
UVM	Audit	Tutorial			
Assessing	UVM	Testbenches	to	Expose	Coding	Errors	&	Improve	Quality	

Presenter:	Mark	Litterick	
Contributors:	Jonathan	Bromley,	Jason	Sprott,	Tamás	Simon	

© Accellera Systems Initiative 1

Outline	
•  Introduction	&	background	
•  Development	process	-	overview	
•  Code	analysis	–	detailed	code	&	architecture		
•  Digging	deeper	–	experimenting	with	code-base	
•  Missing	code	–	looking	for	what	is	not	there	
•  Reporting	findings	-	overview	
•  Conclusion	&	references	

© Accellera Systems Initiative 2

INTRODUCTION	
What	is	an	audit	and	why	bother	

© Accellera Systems Initiative 3

Background	
•  Many	verification	environments	claim	to	follow	UVM	best	practice...	

–  but	don’t	stand	up	to	scrutiny:	increasing	project	effort,	time,	cost	and	risk	

© Accellera Systems Initiative 4

DUT
IN

TE
R

FA
C

E

ENV

SB

UVC
S	 D	

M	C	

IN
TE

R
FA

C
E

UVC

S	D	
M	 C	

S
VA

 S
VA

REG
... C	 M	

TESTS

wrong architecture

inflexible reuse

regmodel misuse

bad encapsulation

limited debug

poor stimulus

weak coverage

incomplete checks

Observations based on:
•  real projects, different clients, diverse applications

What	is	an	audit?	

•  In	the	context	of	the	Universal	Verification	Methodology	(UVM):	
–  examination	of	existing	code-base	and	verification	methodology	
–  ascertain	if	appropriate,	best-in-class,	UVM-like	solutions	are	being	used	

•  Verilab	consultants	involved	in	several	types	of	audit,	including:	
–  formal	audit	–	typically	at	key	methodology	milestones	
–  ad-hoc	audit	–	typically	performed	when	joining	a	project	

•  This	tutorial	provides	strategy	and	guidelines	for	auditing	UVM	projects	
–  that	you	can	apply	to	ongoing,	legacy	and	future	projects	

© Accellera Systems Initiative 5

An audit is a systematic and independent examination of [...] to ascertain
how far the [...] present a true and fair view of the concern. (Wikipedia)

Why	bother?	
•  UVM	allows	enough	flexibility	to	write	really	bad	testbenches	

–  need	to	apply	verification,	H/W	&	S/W	expertise	to	get	excellent	results	

•  Primary	benefits	from	an	audit	include:	
–  improved	code	quality,	testbench	effectiveness	&	project	efficiency	

•  Who	benefits	from	an	audit:		
– mature	team:	supports	ongoing	quality	improvements	
– mixed	team	&	externals:	allows	for	consistent	code	&	predictable	projects	
–  individual:	know	what	you	are	getting	into,	informed	effort	&	risk	assessment	

•  Keep	a	positive	attitude...	
–  knowing	the	testbench	limitations	is	always	a	good	thing!	

© Accellera Systems Initiative 6

Audit	Stages	

•  determine	if	development	process	includes	key	items	
•  analysis	of	code-base	looking	for	typical	problems	
•  dig	deeper	to	validate	if	claimed	behavior	will	scale	
•  assess	if	expected	code	artifacts	are	missing	

© Accellera Systems Initiative 7

DEV.
PROCESS

CODE
ANALYSIS

DIG
DEEPER

MISSING
CODE START DONE

CYCLE

Audit report, impact analysis and action plan

Depends on audit
context & recipients
•  formal report

(action plan)
...

•  no write-up
(private notes)

DEVELOPMENT	PROCESS	
Get	a	handle	on	framework	within	which	code	was	developed	

© Accellera Systems Initiative 8

Reviewing	Development	Process	
•  Comprehensive	audit	of	testbench	development	process	

–  essential	for	formal	methodology	audit	(detailed	analysis)	
–  beneficial	for	ad-hoc	project	audit	(pragmatic	overview)	

•  Looking	for	evidence	of:	
–  coding	&	style	guidelines	
–  code	review	culture	
–  code	generation	&	template	library	(register-model	&	verification	components)	
–  revision	control	&	consistent	simulation	and	regression	tool	usage		

© Accellera Systems Initiative 9

Full analysis of development process
is outside the scope of UVM audit L

What	To	Look	For	
•  Coding	&	style	guidelines	

–  do	they	exist,	are	they	reasonable	&	are	they	being	applied?	
–  are	they	automated	into	tools	(linting,	scripts	or	checklists)?	

•  Code	reviews	
–  are	code	reviews	being	done	at	all?	
–  using	client-server	based	code-review	methodology?	

•  Code	generation	&	template	libraries	
–  do	generators	produce	good	regmodel	and	UVC	frameworks?	
–  is	the	application-specific	content	also	high-quality	UVM	code?		

© Accellera Systems Initiative 10

 no guarantee
of UVM content

consistency

repeatability

efficiency

resourcing

peer training

CODE	ANALYSIS	
Reviewing	existing	code-base	to	identify	problems	

© Accellera Systems Initiative 11

Reviewing	Code-Base	
•  Comprehensive	audit	of	existing	code-base	

–  identify	areas	of	concern	that	can	cause	problems	
–  looking	for	evidence	of	non-UVM	like	patterns	

•  For	each	audit	item:	
–  Problem	-	statement	and	clarification	if	why	it	is	incorrect	
–  Indicator	-	of	conceptual	or	fundamental	issue	
–  Solution	-	what	should	have	been	done	instead,	or	could	be	done	now	
–  Effort	–	required	to	repair	or	live	with	the	problem	
–  Tip	–	where	possible	provide	tip	of	how	to	find	evidence	

© Accellera Systems Initiative 12

Important note: this is not a UVM course, and we are not trying to justify UVM
•  code examples just show patterns we are looking for, not individual fixes

Using	Tasks	Instead	of	Sequences	
•  Limits	controllability	&	effectiveness	
•  Ubiquitous	use	of	tasks	indicates		
lack	of	understanding	of	CRV	

•  Sequences	with	constrained	random	
control	knobs	much	more	powerful	

•  Lot	of	effort	to	repair	and	retrain	
•  Review	sequence	libraries	&	tests	

© Accellera Systems Initiative 13

task write_bus(addr, data);
 `uvm_do_with(item, {
 direction == WRITE;
 address == addr;
 wdata == data;
 })

// randomize params...
task set_config(...params...);
 // randomize local vars...
 write_bus(a1,d1);
 write_bus(a2,d2);

class config_seq extends base_seq;
 // rand control knobs and constraints...
 `uvm_do_with(write_seq, addr==a1; data==d1;)
 `uvm_do_with(write_seq, addr>a1; data inside {[100:200]};)

Using	$random	and	$urandom	
•  Less	powerful	and	less	stable	
than	built-in	UVM	randomization		

•  Strong	indicator	of	bad	sequence	
based	stimulus	and	CRV	know-how	

•  UVM	has	mechanisms	to	maximize		
random	stability	&	provides	
capability	for	complex	constraints	

•  Lot	of	effort	to	repair	and	retrain	
•  grep	for	$random	&	$urandom	

© Accellera Systems Initiative 14

class example ... // or task
 bit mode = $random;
 bit [2:0] cfg;
 if (mode==0)
 cfg = $urandom_range(0,3);
 else
 cfg = $urandom_range(4,7);

class example_seq...
 rand mode_t mode;
 rand int cfg;
 constraint cfg_c {
 cfg inside {[0:7]};
 (mode==LO)-> cfg inside {[0:3]};
 (mode==HI)-> cfg dist {4:=1,[5:7]:/1};
 }

Duplicating	Register	Model	Code	
•  Bad	for	maintenance,	extremely		
bad	for	derivative	designs	
(register	changes	=>	chaos)	

•  Indicates	lack	of	understanding		
of	uvm_reg	model	usage	

•  Proper	coding	is	immune	to		
field	position	changes	in	reg,		
if	it	moves	to	another	register	
we	now	get	compile	error	

•  Straightforward	to	repair	
•  grep	for	“reg*.read”,	grep	for	explicit	data	slices	

© Accellera Systems Initiative 15

regm.regx.read(status, data);
if (data[3:0] > 0) // field a
 ...
flag = data[7:7]; // field b
 ...

regm.regx.mirror(status);
if (regm.regx.flda.get_mirrored_value() > 0)
 ...
flag = regm.regx.fldb.get_mirrored_value();
 ...

Active	(Only)	Register	Modeling	
•  Using	active	methods	to		
model	registers	limits	reuse	

•  Indicates	lack	of	expertise		
with	regmodel	concepts	

•  Passive	modeling	more	flexible	
powerful,	required	sys	level	

•  Medium	effort	to	repair	
•  grep	for	pre/post_read/write	
•  [4]	Advanced	UVM	Register	Modeling	

© Accellera Systems Initiative 16

class my_field_t extends uvm_reg_field;
 virtual task post_write(uvm_reg_item rw);
 ...

class my_field_cb extends uvm_reg_cbs;
 virtual function void post_predict(...);
 ...

class my_field_cb extends uvm_reg_cbs;
 virtual task post_write(uvm_reg_item rw);
 ...

Active	&	Passive	Register	Model	Operation	

•  Model	must	tolerate	active	&	passive	operations:	
1.   active	model	read/write	generates	items	via	adapter	
2.   passive	behavior	when	a	sequence	does	not	use	model	
3.   passive	behavior	when	embedded	CPU	updates	register	

© Accellera Systems Initiative 17

MEM	

RN	
...

RX	

R1	

R2	

R3	
...

CPU	 F/W

DUT ENV

VS	
SEQ

AGENT IN
TE

R
FA

C
E

S	

BUS UVC

	D	 V
IF

	M	 V
IF

C	

C	

ADAPTER	

PREDICTOR	

RN	

MEM	

MAP	

REG MODEL

...

R1	

R2	
2	 3	1	

passive
register

modeling
independent
of stimulus

Ubiquitous	Regmodel	Handles	
•  Ubiquitous	handles	to	regmodel	
are	project	specific	&	fragile	code	

•  Interface	protocol	independent	of		
project	register	implementation	

•  Indicates	lack	of	awareness	of	alternatives	
•  Isolate	functional	behavior	from	register	
encoding	and	DUT-specific	details	

•  Lot	of	effort	to	repair,	but	can	be	done	
•  [2]	Configuring	a	Date	with	a	Model	

© Accellera Systems Initiative 18

class my_bus_monitor ...;
 // no regmodel handle allowed
 ...
 if (cfg.mode == MODEX)
 crc = calc_crc_modex(data);

class my_bus_monitor ...;
 my_project_regmodel regm;
 ...
 if (regm.regx.fldc == 5)
 crc = calc_crc_modex(data);

class fldc_cb extends uvm_reg_cbs;
 ...
 function void post_predict(...);
 if (value==5) cfg.mode = MODEX;

Update	Configuration	Using	Callbacks	
•  Randomize	or	modify	registers	&	reconfigure	DUT...	
•  How	do	we	update	UVC	configuration	if	it	has	no	regmodel?	

–  update	from	register	sequences	
–  snoop	on	DUT	bus	transactions	
–  implement	post_predict	callback	

© Accellera Systems Initiative 19

ENV
AGENT

	S	

MY_UVC

	D	 V
IF

	M	 V
IF

C	

RN	

MEM	

MAP	

REG MODEL

...

R1	

R2	 if(field.write(val))
 cfg.set_var(val);

side_effect_cb callback
registered with

model field

access UVC
config object
via a handle

passive & backdoor

not passive

not backdoor

Poor	Sequence	Hierarchy	&	Encapsulation	
•  Bad	sequence	architecture	compromises	reuse	and	effectiveness	
•  Indicates	limited	understanding	of	constrained-random	stimulus	
•  Correct	encapsulation	of	resources	(register	model	accesses,	sequencer	
hierarchy	and	associated	configuration)	enables	test	reuse	etc.	

•  Huge	effort	to	repair,	but	new	sequences	can	be	retrofitted	in	parallel	
•  Requires	expert	knowledge	to	assess	quality	

–  code	review,	pattern	analysis,	layer	examination,	...	

•  [1]	Use	the	Sequence,	Luke	

© Accellera Systems Initiative 20

Sequence	Hierarchy	

© Accellera Systems Initiative 21

 vbus
sqr

driver

 vbus
seq lib

vbus
agent#1

 i2c
sqr

driver

 i2c
seq lib

i2c

agent

 vbus
sqr

driver

 vbus
seq lib

vbus
agent#2

UVC env
 uvc_env
seq lib

UVC env
sequencer

environment
sequencer env

seq lib

test
sequencer test

seq lib

tests

vi
rt

ua
l s

eq
ue

nc
er

s
ph

ys
ic

al

(it
em

)
se

qu
en

ce
rs

”test sequences”

”top environment
sequences”

”UVC sequences”

incorrect test partitioning

not comprehensive

hard to use & control

no encapsulation

fragile constraints

no auto-tuning to config

hard-coded registers

explicit sequencer paths

too much in test comp’nt

Inappropriate	Scoreboard	Architecture	
•  Bad	scoreboard	architecture	compromises	reuse	and	effectiveness	
•  Indicates	limited	understanding	of	alternative	scoreboard	concepts	
•  Check	specified	transaction	relationships	at	correct	level	of	abstraction	

–  avoid	checking	unspecified	DUT-specific	implementation	
–  avoid	cycle-accurate	implementation-specific	modeling	
–  avoid	white-box	probing	of	internal	DUT	signals	

•  Huge	effort	to	repair,	but	can	be	retrofitted	in	parallel	with	original	
•  Requires	expert	knowledge	to	assess	quality	

–  code	review,	pattern	analysis,	concept	understanding,	...	

© Accellera Systems Initiative 22

NoC	Router	Example		

© Accellera Systems Initiative 23

Ing
Port0

Egr

In
g

P
ort2

Eg

r

In
g

P
or

t7

Eg
r

Ing

Port4
Egr

Ing Port5

Egr

ROUTER

END2END	
SCOREBOARD	

UVC 6

RX	

UVC 2

TX	

U
VC

 0

RX
	

SB Fail

POWER
DOWN
REQ

// add target POK to src & dst transactions
// apply fuzzy logic for expected result
case ({src_tr.pok, dst_tr.pok})
 00 : must go to port0
 11 : must go to target
 01,10 : may go to port0 or target
+ packet must not go to both,
+ packet must not get fragmented

// Basic Re-Routing Rule:
if (target POK)// power-ok
 expect packet at target
else // power-down
 expect packet at port0

Not Good Enough
- packets take time through router
- power-down requests anytime
- target can decide to power-down
 just before a packet arrives

do not model or
probe internal
timing or impl’n

Obsession	With	Seeds		
•  Symptom:	regression	files	with	many	explicit	“magic”	seeds	

–  seeds	have	limited	lifetime	during	CRV	development	
–  we	don’t	know	why	seeds	were	considered	special	
–  original	scenario	is	probably	not	stimulated	but	appears	to	pass	

•  Indicates	a	serious	lack	of	understanding	of	random	stability	&	CRV	
•  Assuming	seed	originally	exposed	an	interesting	scenario...	

–  functional	coverage	&	checks	should	have	been	implemented	
–  constraints	maybe	needed	modified	to	make	it	more	likely	

•  Potential	very	high	effort	to	recover,	if	coverage	and	checks	inadequate	
–  easy	to	fix	in	regressions	(remove	seeds)	but	impact	is	very	hard	to	assess	
–  training	requirement	for	team	to	understand	the	issues	here	

© Accellera Systems Initiative 24

Minor	Things,	Major	Time-Wasters	
•  Commented-out	code	(should	it	be?)	

–  use	of	block	comments	strongly	discouraged	since	hinders	grep	detection	

•  Badly	encapsulated	code	with	much	repetition	and	huge	files	
–  could	seriously	affect	reuse	and	ramp-up	time,	as	well	as	being	error	prone	

•  Inappropriate	use	of	assert	for	randomize	or	assert(0)	
–  stimulus	and	messages	could	be	affected	if	assertions	disabled	

•  Bad	coverage	encapsulation	inside	monitor	or	scoreboard	components	
–  covergroups	should	be	inside	dedicated	container	class	for	safe	overrides	

•  Inappropriate	use	of	config_db	for	dynamic	operations	
–  use	config_db	for	static	configuration,	otherwise	use	configuration	objects		

© Accellera Systems Initiative 25

DIGGING	DEEPER	
Execute	and	experiment	with	the	code-base	

© Accellera Systems Initiative 26

Due	Diligence	
•  Additional	analysis	is	often	required	for	due	diligence,	for	example:	

–  where	a	formal	audit	is	requested	to	assess	code	quality	
–  where	effort	estimates	based	on	legacy	codebase	are	not	clear	

•  Recommend	digging	deeper	into	code-base	to	assess	UVM	quality	
•  Requires	a	working	code-base	and	regression	environment	
•  In	addition	to	a	deeper	analysis	of	the	actual	code	by	inspection,		
we	assume	some	attempt	to	validate	claims	by	execution	

© Accellera Systems Initiative 27

HAVE A LOOK: what to look for in the code-base

TRY IT OUT: experiment with the code-base

Reusable	Block-Level	Environment	
•  Block-level	verification	environment	is	complete	and	can	be	plugged	
into	system	level	environment	for	100%	reuse	

•  Have	a	look	
–  active/passive	settings	and	usage	
–  build	control,	connectivity,	architecture	

•  Try	it	out	
–  instantiate	a	passive	shadow	environment	
–  in	parallel	with	existing	active	block-level	environment	

•  [5]	Pragmatic	Verification	Reuse	in	a	Vertical	World	

© Accellera Systems Initiative 28

Passive	Shadow	Environment	

© Accellera Systems Initiative 29

ACTIVE
BLOCK

ENV S	
LIB SB	

 RESP
AGENT

IN
TE

R
FA

C
E

S	

SLAVE
ENV

D	V
IF

M	V
IF

C	

DUT
REQ
AGENT

IN
TE

R
FA

C
E

S	

MASTER
ENV

D	 V
IF

M	 V
IF

C	

C	

S
VA

S
VA

PASSIVE
BLOCK

ENV
SB	

M	 M	

C

if if

BLOCK-LEVEL
BASE TEST

SHADOW PASSIVE
ENVIRONMENT

PROVE FUNCTIONALITY USING A PASSIVE SHADOW ENV

TWO INSTANCES OF THE SAME ENVIRONMENT
ONE IN ACTIVE MODE, ONE IN PASSIVE MODE

NORMAL ACTIVE
ENVIRONMENT

Comprehensive	Sequence	Library	
•  Available	sequences	provide	comprehensive	stimulus	for	all	sorts	of	
great	scenarios	

•  Have	a	look:	
–  apply	expert	knowledge	to	see	if		
sequence	set	&	encapsulation	is	good	

•  Try	it	out	
–  temporarily	modify	a	working	test	
–  randomize	sequences	1000’s	of	times	
–  looking	for	randomization	errors	etc.	

•  [1]	Use	the	Sequence,	Luke	

© Accellera Systems Initiative 30

// temporarily replace
`uvm_do(example_seq)

// with this sort of thing...
`uvm_create(example_seq)
repeat(1000)
 if (!example_seq.randomize())
 `uvm_error(“RNDFLD”,”...”)
repeat(1000)
 if (!example_seq.randomize() with {
 example_seq.mode == FAST_MODE;
 }) `uvm_error(“RNDFLD”,”...”)
`uvm_do(example_seq) // as before

Parameterized	Environment		
•  Environment	is	fully	parameterized	and	will	adapt	to	the	next	
generation	of	parameter	settings	with	almost	no	effort	

•  Have	a	look	
–  are	all	aspects	of	the	classes	parameterized	correctly?	
–  do	the	config,	stimulus,	checks	&	functional	coverage	adapt?	

•  Try	it	out	
–  change	the	parameter	settings	in	existing	environment	
–  how	painless	was	that?	
–  did	environment	build	and	execute	as	expected?		

•  [6]	Advanced	UVM	Tutorial:	Parameterized	Classes,	Interfaces	and	Registers	

© Accellera Systems Initiative 31

Comprehensive	Functional	Coverage	
•  Comprehensive	functional	coverage	with	100%	results	
•  Have	a	look	

–  does	implemented	coverage	model	look	comprehensive?	
–  is	the	coverage	collected	at	the	correct	time	and	logical	conditions?	
–  does	it	include	configuration,	transaction	and	temporal	relationships?	

•  Try	it	out	
–  run	a	few	individual	tests	in	isolation,	validate	exact	scores	in	all	bins	
–  does	coverage	tell	the	truth,	the	whole	truth,	and	nothing	but	the	truth?	

•  [3]	Lies,	Damned	Lies,	and	Coverage	

© Accellera Systems Initiative 32

Functional	Coverage	Analysis	

© Accellera Systems Initiative 33

PLAN IMPLEMENT EXECUTE ANALYZE
START DONE

CLOSURE
MISS

ANALYSIS

•  concise & complete?
•  missing, irrelevant or incorrect?
•  trans’, config’, status, checks?
•  conditional & temporal aspects?

•  all planned items implemented?
•  correct groups, points, bins & ranges?
•  logical conditions & temporal events?
•  coding style, encapsulation, reuse?

COVER
PLAN

REVIEW

COVERAGE
IMPLEMENTATION

REVIEW

 MISSING STUFF BAD STUFF

HIT
ANALYSIS VALIDATION

•  correct scores, no false positives?
•  assertion & class score conflict?

 ACCURACY

Build	Control		
•  Environments	often	provide	build	control	variables	for	components	

–  e.g.	has_master,	has_slave,	num_agents,	etc.		
–  fields	should	be	encapsulated	inside	configuration	objects	

•  Have	a	look	
–  are	fields	used	consistently	in	component	build	hierarchy?	
–  are	fields	used	correctly	to	tune	sequences,	checks	and	coverage?		

•  Try	it	out	
–  patch	(environment)	to	select	different	topology		
–  execute	tests	at	least	as	far	as	connect	phase	
–  does	the	environment	only	build	in	original	topology	configuration?	

© Accellera Systems Initiative 34

Check	and	Coverage	Control	
•  Agents	should	provide	check	and	(optionally)	coverage	enable		

–  e.g.	checks_enable,	coverage_enable	
–  should	be	in	config	objects,	sometimes	in	component	class	

•  Have	a	look	
–  is	checks_enable	used	to	control	all	checks	and	only	checks?	
–  does	coverage_enable	only	affect	coverage	collection,	and	nothing	else?	

•  Try	it	out	
–  patch	(base	test)	to	disable	checks	in	working	simulation	
–  does	the	stimulus	function	identically	when	checks	are	off?	(compare	logs)	
–  are	there	no	error	or	check	messages?	(expect	checks	disabled	warning)	
–  is	the	corresponding	assertion	coverage	score	=	0?	

© Accellera Systems Initiative 35

MISSING	CODE	
Identifying	what	is	not	there,	but	should	be	

© Accellera Systems Initiative 36

Reviewing	What	is	Not	There	
•  Not	enough	to	do	a	comprehensive	audit	of	the	existing	code	

–  we	also	need	to	assess	if	anything	important	is	missing	
–  from	an	application	standpoint	this	is	difficult...	
–  but	for	UVM	there	are	specific	additional	things	we	expect	to	see		

•  Audit	perspective:	
–  are	these	coding	patterns	there	at	all?	
–  if	present,	are	they	done	correctly?	

•  Following	slides	provide	just	some	additional	examples...	
–  some	gaps	may	also	be	revealed	due	to	analysis	from	previous	sections	

© Accellera Systems Initiative 37

Transaction	Recording	
•  Transaction	recording	enhances	testbench	debug	capabilities	
•  Is	transaction	recording	used	correctly	in	monitor	components?	

–  do	the	transactions	start	and	end	at	appropriate	times?	
–  are	transactions	instrumented	with	informative	content	(e.g.	reg	name)?	

© Accellera Systems Initiative 38

Appropriate	Messages	
•  Concise	informative	messages	with	correct	verbosity	control		

–  greatly	enhance	testbench	effectiveness	and	debug	efficiency	
•  Review	regression	log-files	at	low	verbosity	

–  are	they	full	of	inappropriate	clutter?		
–  are	there	concise	messages	that	show	operation	and	context?	
–  do	transactions	have	single-line	summary	(e.g.	using	convert2string)?	
–  are	all	messages	at	the	correct	severity	(e.g.	warning	for	error	injection)?	

© Accellera Systems Initiative 39

UVM_INFO @ ... [ahb_monitor] AHB READ (addr=0x00, data=0x24 => STAT_REG)
UVM_INFO @ ... [ahb_monitor] AHB WRITE(addr=0x02, data=0x01 => CTRL_REG)
UVM_INFO @ ... [rst_monitor] SW RESET observed
UVM_WARNING @..[spi_monitor] SPI READ aborted due to RESET

Separation	of	Concerns	in	Test	Suite	
•  Regression	test	suite	should	include	tests	with:	

–  feature-based	isolation	of	verification	concerns	(constrained	random)	
–  meaningful	combinations	of	interacting	aspects	(constrained	random)	
–  additional	highly	random	scenarios	(legal	constraints	only)	
–  specific	application	use-cases	(heavily	constrained	=>	directed)	

•  Do	not	expect	to	see:	
–  just	directed	tests	for	specific	features	or	use-cases	
–  just	extremely	random	tests	doing	everything	all	the	time	

•  Badly	architected	test	suite	also	effects	efficiency	of	derivative	project	
–  hard	to	assess	impact	if	we	modify,	add	or	remove	features		

© Accellera Systems Initiative 40

Traceable	Checks	
•  Not	enough	to	have	various	checks	apparently	implemented	

–  we	expect	them	to	fail	when	required...	
–  but	we	must	also	know	that	they	executed	and	passed	

•  Requirement	for	functional	safety	related	verification	(ISO-26262)	
–  but	also	good	practice	for	any	testbench	

•  Use	assertions	for	all	DUT-relevant	errors	(=>	automatic	coverage)	
–  immediate	assertions	in	procedural	code,	concurrent	assertions	in	interfaces	

© Accellera Systems Initiative 41

AS_DATA_CHECK : assert (data == exp) else
 `uvm_error(“AS_DATA_CHECK”,”failure info...”)

if (data != exp)
 `uvm_error(get_type_name(),”failure info...”)

Some	Other	Things	To	Look	For...	
•  Does	each	UVC	package	define	timeunit	&	timeprecision?	

–  omission	can	be	serious	time	waster	due	to	timescale	order	rules	

•  Does	the	environment	make	use	of	real	and	time	variables?	
–  these	can	now	be	used	for	rand	fields	(instead	of	integer	and	precision)	

•  Do	the	interface	UVCs	provide	error	injection	capability?	
–  e.g.	serial	interface	(SPI,	I2C,	etc.)	with	long/short	length	errors	
–  how	are	these	handled	in	the	transactions	and	regmodel	adapter?	

•  Are	sanity	regressions	setup	and	do	they	run	successfully?	
–  in	general	is	the	regression	suite	well	organized	and	appropriate?	

© Accellera Systems Initiative 42

REPORTING	FINDINGS	
What	to	say	and	how	to	use	the	audit	information	

© Accellera Systems Initiative 43

Reporting	Audit	Results	
•  Report	format	depends	on	audience	&	goal	of	the	audit	

–  formal	audit	requires	formal	report	document,	possibly	for	3rd	party	
–  ad-hoc	project	ramp-up	probably	requires	informal	notes	to	be	shared	

•  Amount	of	detail	and	conclusions	depends	on	expectations	
–  formal	audit:	expected	to	deliver	detailed	information	(easy	to	handle)	
–  stealth	audit:	team	may	expect	no	information	(hard	to	handle)	

•  Content	should	be	positive,	constructive	and	respectful	
–  describe	what	can	be	improved,	how	&	why	(not	just	identify	what	is	wrong)	

© Accellera Systems Initiative 44

Verification engineers
are people too!

Finding an RTL bug in verification => always good!
Knowing the testbench limitations => always good!

Action	Plan	
•  What	you	do	with	information	depends	on	team	role	&	project	maturity	

–  verification	lead	on	new	product	family	(address	all	findings,	plan	accordingly)	
–  joining	project	with	planned	derivatives	(ruthless	prioritization,	+post	tape-out)	
–  fire-fighting	role	on	end-of-line	project	(understand	risks,	minimize	changes)	

•  Do	not	change	all	of	the	code,	all	of	the	time	
–  inappropriate	to	introduce	too	many	changes	without	stable	regressions	
–  safety	net	of	high-quality	metrics	(functional,	assertion	&	code	coverage)	
–  prioritize	changes	according	to	an	agreed	action	plan	

•  Either	way	we	have	more	realistic	picture	now,	than	before	the	audit	
–  e.g.	reuse	from	a	legacy	project	might	be	limited	or	counter-productive	

© Accellera Systems Initiative 45

Setting	Priorities	
•  Identifying	problems	and	knowing	how	to	fix	them	is	one	thing...	
•  ...but	prioritizing	effort	for	incremental	improvements	is	another!	
•  Best	case:	start	of	new	project	with	planned	derivatives	

–  do	not	compromise	on	architecture	or	reuse	aspects	
–  roll-out	stimulus,	checks	and	coverage	(in	that	order)	
–  keep	designers	busy	&	build	(everyone’s)	confidence	in	testbench	

•  Worst	case:	fire-fighting	inherited	mess	with	tight	project	timelines		
–  change	as	little	as	possible,	and	manage	risk	through	raising	awareness	
–  focus	on	stimulus	improvements	(find	bugs),	then	checks	and	coverage	
–  leave	architecture	and	reuse	until	post	tape-out	(end-of-line	=>	never)	

© Accellera Systems Initiative 46

CONCLUSION	

© Accellera Systems Initiative 47

Conclusion	
•  Presented	pragmatic	approach	to	various	aspects	of	verification	audit	

–  focus	on	UVM	and	related	infrastructure	
–  overview	of	development	process	and	reporting	findings	
–  details	on	architecture,	code	analysis,	digging	deeper,	and	missing	items	

•  Content	should	benefit	any	level	of	audit	or	review	process	
–  formal,	ad-hoc	or	even	stealth	(uninvited)	audits	

•  Premise:	
–  knowing	the	testbench	limitations	is	a	good	thing		
–  this	helps	projects	with	productivity,	planning	and	risk	management	

•  Hope	it	helps	you	improve	quality	&	effectiveness	of	your	testbenches	

© Accellera Systems Initiative 48

References	
1  Use	the	Sequence,	Luke	-	SNUG	2018	
2  Configuring	a	Data	with	a	Model	-	SNUG	2016	
3  Lies,	Damned	Lies,	and	Coverage	-	DVCon	2015	
4  Advanced	UVM	Register	Modeling	-	DVCon	2014	
5  Pragmatic	Verification	Reuse	in	a	Vertical	World	-	DVCon	2013	
6  Advanced	UVM	Tutorial	–	I	&	II	– DVCon	2014	&	2015	

© Accellera Systems Initiative 49

All these papers and presentations available from:
http://www.verilab.com/resources/papers-and-presentations/

Questions	

© Accellera Systems Initiative 50

