 - Uniform distribution
 - Gaussian distribution
 - Beta distribution

\[
f_{\text{beta}}(x, \alpha, \beta) = \begin{cases}
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \cdot \frac{x^{\alpha-1}}{(1-x)^{\beta-1}} & x \in (0, 1) \\
0 & \text{otherwise}
\end{cases}
\]

Beta distribution can be used for constrained-random stimulus:

- Symmetric vs. asymmetric
- Unimodal vs. bimodal
- Concave vs. convex
A-UVM: Comparison of Analog Signals

- Comparison of analog waveforms can be performed using different metrics
- Provides real value between 0.0 and 1.0 representing degree of similarity
- Waveform checks assume lower limit for similarity result → pass/fail
A-UVM: Analog Coverage Collection

Basic concept of analog coverage collection:
A-UVM: Other Features

Sanity check: is applied on the interface to check whether signals exceed a allowed value

Plotter/scanner: stores/reads signal information in/from separate files

More user/project-specific features can be added
Outline

1. Motivation
2. A-UVM: Analog extension to UVM
3. Application: IGBT driver
4. Conclusion
Application: IGBT Gate Driver

- High-voltage IGBT gate driver designed for motor drives above 5kW (e.g. xEV)
- On-chip galvanic insulation via coreless transformer
Application: Specification

- Extracting signal features for two-level turn-on
 - Start-trigger for monitoring: posedge of digital input signal
 - Algorithm to extract time and voltage parameters based on stable level regions
 - Stop-trigger for monitoring: VCC2 level is reached

Two-level turn-on during simulation:
Application: Configurations

• Why spending so much effort on automated feature extraction and automated checking?
 – Plateau level and plateau length can be configured via SPI in register fields
 – Possible configurations just for turn-on: $7 \cdot 246 = 1722$
 – Narrowed down to interesting scenarios (e.g. extreme cfgs):
 • 42 conf’s \cdot 5 seeds \cdot 5 turn-on events/conf/seed = 1050 turn-on waveforms (to be checked after each regression)
 • Not realizable without automated extraction and checking!
Outline

1. Motivation
2. A-UVM: Analog extension to UVM
3. Application: IGBT driver
4. Conclusion
Advantages of Approach

<table>
<thead>
<tr>
<th>A-UVM Features</th>
<th>Available?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog (real-valued) transactions</td>
<td>✓</td>
</tr>
<tr>
<td>Driving analog constrained-random stimulus</td>
<td>✓</td>
</tr>
<tr>
<td>Monitoring analog signal features</td>
<td>✓</td>
</tr>
<tr>
<td>Automated analog checks with pass/fail criteria</td>
<td>✓</td>
</tr>
<tr>
<td>Similarity analysis of analog signal features</td>
<td>✓</td>
</tr>
<tr>
<td>Analog Functional Coverage</td>
<td>✓</td>
</tr>
</tbody>
</table>
Disadvantages/Workarounds/Future Plans

• TBA
Agenda

• Introduction

• UVM Mixed Signal Verification Experience Sharing sessions:
 – UVM-MS mixed signal extensions
 • Joen Westendorp, NXP Semiconductors
 – A-UVM — A Transaction-Oriented UVM-Based Library for Verification of Analog Behavior
 • Sebastian Simon, Infineon Technologies AG

• General discussion on outcome
General Discussion on Outcome

• To be filled