
USF-based FMEDA-driven Functional Safety Verification
Francesco Lertora, Software Engineering Group Director, SVG

Mangesh Mukundrao Pande, Solutions Architect, SVG

Pete Hardee, Group Director Product Management, SVG

04 March 2024

© 2024 Cadence Design Systems, Inc. All rights reserved.2

• Session 1
o Introduction

o Functional Safety Analysis Overview

o Deep Dive

– Architectural FMEDA

– Detailed FMEDA

– Safety Metrics Verification

• [Break]

• Session 2
o Fault Campaign Management

• Summary

Outline

© 2024 Cadence Design Systems, Inc. All rights reserved.3

Why not for safety?

EDA as an Ecosystem of International and Industry Standards

1076 - IEEE Standard for VHDL Language Reference Manual

1364 - IEEE Standard for Verilog Hardware Description Language

1800 - IEEE Standard for SystemVerilog Unified Hardware Design,

Specification, and Verification Language

Timing Constraints – SDC

Library Exchange Format (LEF)/Design Exchange

Format (DEF)

Liberty™ library format

1497 IEEE Standard for Standard Delay Format

(SDF) for the Electronic Design Process

1801 - IEEE Standard for Design and Verification of Low-Power, Energy-

Aware Electronic Systems

GDSII - Graphic Design System

OASIS® – Open Artwork System Interchange Standard

• Describe safety features, targets (intent) and exchange safety-related information

1685 - IEEE Standard for IP-XACT, Standard Structure for Packaging,

Integrating, and Reusing IP within Tool Flows

© 2024 Cadence Design Systems, Inc. All rights reserved.4

• Lack of formalism, standards ambiguity, differentiated assessors
scenario, lead to customer-specific methodologies + widespread
usage of Spreadsheets
o «consulting-driven» market side-effects:

– ‘keep it obscure’

– ‘this is my (certified) methodology’

– ‘(only) We will tell you what you have to do’...etc...

To develop a modular safety analysis platform to exchange safety-related
information and to enable Design For Safety with Cadence® Tools

Motivations & Mission

© 2024 Cadence Design Systems, Inc. All rights reserved.5

• Modularity
o A solution that can be adapted and scaled to different scenarios

• Defined scope
o A set of kernel functionalities - Rooted by safety analysis capabilies

• Not enforcing a «methodology»

• EDA ‘friendly’

Cadence Approach

© 2024 Cadence Design Systems, Inc. All rights reserved.6

Current Status

• Accellera Functional Safety Working Group (FSWG)
o Second White Paper Published - December 2023

o Cadence was part of the WG formation and kick-off in 2019

o Being the collaborative work of entities the final Accelera proposal will be different from USF

• IEEE Std 2851™‐ 2023 – “Standard for Functional Safety Data Format for
Interoperability within the Dependability Lifecycle”
o “dot standards” will follow

o IEEE to adopt the Accelera FSWG work on FMEDA

Cadence is committed to adopt and support the IEEE 2851 family of standards

• Where we are going:
o Safety Analysis: an international standard to share safety information

o Safety Implementation: adding a new variable to PPA Safety

AreaPerformance

Power

© 2024 Cadence Design Systems, Inc. All rights reserved.7

Closing the Gap between FMEDA and Safety Verification

Functional

Safety Concept

Abstraction

Functional

Safety Step

FMEA

User

Safety Architect

(System level)

Technical Safety

Concept SoC
Block Diagram FMEDA

(architectural)

Safety Architect

(SoC level)

SoC Design RTL/netlist
FMEDA

(detailed)

Safety Engineer

(RTL/gate level)

SoC Safety

Verification
Netlist Safety Verification

(Formal/Fault Injection)

Safety Verification

Engineer

Safety Metrics Verification Result
FMEDA

backannotation

Safety Verification

Engineer

S
a

fe
ty

A

n
a
ly

s
is

S
a

fe
ty

 V
e

ri
fi
c
a

ti
o
n

Estimation

Verification

More accurate

safety metrics

Safety

Requirements

© 2024 Cadence Design Systems, Inc. All rights reserved.8

Midas Safety Platform for FMEDA-driven Functional Safety

• Midas™ Safety Platform driving
analog and digital flows for FMEDA-
based functional safety

• Early phase safety analysis and
architecture exploration

• Automated safety mechanism
insertion and verification

• Native chip design data for accuracy
and detailed safety analysis

• Unified Safety Format (USF) support

© 2024 Cadence Design Systems, Inc. All rights reserved.9

Cadence Functional Safety Full Flow

FMEDA Creation Safety Analysis
Safety

Verification Plan

Midas.DB

Midas™ Safety PlatformUSF
(Unified Safety

Format)

Architectural

FMEDA

Detailed

FMEDA

Design to FMEDA Mapping

USF

Safety

Verification

Safety

Implementation

USF

Jasper™

Fault Testability

Xcelium™

Fault Simulation

Palladium®

Fault Emulation

Genus™

Safety Mechanism Insertion

Innovus™

Safety Mechanism Insertion

Virtuoso® ADE Assembler
Analog Fault Campaign Management

Verisium™ Safety
Digital Fault Campaign Management

Spectre®

Fault Simulation

© 2024 Cadence Design Systems, Inc. All rights reserved.10

Digital Safety Verification
Fault campaign management, analysis, simulation and emulation

✓ Fault Campaign Management – Verisium Safety
• Unified campaign management across all engines

• Backannotation of DC results into Midas FMEDA

• Provides requirements traceability and reporting

✓ Fault Analysis – Jasper FSV App
• Structural analysis to reduce the fault list

• Formal analysis for accurate fault classification

✓ Fault Simulation – Xcelium Safety
• Native serial and concurrent fault verification

• Same simulator for functional verification (GOOD machine)
and fault simulation (BAD machine)

✓ Fault Emulation – Palladium Safety
• Run full SoC with SW or STLs

Verisium™ Manager Safety

Test

Selection

Fault

Classification

Campaign

Scheduling

Fault Campaign Management

Fault Simulation Formal Analysis

Palladium Safety, Xcelium Safety, Jasper FSV App

Fault DB

Fault Emulation

© 2024 Cadence Design Systems, Inc. All rights reserved.11

Cadence Automotive Safety / USF-Driven Flow

• USF from Midas augmented with physical information
(spacing rules, …)

• USF-driven safety mechanism flow:
o Insertion in Genus during synthesis

o Physical implementation & verification (spacing, keepout, …) in Innovus

o Logical verification in Conformal

Midas™

Safety Platform
USF

Genus™

syn_gen -phys

load floorplan

iSpatial
(usf aware)

syn_map –phys
(tmr insertion)

load design

read_usf

Innovus™

route_design

place_opt_design

opt_signoff

opt_design -post_route

load common db ; or

read netlist / def / usf

ccopt_design

Conformal ®

load netlists

read_usf

equivalence

checking

tmr logic validation

+ Physical rules

& constraints
Safety planning & analysis

- ISO 26262 / IEC 61508

- FMEDA

Accellera working group:
Cadence committed to

supporting IEEE standard

SAFETY

© 2024 Cadence Design Systems, Inc. All rights reserved.12

Midas AMS Functional Safety Flow Overview

• Connect FMEDA data to design data

o Import schematic/RTL hierarchy into Midas (DHE)

o Direct mapping of Safety objects to Design objects

o Generate fault campaigns inside Midas for various failure

modes

• Clean hand-off from FuSa lead to IC design teams

o Digital-centric or analog-centric AMS flows

o Automated fault campaign management: ADE® Verifier and

Assembler (analog-centric) or Verisium Manager (digital-

centric)

o Run fault campaigns with Virtuoso, Verisium Manager, and

Legato

• Improve the accuracy & traceability of safety metrics

o Back-annotate key safety metrics back to Midas

Midas™ Safety Platform for

Functional Safety Analysis

Safety

Analysis

Safety

Verification

Plan

Design

Mapping

FMEDA-driven digital & analog

architecture exploration

AMS Fault Simulation Setup

MS Test Bench | Virtuoso® ADE Assembler

AMS Fault Simulation

Legato™ (Spectre®/AMS Designer)

AMS Fault Campaign Management

Verisium™Manager | Virtuoso® ADE Verifier

© 2024 Cadence Design Systems, Inc. All rights reserved.13

Midas Safety Platform Modularity

Midas
Backend

Midas
Application

InnovusGenus

• The Midas backend is the ‘functional
safety engine’

• Support for Midas command line interface

• ISO26262; IEC61508

• BFR

• Same backend is integrated into Genus
and Innovus

• Core features can be made easily
available in different contexts

© 2024 Cadence Design Systems, Inc. All rights reserved.14

Functional Safety Analysis Overview

© 2024 Cadence Design Systems, Inc. All rights reserved.15

Functional Safety Analysis

Architectural FMEDA Detailed FMEDA

• Device Safety (IP/SoC) architectures

• No direct access to design information
• During or after design implementation

• Using real design information

FMEDA Project (IP and SoC)

Technologies (Digital, Analog, ...)

Safety Hierarchy (Parts/Subparts)

Failure Modes

Mapping Safety Hierarchy to Design Hierarchy

Mapping Safety Mechanisms

Metrics & Reports Queries

BFR calculation engine (IEC TR 62380)

DC on FM-SM, different DC heuristics for

combining from multiple SM

Only for a detailed FMEDA: direct (with –

exclude support) or extraction-based (COI)

Custom attributes, What-if analysis, flexible-

customizable template
Rules check

IP FMEDA, FMEDAs grouping and SGs

definition

© 2024 Cadence Design Systems, Inc. All rights reserved.16

Architectural FMEDA

FMEDA Project (IP and SoC)

Technologies (Digital, Analog, ...)

Safety Hierarchy (Parts/Subparts)

Failure Modes

Mapping Safety Hierarchy to Design Hierarchy

Mapping Safety Mechanisms

Metrics & Reports Queries

BFR calculation engine (IEC TR 62380)

set_fmeda myFMEDA -ASIL B -t -p -arch

create_technology DigLib -type Digital -fitperm 1.07e-6 -

fittrans_gate 1.64e-6 -fitbit 1.64e-6 -refarea 1.026

create_part "OpenRISC Core" -fmeda myFMEDA

create_subpart FETCH -desc "Instruction Fetch Unit" -part

"OpenRISC Core" -fmeda myFMEDA

create_failure_mode FM_ARCH_1 -desc "Any failures of FETCH sub-

block“ -type Mission -technology DigLib -subpart FETCH -gates

2500 -flops 100 -safe_perm 1 -safe_trans 0 -fmeda myFMEDA

create_safety_mechanism SM-IF -desc "Instruction Fetch

redundancy" -type Custom -class HW

apply_safety_mechanism SM-IF -to FM_ARCH_1 -fmeda myFMEDA -

dcperm 95 -dctrans 0 -dclat 100

report_safety -fmeda myFMEDA permanent html Permanent.html

report_safety -fmeda myFMEDA transient csv Transient.csv

query_usf myFMEDA –obj_type failure_mode –obj_id FM_ARCH_1

USF

© 2024 Cadence Design Systems, Inc. All rights reserved.17

Detailed FMEDA

FMEDA Project (IP and SoC)

Technologies (Digital, Analog, ...)

Safety Hierarchy (Parts/Subparts)

Failure Modes

Mapping Safety Hierarchy to Design Hierarchy

Mapping Safety Mechanisms

Metrics & Reports Queries

BFR calculation engine (IEC TR 62380)

set_fmeda myFMEDA -ASIL B -t -p -detailed

create_technology DigLib -type Digital -fitperm 1.07e-6 -

fittrans_gate 1.64e-6 -fitbit 1.64e-6 -refarea 1.026

create_part "OpenRISC Core" -fmeda myFMEDA -instances

{hinst:or1200_cpu/or1200_if hinst:or1200_cpu/or1200_genpc}

create_subpart FETCH -desc "Instruction Fetch Unit" -part

"OpenRISC Core" -fmeda myFMEDA -instances

{hinst:or1200_cpu/or1200_if}

create_failure_mode FM_ARCH_1 -desc "Any failures of FETCH sub-

block“ -type Mission -technology DigLib -subpart FETCH -

safe_perm 1 -safe_trans 0 -fmeda myFMEDA -instances

{hinst:or1200_cpu/or1200_if}

create_safety_mechanism SM-IF -desc "Instruction Fetch

redundancy" -type Custom -class HW

apply_safety_mechanism SM-IF -to FM_ARCH_1 -fmeda myFMEDA -

dcperm 95 -dctrans 0 -dclat 100

report_safety -fmeda myFMEDA permanent html Permanent.html

report_safety -fmeda myFMEDA transient csv Transient.csv

query_usf myFMEDA –obj_type failure_mode –obj_id FM_ARCH_1

USF

© 2024 Cadence Design Systems, Inc. All rights reserved.18

Refine FMEDA Data for Optimized Safety Design

• No design data available

• FMEDA hierarchy only

• Failure rates and distribution
solely based on early
estimations

Architectural FMEDA

Optimized FMEDA metric by using design & simulation-based data

Detailed FMEDA

• With design data

• Design to FMEDA
hierarchy mapping

• HW safety metric based
on design data

Optimized Safety Design

• With design & simulation data

• Design to FMEDA hierarchy
mapping

• HW safety metric based on
design & simulation data

2%

higher

SPFM

© 2024 Cadence Design Systems, Inc. All rights reserved.19

Inputs / Outputs

Estimated

Realdhedb

Xcelium

Genus

Spectre

Design

Information

FMEDA Authoring

• Definition of the FMEDA Project

• Parts, Subparts, Failure Modes, Safety Mechanism

• Design Mapping (for a Detailed FMEDA)

• Excel files

USF files

Midas db
Fault Simulation Results

USF files

Midas db

Fault Simulation Campaing Order

Reports

• FMEDA (Permanent+Transient)

• Summary

• SoC Summary

• Safety Goal Report

Reliability

Basic Failure Rates by

technology

Reference Areas

© 2024 Cadence Design Systems, Inc. All rights reserved.20

Architectural FMEDA

© 2024 Cadence Design Systems, Inc. All rights reserved.21

Architectural FMEDA Authoring Steps

Create the Technologies

Create the FMEDA Project

Create Parts

Create Subparts

Create the Failure Modes

Create the Safety Mechanisms

Map the Safety Mechanisms to

the Failure Modes

Generate Reports

Queries

© 2024 Cadence Design Systems, Inc. All rights reserved.22

Design Decomposition

• Safety analysis are typically

performed with a reduced number

of hierarchical levels compared

with the design hierarchy

FMEDA Project

Parts
First level of hierarchical

decomposition

Subparts
Second or greater level of hierarchical

decomposition

Failure Modes
Manner in which an element or an item

fails to provide the intended behavior

• The target is to define the failure modes,

not to describe the circuit functionalities

© 2024 Cadence Design Systems, Inc. All rights reserved.23

Functional Safety Authoring

• The GUI provides an
user-friendly FMEDA
authoring enviroment

• Safety objects can also
be created with USF
commands

© 2024 Cadence Design Systems, Inc. All rights reserved.24

Functional Safety Authoring

• The solution is fully
scriptable

• Mixing GUI and
scripted-automations
is further possibile

© 2024 Cadence Design Systems, Inc. All rights reserved.25

What-if Analysis: FMEDA Static Configurations

• Create configurations
changing values in the
FMEDA (e.g., design
info., SM DCs)

• Each configuration
generates safety
metrics to be
compared

• The configurations can
be saved and restored

© 2024 Cadence Design Systems, Inc. All rights reserved.26

• It is possibile to select one
parameter (e.g, DC),
define the interval and an
output metric to be
reported

• By leveraging the USF
backend Midas provides
the result of the simulation

• Graphs, and values, can
be saved and restored

What-if Analysis: FMEDA Dynamic Configurations

© 2024 Cadence Design Systems, Inc. All rights reserved.27

Detailed FMEDA

© 2024 Cadence Design Systems, Inc. All rights reserved.28

Detailed FMEDA Authoring Steps

Get Design Information (DHE)

Create the FMEDA Project

Import Design Information

Create the Technologies (Base

Failure Rates)

Create Parts

Define Parts Mapping to Design

Create Subparts

Define Subparts Mapping to Design

Create the Failure Modes

Define Failure Mode Mapping to Design

Create the Safety Mechanisms

Map the Safety Mechanisms to the Failure

Modes

Generate Reports

Queries

Safety Metric Verification

Detailed-FMEDA Specific

Steps

© 2024 Cadence Design Systems, Inc. All rights reserved.29

Design Hierarchy Extraction - Genus

usf_genus_ns::usf_genus_dhe

[designInstance]

{dheFileName}

{ffFileName}

[-bbox bboxFileName]

[-seq_leaf {instances_name_list}

-comb_leaf {instances_name_list} [-stopathier]]

designInstance
Hierarchical design instance to collect design information. If no instance is

passed, the current design is assumed to be extracted

dheFileName Filename to store design Hierarchy Information

ffFileName Filename to store the information for each hierarchical instance

-bbox bboxFileName
If this option is used, the command will try to find all the memories and the

macros in the design and to generate automatically a description file

[-seq_leaf {instances_name_list}

-comb_leaf {instances_name_list} [-stopathier]]
Support the extraction of leaf instances

• The generated database can be parsed with the usf_dhe_parser command

• A Midas database can be generated by using the save_usf –db command

© 2024 Cadence Design Systems, Inc. All rights reserved.30

Design Hierarchy Extraction - Xcelium

xrun -elaborate

-fault_mdb_gen

[-fault_top <top_instance | top_module>]

[-fault_mdb_file <dheDB_filename>]

[-fault_mdb_ff]

[-fault_lib_mfile <lib_list_file>]

[-fault_mdb_overwrite]

[other_options]

<source_files>

-fault_top Specifies the top_instance or top_module for design information extraction.

-fault_mdb_gen Enables design extraction and generates a Midas database file.

-fault_mdb_file Name of the Midas database file

-fault_mdb_ff Includes sequential element extraction (pinout and flip-flop information) in the generated Midas database file.

-fault_lib_mfile Specifies a liberty file list for gate-level design.

-fault_mdb_overwrite Overwrites a previously generated Midas database file, if it exists

• For macros, read the liberty files into the Xcelium elaboration

o Area is extracted if the -macro_cell option is used when reading the relevant .lib files
and the macro are elaborated as a library using –v

• Import the generated database into Midas or parse using the
usf_dhe_parser -db command

© 2024 Cadence Design Systems, Inc. All rights reserved.31

• Spectre Circuit Information (info)
o New keyword: what=dhe

• DHE Options

• Import the generated database into Midas or parse
using the usf_dhe_parser -db command

Design Hierarchy Extraction - Spectre

Parameter Description

dheminarea Lower bound of area value for device to be considered during design hierarchy extraction

dhesubckt Design hierarchy is generated for all instances of the specified sub-circuits

dheinst Design hierarchy is generated for the specified sub-circuit instances

dhexsubckt All instances of the specified sub-circuits are excluded from the design hierarchy

dhexinst The specified sub-circuit instances are excluded from the design hierarchy

dheparams
Name of the file that provides the rules to calculate area for subcircuits when what=dhe. Area are

calculated on instance parameters ### subckt name : area expr

cfmom : lr*w*nr*multi+lr*s*(nr-1)*multi

mimcap* : lt*wt*mf

mimcap_1p5_sin : lt*wt*mf

nmoscap : wr*lr*multi

nmoscap_33 : wr*lr*multi

nmoscap_tgo5 : wr*lr*multi

© 2024 Cadence Design Systems, Inc. All rights reserved.32

Basic Failure Rate (BFR) Support

© 2024 Cadence Design Systems, Inc. All rights reserved.33

die package overstress

set_bfr

set_IEC62380_lDIE set_IEC62380_lPackage set_IEC62380_loverstress

• Customizations:
o Mission Profile: set_Mission_Profile; get_Mission_Profile

o Safe/Dangerous Ratio: set_safeness; get_safeness

o Confidence Level: set_Confidence; get_confidence

o Conservative (ISO26262-11) temperature derating

o Package customizations: set_IEC62380_cpackage; get_IEC62380_cpackage

IEC TR 62380: USF Commands

© 2024 Cadence Design Systems, Inc. All rights reserved.34

λ = λref x πu x πT x πD Analog integrated circuits with extended range of operating voltages

λ = λref x πT x πD Analog integrated circuits with fixed operating voltages

λ = λref x πU x πT Digital CMOS-B

λ = λref x πT For all other integrated circuits

SN29500: USF Command
set_SN29500_lambda {lambda ref table} {technology} {size} {factors list} {power consumption}

{number of pins} {cooling method} {package} {mission profile}

{table 9 category} {voltage type} {operating voltage} {rated voltage}

{drift flag}

Drift sensitivity factor

Temperature

sensitivity factor

Voltage

Dependence factor

© 2024 Cadence Design Systems, Inc. All rights reserved.35

Midas GUI BFR Tools

IECTR 62380 SN29500

© 2024 Cadence Design Systems, Inc. All rights reserved.36

Leverage Design Information in the BFR Computation

• Create a Technology
by using the IEC
62380 BFR tool with
automatic computation
of the number of
transistors

• The technology is
saved in the shared
library, available for all
FMEDA projects

© 2024 Cadence Design Systems, Inc. All rights reserved.37

Design Information Mapping

• Drag & drop Design
information to Parts,
Subparts and Failure
Modes

• Area, equivalent
number of gates and
number of sequential
elements are
automatically computed

© 2024 Cadence Design Systems, Inc. All rights reserved.38

Safety Checks

© 2024 Cadence Design Systems, Inc. All rights reserved.39

USF check_usf Command

• check_usf -fmeda FMEDA_OpenRisc

• Rule Examples:

• To report more information:
• check_usf -fmeda FMEDA_OpenRisc –verbose

• Adding custom specific rules:

• TYPE2-1: Subparts shall be technologically uniform

• TYPE2-2: Sum of the Failure Mode Distribution shall be 100%

• TYPE2-3: One safety mechanism should be defined for each failure mode

• TYPE2-5: All the design logic has been mapped to a Subpart

• TYPE2-6: All the design logic has been mapped to a Failure mode

• TYPE2-7: All the design logic has not been mapped to more than one Part

usf_add_drcrule <drcRuleTAG> {-active {on|off}} {-severity number} {-proc tclproc} {-description description}

<drcRuleTAG>:

Tag ID for the USF Rule to be added

{-active {on|off}:

Rule Checking status. off = the rule will not be considered

{-severity}:

Rule Severity, a number from 0 to 10 (0 is an error message; 1 is a warning message; 2 is info message)

{-proc tclproc}:

TCL procedure that will manage the DRC check. The TCL procedure has to exists

{-description description}:

Textual description for the rule to be added

© 2024 Cadence Design Systems, Inc. All rights reserved.40

Safety Checks on GUI
• Safety hierarchy

overlapping checks

• Failure modes
mapping checks

USF check_usf on command line interface

The instances mapped to the given
safety object (part, subpart, or failure
mode) do not have any hierarchical
dependency with other safety objects
of the same type (part, subpart, or
failure modes)

The instances mapped to the given safety
object (part, subpart, or failure mode)
have one or more hierarchical
dependency with other safety objects of
the same type (part, subpart, or failure
modes)

Design instance is not mapped to any
failure mode

Design instance is mapped to one
failure mode

Design instance is mapped to
more than one failure mode

© 2024 Cadence Design Systems, Inc. All rights reserved.41

USF Query & Reporting

© 2024 Cadence Design Systems, Inc. All rights reserved.42

query_usf USF Relational Queries

• How many FMEDA projects do we have?
– query_usf *

– FMEDAPRJ FMEDA_OpenRisc

• How many Failure Modes have been defined for this project?
– query_usf FMEDA_OpenRisc -obj_type failure_mode -obj_id *

– FAILUREMODES FM_1 FM_2 FM_3 FM_4 FM_5 FM_6 FM_7 FM_8 FM_9 FM_10 FM_11 FM_12 FM_13 FM_14

FM_15 FM_16 FM_17 FM_18 FM_19 FM_20 FM_21 FM_22 FM_23 FM_24 FM_25 FM_26 FM_27 FM_28

FM_29 FM_30 FM_31 FM_32 FM_33 FM_34 FM_35

• Report the metrics for a specific FMEDA project
– query_usf FMEDA_OpenRisc -obj_type fmeda -obj_id metrics

– FMEDAPRJ FMEDA_OpenRisc off on on B off on {9 16 35} {57.5% 58.1% 100.0%} {4.269e-02

6.753e-02 0.000e+00 1.005e-01 1.611e-01} DigLib {{134678.6 131265.7 6563.0} {98720.7

96219.0 4431.0} {96364.7 93922.7 4328.0}} {57.52% -- -- -- --} {100.00% -- -- -- --}

{58.09% -- -- --}

LEVEL 0 query_usf * Listing available information

LEVEL 1 query_usf {fmeda} {–obj_id id} {–obj_type type} Direct query

LEVEL 2
query_usf {fmeda} {–obj_id id} {–obj_type type}

[-ref_type RefType] [-ref_id refid]
By referencing another object

The query_usf command reports in a ‘TCL friendly’ format the information to create
safety automations

© 2024 Cadence Design Systems, Inc. All rights reserved.43

USF Reports: ISO26262 and IEC61508

ISO26262

FMEDA

Summary

Permanent

Transient
IEC61508

Summary

FMEDA
Conversion «Silver IEC flow»

Permanent

Transient

IEC61508
(“native” Golden)

FMEDA

Summary

Permanent

Transient

report_safety -standard iso26262 -fmeda myFMEDA permanent html "reports/ISO_PERMANENT.html"

report_safety -standard iso26262 –fmeda myFMEDA transient html "reports/ISO_TRANSIENT.html"

report_safety -standard iso26262 -fmeda myFMEDA report html "reports/ISO_SUMMARY.html“

report_safety -standard iec61508 -fmeda myFMEDA permanent html "reports/IEC_PERMANENT.html"

report_safety -standard iec61508 -fmeda myFMEDA transient html "reports/IEC_TRANSIENT.html"

report_safety -standard iec61508 -fmeda myFMEDA report html "reports/IEC_SUMMARY.html"

© 2024 Cadence Design Systems, Inc. All rights reserved.44

Midas Application Import-Export

• Microsoft Excel import/export is supported

• Rationales
• Use USF (text file) for exchange/integration

• Use MS Excel for final reporting and auditing

© 2024 Cadence Design Systems, Inc. All rights reserved.45

Reduce the number of safety objects, preserving the metrics

FMEDA Compression

set_fmeda "IP1" -permanent -transient -ASIL B -architectural
create_technology "Tech1" -type Digital -fitperm 1.070e-006 -fittrans_gate 1.640e-006 -fitbit 1.640e-006 -refarea 1.026
…
create_technology "Tech5" -type Flash -fitperm 9.759e-004 -fittrans_gate 0.000e+000 -fitbit 9.759e-002 -refarea 1.026
create_part "IP1/P1" -fmeda "IP1"
create_part "IP1/P2" -fmeda "IP1"
create_subpart "IP1/P1/SP1" -part "IP1/P1" -fmeda "IP1"
…
create_subpart "IP1/P2/SP2" -part "IP1/P2" -fmeda "IP1"
create_failure_mode "IP1/P1/SP1+Tech1:FM1" -type Active -technology "Tech1" -subpart "IP1/P1/SP1" -gates 1234 -flops 567 -safe_perm 10 -fmeda "IP1"
create_failure_mode "IP1/P1/SP1+Tech1:FM2" -type Passive -technology "Tech1" -subpart "IP1/P1/SP1" -gates 7654 -flops 321 -safe_trans 40 -fmeda "IP1"
…
create_failure_mode "IP1/P2/SP2+Tech5:FM1" -type Mission -technology "Tech5" -subpart "IP1/P2/SP2" -membits 890 -safe_trans 70 -fmeda "IP1"
create_failure_mode "IP1/P2/SP2+Tech5:FM2" -type Active -technology "Tech5" -subpart "IP1/P2/SP2" -membits 123 -safe_perm 5 -fmeda "IP1"
create_safety_mechanism "SM:IP1/P1" -type Custom -class HW
apply_safety_mechanism "SM:IP1/P1" -to "IP1/P1/SP1+Tech1:FM1" -dcperm 80 -dctrans 90 -dclat 60 -fmeda "IP1"
…

save_usf saved_IPs_compress.usf –compress

set_fmeda "IP1" -permanent -transient -ASIL B -architectural
create_technology "Tech1" -type Digital -fitperm 1.070e-006 -fittrans_gate 1.640e-006 -fitbit 1.640e-006 -refarea 1.026
create_part part_IP1_Tech1 -fmeda IP1
create_subpart subpart_IP1_Tech1 -fmeda IP1 -part part_IP1_Tech1
create_failure_mode fm_IP1_Tech1_Active_on -type Active -technology Tech1 -fmeda IP1 -subpart subpart_IP1_Tech1 -gates 4936 -flops 2268 -safe_perm 10 -
safe_trans 0
create_safety_mechanism sm_IP1_Tech1_Active -type Custom -class HW
apply_safety_mechanism sm_IP1_Tech1_Active -to fm_IP1_Tech1_Active_on -fmeda IP1 -dcperm 80 -dctrans 90 -dclat 60
create_failure_mode fm_IP1_Tech1_Passive_on -type Passive -technology Tech1 -fmeda IP1 -subpart subpart_IP1_Tech1 -gates 30616 -flops 1284 -safe_perm 0 -
safe_trans 40
create_safety_mechanism sm_IP1_Tech1_Passive -type Custom -class HW
apply_safety_mechanism sm_IP1_Tech1_Passive -to fm_IP1_Tech1_Passive_on -fmeda IP1 -dclat 60
…

© 2024 Cadence Design Systems, Inc. All rights reserved.46

• Report Managers

o Organize the report information by rows and columns

o Each report has its own template that defines the values handlers

• Templates

o Stored in the usf_report_safety_templates directory

– They can be replaced and customized by TCL procedures that have to follow a formalism defined
in the USF command reference

• Customizations examples

o Remove a column/row; Change the columns/row order

o Adding a custom column/row by providing the TCL value handlers

Report Customizations
a b c

1 2 3

a1 b2 c3

© 2024 Cadence Design Systems, Inc. All rights reserved.47

Custom FMEDA Columns

• It is possibile to add custom
columns to the FMEDA

• The custom FMEDA columns
are leveraging USF attributes

• An attribute tagged to a
failure mode can be a custom
column

• Select the «Create FMEDA
custom column»

• Custom columns can be
exported in the Excel reports

© 2024 Cadence Design Systems, Inc. All rights reserved.48

• Post-process the failure mode distribution

• Example: custom redistribution

Failure Mode Distribution (FMD) Post-processing

usf_set_fmd {-fmeda fmendaprj}

[-part part_name]

[-subpart subpart_name]

[-permanent]

[-transient]

[-strategy {area_uniform | fit_constant | custom} |

-fm fm_name [-value {0-100}]

[-distribution {distributions}]

[-rounding_cost {default | cascade | sum_of_dist_diffs}]

create_failure_mode FM_1 -part dbg -subpart clk_rst -fmeda core …

create_failure_mode FM_2 -part dbg -subpart clk_rst -fmeda core …

usf_set_fmd -fmeda -part dbg -subpart etm_clk_rst \

-strategy custom -distribution {FM_1 {50.0% 50.0%} FM_2 {50.0% 50.0%}}

create_subpart clk_rst -part dbg -fmeda core … -gates 21.61 -flops 3

Permanent Transient

dbg

dbg clk_rst

clk_rst

© 2024 Cadence Design Systems, Inc. All rights reserved.49

SoC Safety Analysis

© 2024 Cadence Design Systems, Inc. All rights reserved.50

• SoC metrics are calculated combining
(grouping) IP FMEDAs

• IP FMEDA work is partitioned, the owner of
the overall safety analysis is grouping the IP
FMEDAs into a SoC FMEDA

• Multiple levels of hierarchy are supported

• Combination of detailed and architectural
FMEDA is possible

• Keep the details in the IP FMEDAs but keep
SoC FMEDA as simple as possible

• Propagation and combination of Safety
Goals (aka Failure Mode Effect)

• Ability to support weights of Failure Modes
to different Safety Goals

SoC Safety Analysis Integration

FMEDA 1

usf_reset

set troot1 {…}

load_usf [file join $troot1 "arm_cortex_m7_fmeda.usf"]

save_usf [file join $troot1 IP_USF "fmeda_1.usf"] -compress

set fmeda1 [lreplace [query_usf *] 0 0]

FMEDA 2

usf_reset

set troot2 {..}

load_usf [file join $troot2 "dtmf.usf"]

save_usf [file join $troot2 IP_USF "fmeda_2.usf"] -compress

set fmeda2 [lreplace [query_usf *] 0 0]

FMEDA ...

Create SoC and group IP FMEDA

usf_reset

set_fmeda SOC -soc -ASIL B -permanent -transient -architectural

group_fmeda -fmeda_list [list $fmeda1 $fmeda2] \

-fmeda_file [list [file join $troot1 IP_USF "fmeda_1.usf"]\

[file join $troot2 IP_USF "fmeda_2.usf"]] -to SOC

© 2024 Cadence Design Systems, Inc. All rights reserved.51

Grouping IP FMEDAs into a SoC FMEDA: USF Command

group_fmeda {-fmeda_list}

[-fmeda_file]

{-to fmeda_soc}

[-linkonly]

-fmeda_list FMEDA_tags_list

Specify a list of FMEDA to link to a SoC FMEDA.

With the format FMEDAIP(num_replica), automatically creates replicas of the same FMEDA

-fmeda_file FMEDA_files_list
Optional. Specify a list of FMEDA project files to link to an SoC FMEDA.
The files are assumed to be generated using save_usf commands.

-to fmeda_soc
Specify that the SoC FMEDA is used as a reference for the FMEDA project. The SoC FMEDA must be
previously created with the set_fmeda command using the -soc option.

-linkonly Optional. Link an IP FMEDA to the SoC FMEDA without copying parts, subparts, and failure modes

Examples
• group_fmeda -fmeda_list {myFMEDA1 myFMEDA2} -fmeda_file {myFMEDA1.usf myFMEDA2.usf} -to mySOCFMEDA

• group_fmeda -fmeda_list {myFMEDA1 myFMEDA2} -to mySOCFMEDA

© 2024 Cadence Design Systems, Inc. All rights reserved.52

SoC FMEDA Project: Midas Application

• Safety Hierarchy

• SoC Summary

Grouping IP FMEDAs

into a SoC FMEDA

© 2024 Cadence Design Systems, Inc. All rights reserved.53

SoC Reports – USF Examples

• SoC Table
– report_safety -fmeda SoC soc html SoC_soc.html

• SoC Safety Goal table
– report_safety -fmeda SoC safety_goal html SoC_sg.html

SoC Summary

IPs Summary

© 2024 Cadence Design Systems, Inc. All rights reserved.54

Safety Goals (aka Failure Mode Effects, High Level Failure Modes)

• Can be used to track the metrics of a list of failure modes of a given IP FMEDA

• It is possibile to export the Safety Goals metrics into a report

• It is possible to create SoC Safety Goals linked to IPs Safety Goals
create_safety_goal SGTOP -description "My new safety goal" -fmeda FMEDA_SOC \

-sg_list SG_1

create_safety_goal SG_1 -description "My safety goal 1" -fmeda "FMEDA_DTFM" \

-fm_list {FM_TDSP}

create_safety_goal SG_2 -description "My safety goal 2" -fmeda "FMEDA_DTFM" \

-fm_list {FM_GROUPED FM_CONV_INST}

ID Part SubPart Failure Mode
Safety

Releva

FM

Type

Techno

logy
Area #Gates

#Flop

Bits
#bit

Raw

Permanent

Total

Safety

FSAFE(p)

%

Fail rate

Safe Fault

Fail rate

non-Safe
λ(p) % KRF(p) %

Single

Point
SG_1 SG_2

FM_ROM TOP MYRO ROMFM Yes Mission ROMLi 0 0 0 0 0.00E+00 0.00E+00 0.00% 0.00E+00 0.00E+00 0.00% 0.00% 0.00E+00

FM_RAM TOP MYRAM RAMFM Yes Mission RAMLi 210487 0 0 8192 6.55E-02 6.55E-02 0.00% 0.00E+00 6.55E-02 98.83% 0.00% 6.55E-02

FM_TDSP TOP TDSP TDSP_CORE_INST FM Yes Mission DigLib 6488.5 6488.53 256 0 4.54E-04 4.54E-04 0.00% 0.00E+00 4.54E-04 0.68% 0.00% 4.54E-04 X

FM_CONV_INST TOP CONV_ RESULTS_CONV_INST Yes Mission DigLib 3716.2 3716.17 199 0 2.60E-04 2.60E-04 0.00% 0.00E+00 2.60E-04 0.39% 0.00% 2.60E-04 X

FM_GROUPED TOP GROUP BASKET FM Yes Mission DigLib 924.4 924.43 62 0 6.47E-05 6.47E-05 0.00% 0.00E+00 6.47E-05 0.10% 0.00% 6.47E-05 X

report_safety -fmeda FMEDA_DTFM safety_goal html "fmeda_sg.html"

© 2024 Cadence Design Systems, Inc. All rights reserved.55

• In case the same failure mode is distributed across different safety goals, it is
possible to specify a list of weights (sum of the weights must be 100%)

• Example use case

set_safety_goal_weights -fm_list {FM_TDSP} -fmeda "FMEDA_DTFM" \

-list_weights {{SG_1 20} {SG_2 80}}

ID Part SubPart Failure Mode
Techn

ology
Area #Gates

#Flop

Bits
#bit

Raw Permanent

faults FIT

Total

Safety

Related

SG_1 SG_2 SG_1 (W) SG_2 (W)
SG_1

(Res%)

SG_2

(Res%)

FM_ROM TOP MYROM ROMFM ROMLi 0 0 0 0 0.00E+00 0.00E+00 0.00% 0.00% 0.00% 0.00%

FM_RAM TOP MYRAM RAMFM RAMLi 210487.2 0 0 8192 6.55E-02 6.55E-02 0.00% 0.00% 0.00% 0.00%

FM_TDSP TOP TDSP TDSP_CORE_INST FM DigLib 6488.5 6488.53 256 0 4.54E-04 4.54E-04 X X 20.00% 80.00% 100.00% 52.80%

FM_CONV_INS TOP CONV_INST RESULTS_CONV_INST DigLib 3716.2 3716.17 199 0 2.60E-04 2.60E-04 X 0.00% -- 0.00% --

FM_GROUPED TOP GROUPED BASKET FM DigLib 924.4 924.43 62 0 6.47E-05 6.47E-05 X 0.00% -- 0.00% --

Safety Goals

Deadlock Data Corruption Exceptions Performance

FM_1 ... 80% 20% -- --

FM_2 ... -- 100% -- --

FM_3 ... -- -- 50% 50%

Safety Goals (aka Failure Mode Effects, High Level Failure Modes)

© 2024 Cadence Design Systems, Inc. All rights reserved.56

Safety Metrics Verification

© 2024 Cadence Design Systems, Inc. All rights reserved.57

Fault Campaign Management – Automation & Optimization

• Test selection and ranking

o Coverage-based test selection

o Customizable ranking criteria

• Fault list reduction

o Fault sampling

o Fault collapsing

o Testability analysis

o Test Dropping

• Fault campaigns execution

o Measured Diagnostic Coverage and
Safeness

o Backannotation of results to FMEDA

o Generate reports and analyze fault metric

o FMEDA, fault classification, campaign
summary,…

Midas™

Safety Platform

Safety Analysis

(FMEDA)

Fault

Spec

Strobe

List

Test

List

Campaign

Config.

Backannotation of

Measured DC%, S%

Fault Metric Analysis,

Debug, and Reporting

Verisium™ Manager Safety

Fault Campaign Management

USF

© 2024 Cadence Design Systems, Inc. All rights reserved.58

Safety Metrics Verification

Verisium™

Manager Safety

Fault Campaign

Management

Final Reports

Expert Judgment

MidasTM MidasTM

Definition of the

observation and

detection points

Generation of the Fault

Injection Campaign

Order

Annotation of the

fault simulation

Results

© 2024 Cadence Design Systems, Inc. All rights reserved.59

Strobing Points Definition

apply_safety_mechanism <SM_TAG> {-to FM_TAG} [-dcperm DCp_VAL] [-dctrans DCt_VAL] [-dclat DCl_VAL] \

{-fmeda FMEDA_TAG} [-diagnostic_points detpoints]

create_failure_mode ... [-observation_points obspoints] [-diagnostic_points detpoints]

• Strobing points can be
dragged & dropped from the
design hierarchy into the
related fields of the FMEDA

• The operation can be
scripted

© 2024 Cadence Design Systems, Inc. All rights reserved.60

Driving Fault Simulation Campaign for DC Validation
Fault Injection Campaign Order Generation

usf_campaign_order CAMPAIGN_FI1 -fmeda MYFMEDA -fm {I2C0_FM_1 I2C0_FM_2} \

-p -generate -sampling 100 -spfm

• Generation of the campaign
order

• Summary of the Fault
Injection Campaign

• Fault specification file

• Strobe specification

• Verisium Manager
configuration

© 2024 Cadence Design Systems, Inc. All rights reserved.61

Back-annotation of the Fault Injection
Campaign Results

usf_campaign_order CAMPAIGN_FI1 -fmeda MYFMEDA -fm {I2C0_FM_1 I2C0_FM_2 I2C0_FM_3 I2C0_FM_4} -p -annotate \

-expert standard

© 2024 Cadence Design Systems, Inc. All rights reserved.62

Enable external, not supported expert judgment algorithms. Use it to directly

annotate DC or safe values based on users evaluation. The provided DC and

safe values are annotated to the target failure modes.

Supported Expert Judgment Methods

Rate DC calculation

> 75%
𝑫𝑪𝟕𝟓% =

𝑫𝑫𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

𝑫𝑫𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅+𝑫𝑼𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

>= 50% && <=

75%

𝑫𝑫𝒓𝒂𝒕𝒆= 𝑵𝑪𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅∗ 𝟎.𝟓 ∗ 𝑫𝑪𝟕𝟓%

𝑫𝑪=
𝑫𝑫𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅+𝑫𝑫𝒓𝒂𝒕𝒆

𝑫𝑫𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅+𝑵𝑪𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅+𝑫𝑼𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

< 50%

𝑫𝑫𝒓𝒂𝒕𝒆= 𝑵𝑪𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅∗ 𝟎.𝟐𝟓∗ 𝑫𝑪𝟕𝟓%

𝑫𝑪=
𝑫𝑫𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅+𝑫𝑫𝒓𝒂𝒕𝒆

𝑫𝑫𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅+𝑵𝑪𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅+𝑫𝑼𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅

• Fsafe is computed with NCmeasured

• Rate is evaluating the % of NCmeasured

o Inversely: NC High → Rate Low

Automatically and conservatively moves a given percentage of
NC faults to detected - The higher NC are, the less they are
moved

standard (Default)

progressive

ncshare (two factors expert judgment)

ncjudge
Redistribute percentages of faults to a given basket, with the only limitation

that the total number of redistributed faults cannot be higher than the total

NC.

Distribution of the Not Classified (NC) faults according to configurable

percentages. DUassumed% + DDassumed% + Sassumed% = 100%

direct

© 2024 Cadence Design Systems, Inc. All rights reserved.63

Generate Final Reports

report_safety –fmeda RISC_CORE_DETAILED report html summary.html -annotate

• Once annotated,
both estimated and
measured values
are available

• Switch between the
two modes and
generate reports

• Save and restore

USF-based FMEDA-driven Functional Safety Verification

Mangesh Mukundrao Pande

Fault Campaign Management (Verisium Manager Safety + Xcelium Safety + Jasper Safety)

© 2024 Cadence Design Systems, Inc. All rights reserved.65

• Goal: prevent or mitigate the effect of a hazardous event due to (operational) random faults

• Requirement: deliver diagnostic coverage according to ASIL (Automotive Safety Integrity Level)

• Method: integrate safety mechanisms across the system architecture

• Validation: show evidence and assess robustness via fault injection

Automotive / Functional Safety / Random Faults / …

DUT

Alarm

Fault

Failure

Activation
Propagation

Observation

Detection

Functional

Outputs (FO)

Checker

Outputs (CO)

CO Result:

Detected (D)

Undetected (U)

FO Result:

Dangerous (D)

Unobserved (U)

Unobservable (S)
Safeness

Stimulus

S

DD DU

UD UU

Safety

Mechanism!

Fault

Classification

Diagnostic

Coverage

Further analysis:
- Fault disposition

- Expert judgement

- New workload

- …

© 2024 Cadence Design Systems, Inc. All rights reserved.66

✓ Campaign Automation – Verisium™ Manager Safety
• Unified front-end to manage all engines and analyze results

• Validation and FMEDA back-annotation of diagnostic coverage

✓ Complexity Reduction – Jasper™ FSV App
• Applies industry-leading formal techniques to fault analysis

• Increases safety verification performance

✓ Injection Engine – Xcelium™ Fault Simulator
• Native serial and concurrent fault simulation engine

✓

Midas™ Safety Platform

Safety Analysis (FMEDA)

Verisium™ Manager

Safety

Test

Selection

Fault

Classification

Campaign

Scheduling

Fault Campaign Management

Fault Simulation
Formal Analysis

Xcelium™ Fault Simulator

Fault DB

Digital Safety Verification
FMEDA-driven safety verification

Jasper™ FSV App

Fault Emulation

Palladium™ Fault Emulator

© 2024 Cadence Design Systems, Inc. All rights reserved.67

VerisiumTM Manager Safety
Fault Campaign Manager – FCM

© 2024 Cadence Design Systems, Inc. All rights reserved.68

Fault Campaign Automation and Analysis

Verisium Manager Safety
Fault Campaign Manager - FCM

Analysis

1. Prepare Data

• Single front-end campaign configuration

• Expand fault targets & instrument design

• Translate strobe definition

4. Generate Reports

• Campaign summary report

• Diagnostic Coverage / Safeness

• FMEDA validated results

2. Minimize Fault Set

• Collapse redundant faults

• Identify unobservable/safe faults

• Test-based fault pruning

3. Execute Campaign

• Create runs per fault groups

• Verisium Manager state-of-the-art DRM

• Drop exhausted faults/tests

Fault Metric Analysis

• Merge fault results across different campaigns

• Disposition of not-classified faults

• Offer insights towards analysis closure

Minimize Execute ReportPrepare Analyze

© 2024 Cadence Design Systems, Inc. All rights reserved.69

• Inputs
o Safety Engineer

– Fault Targets (derived from FMEDA  design mapping)

– Strobe List (observation and detection points)

o Verification Engineer
– Test List (selected for fault analysis)

– Campaign Configuration

• Optimizations, runs distribution, customization, etc.

• Outputs
o Summary Report

– Measured Fault/Diagnostic Coverage, Safeness

o Fault Annotation
– Fault Metric Analysis, annotated fault list, …

FMEDA-driven Fault Campaign

Midas™

Safety

Platform

S
a

fe
ty

 A
n

a
ly

s
is

 (
F

M
E

D
A

)

Xcelium™

Fault

Simulator

Jasper™

FSV App

Fault

Spec.

Strobe

List

Test

List

Campaign

Config.

Fault DB

Verisium™ Manager Safety
Fault Campaign Manager - FCM

Measured Safeness /

Diagnostic Coverage

Fault Metric Analysis,

Debug, and Reporting

© 2024 Cadence Design Systems, Inc. All rights reserved.70

• Safeness (S%)
o Unable to violate Safety Goal (SG)

o Exhaustive fault analysis with Jasper FSV App

• Diagnostic Coverage (DC%)
o Safety Mechanism (SM) performance

o Simulation evidence with Xcelium Safety

– Dangerous faults Detection (DD)

• Closure
o Dedicated fault metric analysis

o Insight for Workload/SM improvements

o Disposition of the Not Classified faults

Fault Classification

Total Faults (Fault DB)

Potentially Dangerous

Unobserved

Safe

Detected

Unclassified DU

Jasper

FSV App

Xcelium

Fault Simulator

Dangerous

DD

Improve

Workload

SM

DU’
Unclassified

Fault Disposition

SG

Verisium Manager

Safety (FCM)

Expert

Judgement
Midas

Safety Platform

SG

Fault Campaign Report Generation

Fault Metric

Analysis

DC% / S%

Safety Analysis (FMEDA)

DD’

S

S’

© 2024 Cadence Design Systems, Inc. All rights reserved.71

Verisium Manager™

Safety

Features / Optimizations

Fault

Analysis

2.

Design

Elaboration

4.

Fault

Pruning

5.

Fault

Simulation

6.

Report

Generation

1.

Test

Selection

Fault

DB

3.

a. FST

b. Good

Simulation

1. Test Ranking & Pruning

• Custom ranking criteria

2. Fault Instrumentation

• Expand user fault specification

• Collapsing and design-based testability

3.a. Structural Fault Reduction

• Strobe-based testability (safe faults)

• Advanced fault collapsing

3.b. Fault-free Simulation

• Required for serial engine and pruning

• Test-based activatability analysis

4. Test-based Fault Reduction

• Strobe-based propagability analysis

• Constant propagation analysis

5. Dynamic Fault Simulation Control

• State-of-the-art run distribution manager

• Fault/Test Dropping, Timeout

• Skip pre-injection simulation

6. Reports Generation

• Campaign summary, annotated fault list

• FMEDA back-annotation results

Dedicated Fault Metric Analysis

• Merge results across different campaigns

• Disposition of not-classified faults

• Verification hole/closure insight

Unified Fault Database

• Scalable to multi-millions of fault results

• Cross-engine data exchange

Insight Disposition

Closure

© 2024 Cadence Design Systems, Inc. All rights reserved.72

Fault Campaign Steps

Campaign Steps

Campaign Sub-Sessions

© 2024 Cadence Design Systems, Inc. All rights reserved.73

Dedicated Fault Analysis
Hierarchical Data

© 2024 Cadence Design Systems, Inc. All rights reserved.74

Campaign Summary Report

---- CAMPAIGN : new_rprt_sample , permanent , CONCURRENT --

Report Date : 2023/02/13 02:49:17

Tool Version : Xcelium 22.09-s005 , Verisium Manager 22.09-s002

Fault Types : SA0+SA1

Sampling : 50.00% of testable faults

---- SUMMARY --

Total Faults Total Prime Sample Faults Sample Prime

-------- INSTRUMENTATION ---- ------- # ---- % ------- # ---- % ------- # ---- % ------- # ---- %

Faults 2626 2546 484 465

Safe 1658 63.14 1658 65.12 0 0.00 0 0.00

Not Injected 479 18.24 458 17.99 35 7.23 35 7.53

Injected 489 18.62 430 16.89 449 92.77 430 92.47

--------- CLASSIFICATION ---- ------- # ---- % ------- # ---- % ------- # ---- % ------- # ---- %

Fault Annotations 2626 2546 484 465

SAFE S 1666 63.44 1666 65.44 8 1.65 8 1.72

DANGEROUS DETECTED DD 362 13.79 303 11.90 322 66.53 303 65.16

DANGEROUS UNDETECTED DU 123 4.68 123 4.83 123 25.41 123 26.45

Not Classified 475 18.09 454 17.83 31 6.40 31 6.67

UNOBSERVED DETECTED UD 0 0.00 0 0.00 0 0.00 0 0.00

UNOBSERVED UNDETECTED UU 211 8.04 199 7.82 31 6.40 31 6.67

NOT SIMULATABLE NS 0 0.00 0 0.00 0 0.00 0 0.00

INJECTION FAILED IF 0 0.00 0 0.00 0 0.00 0 0.00

NOT PROCESSED NP 101 3.85 92 3.61 0 0.00 0 0.00

Others 163 6.21 163 6.40 0 0.00 0 0.00

------------- REFINEMENT ---- ------- # ------ --------- ------ ------- # ------ --------- ------

To S 8 8

From UU 4 4

From DU 3 3

From DD 1 1

---------------- METRICS ---- --------- ---- % --------- ------ --------- ---- % --------- ------

Fault Coverage 16.83 71.08

Test Coverage 74.64 72.36

---- PARAMETERS ---

Fault Coverage : 100 * (DD + D) / (DD + DU + S + D + U + P + U+U + U+D)

Test Coverage : 100 * (DD + D) / (DD + DU + D + U + P)

Merge File : default

Refinement : /vols/vmanager_t2b/ferlini/activities/2022/FCM_tech_up_22.09/refine2.vRefine

Fault Disposition

(user refinement)

Fault and Test Coverage

results and formulas

Applicable client

configuration

Sampled fault scope
Overall campaign(s)

merged results

Date, tool version, fault

types, sampling, …

Static instrumentation

fault results

© 2024 Cadence Design Systems, Inc. All rights reserved.75

Fault Campaign Management – Safety Engines

© 2024 Cadence Design Systems, Inc. All rights reserved.76

• The Xcelium Safety App provides native fault simulation by
integrating Functional & Safety Engines

• Supports existing Xcelium Methodologies

• Capture Replay, DSS (Dual Snapshot), Save Restore

• The Xcelium Safety App operates in 2 modes:

• Serial mode: Flow setup and Debug

• Concurrent mode:

• Higher throughput

• 5-100x faster than serial

• Handles 2K to 20K faults in a single run (Single CPU Core)

• Supports Random Sampling as Sampling Percentage, Sampling
Number

• Support Dual Strobe, Single Strobe Fault Classification

• Interoperable serial and concurrent fault simulation engines

• Both modes have identical flow and can easily switch back and
forth

• The Xcelium Safety App simulates & annotates all faults in the
fault DB

• Supports Fault Boundary to limit CoPF (Cone of Fault
Propagation)

Xcelium Safety App

Verisium™ Safety

Xcelium™ Safety

Jasper™ FST/FSV

RTL or

Gates

RTL or

Gates

Serial Concurrent

SA0 SET

SA1 SEU

Single Fault Batch of Faults

Throughput

Debuggability

SA0 SET

SA1 SEU

FAULT DB

© 2024 Cadence Design Systems, Inc. All rights reserved.77

• Easy to migrate from Functional verification flows to

Fault Injection

o Additional file (Fault File) and option to be added to Elaboration

o Elaboration has added steps for fault Instrumentation

• Fault Simulations

o Serial Engine or

o Concurrent Engine

• Hybrid Mode Support

o Xcelium Safety Simulation allows for users to run the hybrid

flow where Concurrent followed by Serial

• Reporting

o Standalone Support Available

Xcelium Safety Overview – User Flow

Elaboration

(Instrumentation)

Good machine

sim

Fault machine

sim

Report (XFR)

Concurrent sim

Serial sim

Good + Fault

machine sim

simultaneously

Design and Testbench

Fault Set Generator

(XFSG)

Fault

Specification

File

Strobe

Specification

File

© 2024 Cadence Design Systems, Inc. All rights reserved.78

• Inject and simulate multiple faults together

• Concurrent fault simulation is a throughput
solution

o Allows injection of multiple faults during
simulation in a single run.

o Better throughput than the serial engine.

o New simulation kernel
– new scheduler

– fault management

• Native Integration with Xcelium Engine

• Good Simulation runs along with Fault
Simulation
o Fault Value diverges then simulation continues, or

fault is dropped

o Multiple fault runs concurrently in a single simulation
(corresponding test vector)

o Single CPU core per simulation, no multi core multi
thread support

Xcelium Safety – Concurrent

Incorrect Output Values in this list indicate

detectable faults i.e., a/0, c/0, e/0, g/0

At least one value differs Good Value

© 2024 Cadence Design Systems, Inc. All rights reserved.79

• Xcelium Elaboration
o Used for Fault Instrumentation

o Extra analysis done for Concurrent

o Example:
– xrun –fault_file <input_fault_file> -fault_rtl

• XFSG
o xfsg -fault_work ./fault_db/ -fault_type sa0+sa1 –fault_list foutput

–fault_spilt_size <number of Faults>

• Xcelium Concurrent Run
o Run the injected faults in concurrent mode

o Each fault simulated independent of the others

o Example:
– xrun –fault_concurrent –input <injected_fault_list>

• Reporting
o Separate utility to generate fault report (Xfr)

o Example:
– xfr –fault_work <path_to_fault_database>

Concurrent Fault Simulation - Overview Xcelium

Elaboration

XFSG +

Xcelium

Concurrent

Reporting

(XFR)

Fault

Database

© 2024 Cadence Design Systems, Inc. All rights reserved.80

FCM – Optimizations from Jasper Safety (FSV)

• FSV exports fault relations → equivalent faults will be skipped

• FSV annotates untestable faults → Safe faults will be ignored

• FSV annotates faults as unobservable by test → Pruned faults will be
dropped

FSV
TCFSV

TC

Fault

DB
Xcelium

Safety

Annotating

untestable

faults

“fst”

FSV
Structural

Fault

DB

“fsv_tc”

FSV
Test

Constants

Fault

DB

Pruning test-based

unobservable faults

Exporting fault

relations

elab
5% fst

6%
gsim
5%
fsv_tc

4%

fault
80%

RUNTIME

A few minutes of

optimization can

save hours of

simulation

© 2024 Cadence Design Systems, Inc. All rights reserved.81

Jasper Functional Safety Verification App (FSV)

• Structural fault connectivity, activatability and relation analysis

• Highly automated pre-qualification flow for Xcelium Safety

• Reduces number and runtime of fault simulations

FSV Structural Fault Analysis

• Formal activatability and propagatability analysis

• Interactive debug, schematics and visualization of propagation

• Assists fault analysis sign-off with Xcelium Safety

FSV Formal Fault Analysis

• Custom strobes and faults specification to model hacker attacks

• Advanced formal checks, barriers and multiplicity of faults

• Addresses safety and security hardware qualification

FSV Custom Safety and Security Analysis

FSV
Custom

FSV
Structural

Xcelium

Safety

FSV
Formal

interactive

batch

Fault

DB

safe

safe

© 2024 Cadence Design Systems, Inc. All rights reserved.82

FSV Structural Analysis Check Types

• Out-of-COI Analysis
o A fault node outside the Cone-of-Influence

(COI) has no physical connection to the
functional strobe(s)

o Fault is Out-of-COI = Safe

• Activatability Analysis
o A SA0/1 fault injected on a node which

is constant 0/1 cannot be activated

o Fault is Unactivatable = Safe

• Propagatability Analysis
o A fault that is activated and in COI, but

cannot propagate to the functional strobe

o Fault is Unpropagatable = Safe

Strobe

OOCOI

Strobe

Barrier
Unprop

Unact

Const

Dangerous Fault

Safe Fault

© 2024 Cadence Design Systems, Inc. All rights reserved.83

FSV – Structural Analysis

[<embedded>] % check_fsv -structural

INFO (IFSV018): Analyzing whole FO strobe's COI.

INFO (IFSV018): Analyzing whole CO strobe's COI.

INFO (IFSV010): COI analysis complete.

INFO (IFSV001): Fault collapse info :

Equivalent : 3836393, Collapse ratio : 47%

Observed : 1020441, Collapse ratio : 12%

Unobservable : 5819404, Collapse ratio : 72%.

INFO (IFSV019): Extracting FO strobe's COI.

INFO (IFSV001): Results of COI analysis:

Out: 1409152, In: 6622838, Unknown: 0.

INFO (IFSV019): Extracting CO strobe's COI.

INFO (IFSV001): Results of COI analysis:

Out: 1610232, In: 6421758, Unknown: 0.

INFO (IFSV011): Starting constant analysis.

INFO (IFSV012): Constant analysis complete.

INFO (IFSV001): Results of constant analysis:

Unactivatable: 411526, Activated: 416612, Unknown: 5794934.

INFO (IFSV048): Starting Propagation analysis for FO strobes.

INFO (IFSV049): Propagation analysis for FO strobes complete. Found 123422 unpropagatable faults.

INFO (IFSV048): Starting Propagation analysis for CO strobes.

INFO (IFSV049): Propagation analysis for CO strobes complete. Found 123246 undetectable faults.

INFO (IFSV050): Starting constant propagation analysis for FO strobes.

INFO (IFSV051): Constant propagation analysis for FO strobes complete. Found 360534 unpropagatable faults.

INFO (IFSV050): Starting constant propagation analysis for CO strobes.

INFO (IFSV051): Constant propagation analysis for CO strobes complete. Found 351466 undetectable faults.

check_fsv -structural

[-fault_relations (on|fo|co|off)]

[-coi (on|fo|co|off)]

[-constant (on|off)]

[-propagation_analysis (on|fo|co|off)]

[-constant_propagation_analysis(on|fo|…)]

5 different structural

analysis checks

© 2024 Cadence Design Systems, Inc. All rights reserved.84

FSV – Structural Analysis – COI Analysis

• COI Analysis
o Goal is to produce „safe“ fault results

o Sensitive to strobes and design

o Scales up to multi-million gates

INFO (IFSV019): Extracting FO strobe's COI.

INFO (IFSV001): Results of COI analysis:

Out: 1409152, In: 6622838, Unknown: 27.

INFO (IFSV019): Extracting CO strobe's COI.

INFO (IFSV001): Results of COI analysis:

Out: 1610232, In: 6421758, Unknown: 27.

Out of COI FO means “safe”!

Out of COI CO means nothing for

safeness. But it could be used for

qualifying the diagnostic safety

mechanism.

Strobe

OOCOI

Unknown: Black boxes prevent

deterministic results

© 2024 Cadence Design Systems, Inc. All rights reserved.85

FSV – Structural Analysis – Sequential Constant Propagation

• FSV Structural Analysis benefits from constants in the design
o But regular constant propagation stops at flops/latches!

• FSV runs sequential constant propagation in the beginning of structural analysis
o Design constants are propagated through sequential elements using reset, clock and design

constraints

o set_fsv_structural_seq_constants_propagation (off | simple | formal)

– off: no analysis

– simple: using fast proof simplification only (default)

– formal: using regular prove engines* and associated time limits

• Benefit
o More propagated constants, more structurally safe faults

• Note: Only environment constraints (-env) are respected!
o Task based constants are ignored in structural analysis

* formal requires FSV license

Example customer testcase

assume scan_en==0 -env

© 2024 Cadence Design Systems, Inc. All rights reserved.86

FSV – Structural UU Disposition Post-Fault Simulation

• Try hard to find more SAFE faults in a fault injection
campaign with many Unclassified faults (UU, UD)

o Reduces the % of UU/UD fault

• By adding custom constraints and barriers

o Declare UU/UD as SAFE!

o Analysis of remaining UU/UD proposes additional test
sequences in XFS to turn UU into DD or DU

FSV
Structural

Fault

DB
Xcelium

Safety

Annotating

unobserved

faults as SAFE
UU/UD faults = unclassified
DU/DD/S faults = classified

Confidence of SPFM/ASIL:

SPFM 99.3% with 50% UU – low

SPFM 99.1% with 2% UU – high

SPFM ASIL

>= 99% D

>= 97% C

>= 90% B

< 90% A

𝐷𝐶 =
𝜆𝐷𝐷

𝜆𝐷𝐷 + 𝜆𝐷𝑈

𝑆𝑃𝐹𝑀 =
𝜆𝐷𝐷 + 𝜆𝑆

𝜆𝐷𝐷 + 𝜆𝐷𝑈 + 𝜆𝑆

© 2024 Cadence Design Systems, Inc. All rights reserved.87

FSV Integration with Xcelium Safety Simulator

FSV
TCFSV

TC

• FSV Structural automatically annotates unobservable faults and RTL fault relations in database

• FSV TC prunes faults not exercisable by particular simulation test

• Xcelium Safety simulates and annotates all remaining faults in database

• FSV Formal annotates unobservable faults and provides interactive propagation analysis

FSV
Formal

Fault

DB
Xcelium

Safety

Annotating

unobservable

faults (UT)

Annotating

unobservable

faults (UT)

Interactive

propagation

analysis

FSV
Structural

Fault

DB
FSV

Test

Constants

Fault

DB

Pruning test-based

unobservable

faults (UU)

Annotating RTL

fault relations
Annotating

dangerous/detected

faults (DD/DU)

Test

Constants

© 2024 Cadence Design Systems, Inc. All rights reserved.88

FSV Formal Analysis Check Types

• Activation Analysis
o Can the fault be functionally activated from the inputs? No = Safe

• Propagation Analysis
o Can the fault propagate to FO? Dangerous : Safe

o Will it always propagate to FO?

• Detection Analysis
o Can the fault be detected at the CO?

o Will it always be detected at the CO?

• Correlation Analysis
o Will a propagated fault always be detected?

clocks reset

constraints

Formal

Proof
abstraction

injection time effort

BBox

FSV
Formal

© 2024 Cadence Design Systems, Inc. All rights reserved.89

Generating Properties

• FSV can generate 6 types of formal properties
check_fsv –generate [-id <tcl_list>] [-task <name>]

[-activatability (on|off)]

[-propagatability (on|off)]

[-detectability (on|off)]

[-always_propagated (on|off)]

[-always_detected (on|off)]

[-propagated_always_detected (on|off)]

INFO (IFSV007): Starting generate.

INFO (IFSV002): Mapping X and undriven.

INFO (IFSV004): Analyzing non-resettable regs.

INFO (IFSV005): Completed analyzing non-resettable regs.

INFO (IFSV013): Creating <fsv_task_0>.

INFO (IFSV016): Modeling task <fsv_task_0> faults.

INFO (IFSV003): Mapping non-resettable regs.

…

INFO (IFSV014): Task <fsv_task_0> created.

INFO (IFSV009): Generate completed.

Easiest, runs in an optimized region

Most difficult, yet most

meaningful check

6 different formal

analysis checks

© 2024 Cadence Design Systems, Inc. All rights reserved.90

FSV Formal – Debugging Visualize Waveforms

• Visualize for detection traces and unobservable analysis
o Use Right-Mouse-Button Menu over an item in the Fault Table

© 2024 Cadence Design Systems, Inc. All rights reserved.91

FSV Formal – Visualize Fault Detection Traces

SA0 Fault

injected Fault observed

at strobe

Twin Signals

from good and

bad machine

Twin source code with

value annotation from good

and bad machine

SA0 Fault

activated

© 2024 Cadence Design Systems, Inc. All rights reserved.92

FSV Formal – Visualize Highlight Propagation Path

Select observation

cycle at strobe

Add Relevant Until

First Difference

1

2

3

4

Highlighted

Propagation Path

© 2024 Cadence Design Systems, Inc. All rights reserved.93

Palladium Safety
User Flow

• Easy to migrate from Functional verification flows to Fault
Injection
o Some files and option to be added to Palladium compilation

o Faults are identified and instrumented during compilation

• Fault-free circuit emulation (Good Emulation)
• Process strobe points and capture good waveform

• Fault Emulation Flows
o Serial Fault Injection

o Parallel Fault Injection

o Interactive Fault Injection

• Fault Detection
o Post-processing

– Compares good and fault waveforms after each run

o Inline

– Detects the fault during the run using detection system

• Reporting
o Standalone or using Xcelium utility (xfr)

© 2024 Cadence Design Systems, Inc. All rights reserved.94

Palladium Safety Flow Overview

© 2024 Cadence Design Systems, Inc. All rights reserved.95

Fault Campaign Automation

© 2024 Cadence Design Systems, Inc. All rights reserved.96

• GUI

• CLI

Campaign Invocation

vmanager -safety \

–execcmd "fi_campaign –launch <…> -flow_type <…> -cfg <…>"

Serial Concurrent Hybrid

Good

Serial

Concurrent

Good

Concurrent

Serial (NS)

(* initial prototype implementation)

Campaign Preparation

Fault Set Minimization

Report Collected Results

© 2024 Cadence Design Systems, Inc. All rights reserved.97

Campaign Preparation

Organize
Data

fs_exec_myc.HYBRID.usr…

├── flowData

├── input

├── report

└── sessions

├── myc.HYBRID.usr…

├── myc.test_select.usr…

├── myc.elaboration.usr…

├── myc.fst.usr…

├── myc.good_simulation.usr…

├── myc.fault_pruning.usr…

├── myc.fault.usr…

└── myc.fault.usr…

• Campaign directory

Translate
Inputs

strobe functional top.dut.o

strobe checker top.sm.alarm

fs_strobe –functional top.dut.o

fs_strobe -checker top.sm.alarm

strobe functional dut.out

strobe checker sm.alarm

• User-input (e.g., strobes)

• Xcelium syntax

• Jasper syntax

Prune Tests
(optional)

• Remove redundant tests

• 0% additional coverage

• Order per cov/time

• Customizable heuristic

• Coverage type and
contribution threshold

• Permanent campaigns

• Select functional tests

© 2024 Cadence Design Systems, Inc. All rights reserved.98

Campaign Parameters

strobe functional top.dut.o

strobe checker top.sm.alarm

fault_target top… -type sa0+sa1

session dv {};

Group tests {

test t1 : {};

test t2 : {};

…

FS_EXEC_FAULT_TYPE : permanent

FS_FAULT_LIST_FILE_NAME : .../faults.list

FS_STROBE_LIST_FILE_NAME : .../strobes.list

FS_SAMPLING_PERCENT :

FS_SAMPLING_... :

FS_REGR_TESTS_VSIF : .../tests.vsif

FS_TOP_DIR : .../sessions

FS_FAULT_TOP : tb.top

FS_REGR_TESTS_REFINE :

FS_FSIM_SCRIPT : .../fsim.csv

FS_STROBE_DEFAULT_EVENT :

FS_FAULT_INJECT_CONDITION :

FS_ENABLE_TEST_SELECTION : FALSE

FS_FAULT_STOP_SEVERITY : 3

FS_FAULT_REDUCTION_LEVEL : FSV_FST_ONLY

FS_FAULT_RELATION_LEVEL : FSV_FST_ONLY

FS_FAULT_PRUNING_LEVEL : FSV_TC_ONLY

FS_FAULT_USE_TEST_CONST : unobservable

FS_FST_SCRIPT :

...

Midas

Verification

Environment

Fault Set

Minimization

FMEDA

Analysis

xrun -64bit \

$FS_SIM_PARAM \

...

Test List

Fault spec.

Verisium Manager Safety

Customizations

Domain driven

configuration

Legend:
- Mandatory parameters

- Midas overridden

Configuration

file

© 2024 Cadence Design Systems, Inc. All rights reserved.99

• Parameters override and traceability

Campaign Configuration

Master

Activity

User

Project

Master

Project

Activity

User

fi_campaign –launch fi –flow_type CONCURRENT \
–cfg master.cfg,project.cfg,activity.cfg,user.cfg

fs_exec_myc.HYBRID.usr…

├── flowData

├── input

│ ├── fs_exec1.cfg

│ ├── fs_exec2.cfg

│ ├── fs_exec3.cfg

│ └── fs_exec4.cfg

├── report

└── sessions

© 2024 Cadence Design Systems, Inc. All rights reserved.100

Design Structure

Testability Analysis Fault Collapsing

Statistics

Random Sampling

Test Stimulus

Fault Pruning

Fault Set Minimization

Group equivalent faults
and consider only their
prime representative

Estimate the overall
results based on a

representative sample

Find extra untestable
faults by constraining
testability based on
stimulus patterns

Identify faults:

- Uncontrollable
- Unobservable

Untestable

(Safe)

Testable

Collapsed

Sampled

Testable

Prime

Pruned

(Test X)

Sampled Testable

Prime Faults to Inject

© 2024 Cadence Design Systems, Inc. All rights reserved.101

• ISO26262-11:2018 – 4.8.1 General Fault Injection
o “NOTE 4 A sampling factor can be used to reduce the fault list if justified with respect to the

specified purpose, confidence level, type/nature of the safety mechanism, selection criteria etc.”

• Statistical Sampling
o It allows selecting subset(s) to estimate properties of the population set

– i.e., to estimate the “proportion” of faults that are covered (the campaign result)

o The required precision of the estimated result defines the calculated sample size
– i.e., the “confidence level” that the estimated “proportion” (result) is within the “error margin”

• Note: current implementation assumes infinite population size (conservative) – i.e., larger the “population”, greater the sample size.
Note: infinite vs. finite population size shows insignificant impact on the calculation of samples representing less than 5% of the population

Statistical Sampling - Sample Size Calculation

Campaign Parameters Conservative Recommendation Typical values

FS_SAMPLING_ERROR : 0.5

“error margin’’ percentage

Conservative/Tighter error margins (near 0%) are used when

the estimated proportion gets closer to 100%
1 1 0.5 0.5

FS_SAMPLING_CONFIDENCE : 95

“confidence level” percentage

Conservative/High confidence levels (near 100%) increase

sample size, but not as much as reducing error margin
95 99 95 99

FS_SAMPLING_PROPORTION : 50

“population proportion” or estimation

Conservatively use 50% when no rational estimation exists
50 50 50 50

Sample Size 9,604 16,588 38,415 66,349

Leveugle, R., Calvez, A., Maistri, P., & Vanhauwaert, P. (2009).

Statistical fault injection: Quantified error and confidence. 2009

Design, Automation & Test in Europe Conference & Exhibition,

502–506. https://doi.org/10.1109/DATE.2009.5090716

© 2024 Cadence Design Systems, Inc. All rights reserved.102

• Optional selection of functional tests using toggle-coverage based heuristics
o Suitable for permanent faults. Configurable coverage type and pruning cutpoint

• 1st Pruning

• 2nd Ordering

Test Pruning & Ordering

© 2024 Cadence Design Systems, Inc. All rights reserved.103

Xcelium
(Good Simulation)

Run fault free simulation

Identify signals that remain
constant

Prune unactivatable faults

• Mark faults on constant signals as UU

Jasper
(Fault Pruning)

Load constant signals as test
constraints to the design

Check consistency between
elaborated and simulated design

• due to force/deposit during simulation

Prune unactivatable and
unpropagatable faults

Fault Pruning

© 2024 Cadence Design Systems, Inc. All rights reserved.104

Sampled Testable

Prime Faults to Inject

Fault Injection Execution

G1

G4

G3

G2

Fault Grouping

• Configurable

• Max F per G
(Serial = 1)

Fault Session Build

• Test dependency

• Submit runs to the
computer farm

Fault Run Execution

• Filter faults

• Check for errors

• Optimize runs

R01

R04

R03

R02

R05

R08

R07

R06

R09

R12

R11

R10

Fault

Groups
T1 T2 T3

Faults to

Inject

1.Filter Pruned Faults

2.Invoke Serial/Concurrent

1.Inject fault/s

2.Drop detected

3.Stop simulation

3.Scan simulator logs

4.Remove dropped faults

1.Skip next test if no left

RUN XX

© 2024 Cadence Design Systems, Inc. All rights reserved.105

• Stopping simulating covered faults

• Without dropping

• Optimized

Fault Dropping

T1 DD

T1 DD

Saved

Fault

Dropped

Fault injection

Checker Strobe

Functional Strobe

Test / Simulation

© 2024 Cadence Design Systems, Inc. All rights reserved.106

• Skip running already covered faults with subsequent tests

• Without dropping

• Optimized

Test Dropping

T1

DD

Saved

Test

Dropped

T2

UU

DD merged

T1

DD

T2

Fault injection

Checker Strobe

Functional Strobe

Test / Simulation

© 2024 Cadence Design Systems, Inc. All rights reserved.107

Reporting Campaign Results

R01

R04

R03

R02

R05

R08

R07

R06

R09

R12

R11

R10

T1 T2 T3

Faults pruned in all tests

Injection

Safe Relations

Sampling

Merged

Results

Merge rule

(optional)

Configurable

coverage

calculation

formula

Campaign

Report

User-defined

annotation

Refinement

(optional)

Multi campaign

marge and on-

demand reporting

CMPG

-2
CMPG

-2
Multi

campaign

© 2024 Cadence Design Systems, Inc. All rights reserved.108

Fault Campaign Analysis

© 2024 Cadence Design Systems, Inc. All rights reserved.109

Fault Simulation Results
Run generated fault annotation

© 2024 Cadence Design Systems, Inc. All rights reserved.110

Fault Campaign Results – Hierarchical View
Merged annotation

© 2024 Cadence Design Systems, Inc. All rights reserved.111

Fault Campaign Analysis
#𝑫𝑫

#𝑫𝑫 + #𝑫𝑼
= 𝑫𝒊𝒂𝒈. 𝑪𝒐𝒗.

#𝑫𝑫 + #𝑼𝑫

#𝑫𝑫 + #𝑼𝑫+ #𝑫𝑼
= 𝑪𝒖𝒔𝒕𝒐𝒎 𝑫𝒊𝒂𝒈. 𝑪𝒐𝒗.

© 2024 Cadence Design Systems, Inc. All rights reserved.112

Fault Campaign Results – Annotated Fault List
Merged annotation

Current instance accumulated metrics

60+ fault attributes

© 2024 Cadence Design Systems, Inc. All rights reserved.113

Fault Annotation Distribution per Test
Annotation per each test

© 2024 Cadence Design Systems, Inc. All rights reserved.114

Fault Annotation Traceability
Result per each test

© 2024 Cadence Design Systems, Inc. All rights reserved.115

Fault Annotation Refinement
Dispositioning unclassified faults

• GUI and CLI →

↓

vmanager> refine_annotation -faults {top.vending1.\\current_state_reg\[3\] } \

-fault_type SEU -refineTo S -comment {bcz I want}

...

A total of 8 faults were refined to S

vmanager> save -refinement fcm_refinement.vRefine

vmanager> fi_campaign -report -overwrite -output fcm_refined_report

Writing report to: fcm_refined_report/faultsim_stat_summary.report

Opening Refine Annotation DialogOpening Refine Annotation Dialog

Total Faults Total Prime Sample Faults Sample Prime

-------- INSTRUMENTATION ---- ------- # ---- % ------- # ---- % ------- # ---- % ------- # ---- %

Faults 2626 2546 484 465

Safe 1658 63.14 1658 65.12 0 0.00 0 0.00

Not Injected 479 18.24 458 17.99 35 7.23 35 7.53

Injected 489 18.62 430 16.89 449 92.77 430 92.47

--------- CLASSIFICATION ---- ------- # ---- % ------- # ---- % ------- # ---- % ------- # ---- %

Fault Annotations 2626 2546 484 465

SAFE S 1666 63.44 1666 65.44 8 1.65 8 1.72

DANGEROUS DETECTED DD 362 13.79 303 11.90 322 66.53 303 65.16

DANGEROUS UNDETECTED DU 123 4.68 123 4.83 123 25.41 123 26.45

Not Classified 475 18.09 454 17.83 31 6.40 31 6.67

UNOBSERVED DETECTED UD 0 0.00 0 0.00 0 0.00 0 0.00

UNOBSERVED UNDETECTED UU 211 8.04 199 7.82 31 6.40 31 6.67

NOT SIMULATABLE NS 0 0.00 0 0.00 0 0.00 0 0.00

INJECTION FAILED IF 0 0.00 0 0.00 0 0.00 0 0.00

NOT PROCESSED NP 101 3.85 92 3.61 0 0.00 0 0.00

Others 163 6.21 163 6.40 0 0.00 0 0.00

------------- REFINEMENT ---- ------- # ------ --------- ------ ------- # ------ --------- ------

To S 8 8

From UU 4 4

From DU 3 3

From DD 1 1

---------------- METRICS ---- --------- ---- % --------- ------ --------- ---- % --------- ------

Fault Coverage 16.83 71.08

Test Coverage 74.64 72.36

---- PARAMETERS ---

Fault Coverage : 100 * (DD + D) / (DD + DU + S + D + U + P + U+U + U+D)

Test Coverage : 100 * (DD + D) / (DD + DU + D + U + P)

Merge File : default

Refinement : /vols/vmanager_t2b/ferlini/activities/2022/FCM_tech_up_22.09/refine2.vRefine

© 2024 Cadence Design Systems, Inc. All rights reserved.116

• What?
o User-editable (string) attribute per fault metric element

• Why?
o Support post-campaign analysis (debug, refinement, etc.) by tagging relevant faults

– Logically gather faults even if they do not share a common attribute value (e.g., hierarchy, annotation)

• How?

o a

Fault Tagging

“Fault Tag” is kept consistent across all

equivalent faults automatically

Reuse stored “Fault Tag”

like with “Refinement”

No impact on annotation

or campaign results

© 2024 Cadence Design Systems, Inc. All rights reserved.117

o Load fault session and apply tags

o Save tags (e.g., open in GUI)
– Optional – export filtered CSV

o Tag-based annotation refinement
– Optional – export filtered CSV

o Generate updated summary
– Must save refinement

Scripted Annotation Refinement Leveraging Fault Tagging

Fault Tag,Fault Annotation,Fault Type,Fault Node,Fault Inject Time
TAG1,S,sa1,dut_inst.mem1_i.mem_with_crc_i.\mem_crc_reg[7] .D,
TAG1,S,sa1,dut_inst.mem1_i.mem_with_crc_i.g118.Y,
TAG1,DU,sa0,dut_inst.mem1_i.\mem_data_ff_tmp_reg[17] .RN,45ns
TAG1,UU,sa1,dut_inst.mem1_i.\mem_data_ff_tmp_reg[17] .RN,45ns
TAG1,DD,sa0,dut_inst.mem2_i.mem_with_crc_i.g39.S0,45ns
TAG1,DD,sa1,dut_inst.mem2_i.mem_with_crc_i.g39.S0,45ns

vmanager> save -fault_tag -refinement tech_up_cli.vRefineTag

vmanager> csv_export -metrics -fault -filter {fault_tag:==TAG1} -view MY -inst ... -out red.csv

vmanager> load fs_demo_concurrent.fault.ferlini.2023_01_20_09_04_38

vmanager> refine_tag -faults {dut_inst.mem2_i.mem_with_crc_i.g39.S0} -refineTo TAG1
vmanager> refine_tag -faults {dut_inst.mem1_i.\\mem_data_ff_tmp_reg\[17] .RN} -refineTo TAG1
vmanager> refine_tag -faults {dut_inst.mem1_i.mem_with_crc_i.\\mem_crc_reg\[7] .D} -fault_type sa1 -refineTo TAG1

vmanager> refine_annotation -tag_name TAG1 -refineTo S -comment {bcz...}

vmanager> csv_export -metrics -fault -filter {fault_tag:==TAG1} -view CLI -inst ... -out blue.csv

vmanager> save -refinement tag_based.vRefine

vmanager> fi_campaign -report -summary -output refined_summary_rpt

Fault Tag,Fault Annotation,Fault Type,Fault Node,Fault Inject Time
TAG1,S,sa1,dut_inst.mem1_i.mem_with_crc_i.\mem_crc_reg[7] .D,
TAG1,S,sa1,dut_inst.mem1_i.mem_with_crc_i.g118.Y,
TAG1,S,sa0,dut_inst.mem1_i.\mem_data_ff_tmp_reg[17] .RN,45ns
TAG1,S,sa1,dut_inst.mem1_i.\mem_data_ff_tmp_reg[17] .RN,45ns
TAG1,S,sa0,dut_inst.mem2_i.mem_with_crc_i.g39.S0,45ns
TAG1,S,sa1,dut_inst.mem2_i.mem_with_crc_i.g39.S0,45ns

...
------------- REFINEMENT ---- ------- # ------ --------- ------ ------- # ------ --------- ------
To S 4 4
From DD 2 2
From UU 1 1
From DU 1 1

---------------- METRICS ---- --------- ---- % --------- ------ --------- ---- % --------- ------
Fault Coverage 24.97 71.13
Test Coverage 71.44 71.44
---- PARAMETERS ---
Fault Coverage : 100 * (DD + D) / (DD + DU + S + D + U + P + U+U + U+D)
Test Coverage : 100 * (DD + D) / (DD + DU + D + U + P)
Merge File : default
Refinement : tag_based.vRefine

Note: Wildcard '*' is supported in -faults <value>

© 2024 Cadence Design Systems, Inc. All rights reserved.118

Fault Campaign Debug

© 2024 Cadence Design Systems, Inc. All rights reserved.119

Review
results

Structural
analysis

Fault
Barrier

Apply user
insight

Waveform
debug

Fault Campaign Closure

GOAL:

minimize and

guide the

effort towards

DC closure

Setup effort

Debug scope

multiple

faults

at once

fault

by

fault

© 2024 Cadence Design Systems, Inc. All rights reserved.120

Approach 1 – Fault Analysis to Improve Tests

Reference Fault Campaign with FST,FSV TC

Enabled in VerisiumTM Manager Safety

Reference Fault

Campaign Results
Configuration

Superset

Metrics, Report

Analysis

Updated tests based Fault Campaign with

FST,FSV TC Enabled in vManager Safety
Updated Fault

Campaign Results

Hierarchical,

Filtering,

Test Analysis,

Report Reviews

Configuration

With new tests

Add additional tests, modify tests to cover the UU Faults

© 2024 Cadence Design Systems, Inc. All rights reserved.121

Approach 2 – Design Constraints to Jasper FSV

Reference Fault Campaign with FST,FSV TC Enabled

in VerisiumTM Manager Safety (Updated Tests)
Reference

Fault

Campaign

Results

Configuration

Superset

Metrics, Report

Analysis

Fault Campaign Only FST

Filter and Review the UU List, identify obvious faults that needs to be safe by design

Faults such debug logic, scan logic, logic not safety related

Configuration

With Design

Constraints Safe

Faults

No

Annotation

Updated

Fault

Campaign

Results
Merge Results

© 2024 Cadence Design Systems, Inc. All rights reserved.122

Approach 3 – Fault Refinement
Reference Fault Campaign with FST,FSV TC

Enabled in VerisiumTM Manager Safety (Updated

Tests, barrier constraints)
Reference

Fault

Campaign

Results

Configuration

Superset

Metrics, Report

Analysis

Fault Campaign Only FST

Filter and Review the UU List. Identify Flip Flops (Barrier Points).

Configuration

With Barrier Tcl

and UU Fault List

from Reference

Campaign Safe

Faults

No

Annotation

Updated

Fault

Campaign

Results

Identify faults belonging
exclusively to the fan-in of
given FFs

Refinement TCL

© 2024 Cadence Design Systems, Inc. All rights reserved.123

Approach 4 – Enable Formal
Available Reference Fault Campaign till FST in

VerisiumTM Manager Safety (Updated Tests,

Constraints)

Reference Fault

Campaign Results
Configuration

Superset

Metrics, Report

Analysis

Rerun FST or Incremental Campaign with

updated Fault List to invoke JG-FSV GUI
Debug Analysis,

Safeness Annotation

Refinement File

Filter and

Review the UU

List

Configuration

© 2024 Cadence Design Systems, Inc. All rights reserved.124

• Customizable grade calculation

• Hierarchical results

Fault Metric Analysis

Customizable Metric

CSV dump support for

post-processing
leaf instances and fault

nodes can be added for

deep analysis

leaf instances and fault

nodes can be added for

deep analysis

© 2024 Cadence Design Systems, Inc. All rights reserved.125

Fault Pruning Results Per Test
Add / Remove tests

• Test 1 - Nickel

• Test 2 - Quarter

Campaign

(UU = 1447)

Test 1 - Nickel

(UU = 1233)

Test 2 - Quarter

(UU = 1277)

Fault Pruning

test with significant less pruned faults can indicate

what additional functionality is exercised and could

detect further faults

faults pruned by all tests are not simulated and are

marked as UU

group of faults pruned by all/many tests can indicate

design area where new tests should target

© 2024 Cadence Design Systems, Inc. All rights reserved.126

Individual Annotation Contribution of Each Test
Advanced Fault Analysis

• Results grouped by Test and Fault Classification

Test 1

(U*,

Test 1 - Nickel

DD : 25

Test 2 - Quarter

DD : 0 ??

© 2024 Cadence Design Systems, Inc. All rights reserved.127

Fault Merged Annotation Per Each Test
Add / Remove tests

• Test 1 – Nickel

• Test 2 - Quarter

© 2024 Cadence Design Systems, Inc. All rights reserved.128

Functional Safety Flow: Barrier Analysis Details

Xcelium Safety

(UU Fault

Campaign)

Fault Database
Simulation

Run

xrun command with barrier switches

Contains Additional

Choker Data base(*.ckb)

Faults.csv

Barriers.csv

• Barrier Analysis executed on UU Faults to debug/identify block points

• Xcelium Safety supports barrier Analysis “–fault_barrier” switch to dump the data in Fault DB for every

Fault Simulation

• Cadence developed Python utility is executed on fault_db to generate two files faults.csv and barrier.csv

• barrier.csv -> captures the barriers and the associated blocked faults

• contains the instance ; file name and line number of the code which block the fault propagation

• faults.csv -> contains fault set and associated barriers for each of the fault nodes

• Snippet of barriers.csv (Barrier to Fault Relation) • Snippet of faults.csv (Faults to Barrier Mapping)

Strobe

Barrier

Node

UU

© 2024 Cadence Design Systems, Inc. All rights reserved.129

• 1. Good Simulation Waveform Generation (Xcelium)
o Optional – Allows good vs fault waveform comparison

o Concurrent
• Note: probing signals is applicable to the good simulation by default

• 2. Fault Simulation Waveform Generation (Xcelium)
o Serial

– standard Xcelium probing mechanism

o Concurrent
– Enabled by -fault_dump_shm <id>

• <id> is the fault id according to the injection order of the given run

• i.e., 1st injected faults has id = 1, 2nd injected fault has id = 2…

• Recommendation: only keep the fault being debug

• 3. Waveform Visualization (Verisium Debug)
o Good vs Fault Waveform comparison

Waveform Generation

GSIM

Verisium Debug

FSIM

SHM

SHM

Enables Good vs Fault

waveform comparison

© 2024 Cadence Design Systems, Inc. All rights reserved.130

Rerun vs Incremental

• Rerun
o Rerun (e.g., debug/exploration) data is mixed with original campaign data (

o Risk: override valid results (unaffordable rerun to recover valid data)

o Recommended when original data is invalid/unavailable

• Incremental
o Separate set of data. Independent original and incremental analysis/results

o Original and Incremental results can be analysed/reported independently or merged

o Native support of fault sub-set selection based on its metrics (e.g., annotation)
– Avoid reruns by skip already available optimisations results (e.g., analyzing UUs)

o Flow type change support (e.g., concurrent → serial)

o Support analysing faults sub-set with different stimulus

© 2024 Cadence Design Systems, Inc. All rights reserved.131

Fault Sub-Set Selection
Incremental campaign

• -fault_filter “attribute:value”
o Select faults based on their attribute (e.g., annotation)

• -fault_limit <number>
o Used to limit the number of selected faults for incremental campaign

• -runs_filter “attribute:value”
o Selecting faults from specified runs of source campaign

o E.g. –runs_filter “test_name:<run(s)_to_debug>”

• -fault_view / -runs_view
o Instead of specifying the filters in batch, user can create filters via GUI and save the view

o E.g. –fault_view “my_view_with_filters”

• -refinement_file “path/to/file.vRefine”
o Used to apply user refinement on source campaign results, before applying the filters

fi_campaign \

-launch <name> \

-incremental <session(s)> \

-flow_type <type> \

[-cfg <cfg_path>] \

[-refinement_file <file_path>] \

[-fault_view <view_name>] \

[-fault_filter <filter>] \

[-runs_view <view_name>] \

[-runs_filter <filter>] \

[-fault_limit <num>]

[-new_tests [-force_elab]]

© 2024 Cadence Design Systems, Inc. All rights reserved.132

Waveform Debug
Incremental Campaign
FCM integration

© 2024 Cadence Design Systems, Inc. All rights reserved.133

Digital Safety Verification
Summary

✓ Fault Campaign Automation
✓ Same verification environment (Verisium Manager add-on)

✓ Single front-end campaign configuration

✓ Jasper and both Xcelium fault engines orchestration

✓ Data exchange via the proprietary unified fault database

✓ Dedicated fault coverage analysis (GUI and reports)

✓ Multi-Domain Fault Analysis support
✓ Permanent and Transient fault campaigns

✓ Diagnostic Coverage and Safeness

✓ Software-based Self-Test Library (STL) assessment

✓ Safety Mechanism (integration) Verification (+Detection Time Interval)

✓ Fault / Test Grading (DFT) + Architectural Vulnerability (RadHard)

✓ ISO26262 tool qualification – up to ASIL D

© 2024 Cadence Design Systems, Inc. All rights reserved.134

Summary

© 2024 Cadence Design Systems, Inc. All rights reserved.135

Advantages of the Cadence Functional Safety Solution

• Comprehensive architectural FMEDA

• Links to best-in-class digital, analog

and library tools for detailed FMEDA

• USF support for interoperability

• Links to analog/mixed signal

design tools with USF

support

• Mixed signal fault simulation

in same environment as

functional verification

• Links to digital synthesis and implementation tools

with USF support

• Best-in-class RTL/gate/netlist equivalence checking

• Best-in-class verification management, coverage and

traceability solution

• Same simulator for functional verification & fault simulation

gives superior debug experience & testbench reuse

• Best-in-class formal verification for fault list reduction and

formally-proven fault classification

• Fault emulation allows full SoC to be tested with SW

© 2024 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence

Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI

specifications are registered trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks of PCI-SIG. All other trademarks are the property of their respective owners.

https://www.cadence.com/go/trademarks

	Slide 1: USF-based FMEDA-driven Functional Safety Verification
	Slide 2: Outline
	Slide 3: EDA as an Ecosystem of International and Industry Standards
	Slide 4: Motivations & Mission
	Slide 5: Cadence Approach
	Slide 6: Current Status
	Slide 7: Closing the Gap between FMEDA and Safety Verification
	Slide 8: Midas Safety Platform for FMEDA-driven Functional Safety
	Slide 9: Cadence Functional Safety Full Flow
	Slide 10: Digital Safety Verification Fault campaign management, analysis, simulation and emulation
	Slide 11: Cadence Automotive Safety / USF-Driven Flow
	Slide 12: Midas AMS Functional Safety Flow Overview
	Slide 13: Midas Safety Platform Modularity
	Slide 14: Functional Safety Analysis Overview
	Slide 15: Functional Safety Analysis
	Slide 16: Architectural FMEDA
	Slide 17: Detailed FMEDA
	Slide 18: Refine FMEDA Data for Optimized Safety Design
	Slide 19: Inputs / Outputs
	Slide 20: Architectural FMEDA
	Slide 21: Architectural FMEDA Authoring Steps
	Slide 22: Design Decomposition
	Slide 23: Functional Safety Authoring
	Slide 24: Functional Safety Authoring
	Slide 25: What-if Analysis: FMEDA Static Configurations
	Slide 26: What-if Analysis: FMEDA Dynamic Configurations
	Slide 27: Detailed FMEDA
	Slide 28: Detailed FMEDA Authoring Steps
	Slide 29: Design Hierarchy Extraction - Genus
	Slide 30: Design Hierarchy Extraction - Xcelium
	Slide 31: Design Hierarchy Extraction - Spectre
	Slide 32: Basic Failure Rate (BFR) Support
	Slide 33: IEC TR 62380: USF Commands
	Slide 34: SN29500: USF Command
	Slide 35: Midas GUI BFR Tools
	Slide 36: Leverage Design Information in the BFR Computation
	Slide 37: Design Information Mapping
	Slide 38: Safety Checks
	Slide 39
	Slide 40: Safety Checks on GUI
	Slide 41: USF Query & Reporting
	Slide 42
	Slide 43: USF Reports: ISO26262 and IEC61508
	Slide 44: Midas Application Import-Export
	Slide 45: FMEDA Compression
	Slide 46: Report Customizations
	Slide 47: Custom FMEDA Columns
	Slide 48: Failure Mode Distribution (FMD) Post-processing
	Slide 49: SoC Safety Analysis
	Slide 50: SoC Safety Analysis Integration
	Slide 51: Grouping IP FMEDAs into a SoC FMEDA: USF Command
	Slide 52: SoC FMEDA Project: Midas Application
	Slide 53: SoC Reports – USF Examples
	Slide 54: Safety Goals (aka Failure Mode Effects, High Level Failure Modes)
	Slide 55: Safety Goals (aka Failure Mode Effects, High Level Failure Modes)
	Slide 56: Safety Metrics Verification
	Slide 57: Fault Campaign Management – Automation & Optimization
	Slide 58: Safety Metrics Verification
	Slide 59: Strobing Points Definition
	Slide 60: Driving Fault Simulation Campaign for DC Validation
	Slide 61: Back-annotation of the Fault Injection Campaign Results
	Slide 62: Supported Expert Judgment Methods
	Slide 63: Generate Final Reports
	Slide 64: USF-based FMEDA-driven Functional Safety Verification
	Slide 65: Automotive / Functional Safety / Random Faults / …
	Slide 66: Digital Safety Verification
	Slide 67: VerisiumTM Manager Safety
	Slide 68: Fault Campaign Automation and Analysis
	Slide 69: FMEDA-driven Fault Campaign
	Slide 70: Fault Classification
	Slide 71: Features / Optimizations
	Slide 72: Fault Campaign Steps
	Slide 73: Dedicated Fault Analysis
	Slide 74: Campaign Summary Report
	Slide 75: Fault Campaign Management – Safety Engines
	Slide 76: Xcelium Safety App
	Slide 77
	Slide 78
	Slide 79: Concurrent Fault Simulation - Overview
	Slide 80: FCM – Optimizations from Jasper Safety (FSV)
	Slide 81: Jasper Functional Safety Verification App (FSV)
	Slide 82: FSV Structural Analysis Check Types
	Slide 83: FSV – Structural Analysis
	Slide 84: FSV – Structural Analysis – COI Analysis
	Slide 85: FSV – Structural Analysis – Sequential Constant Propagation
	Slide 86: FSV – Structural UU Disposition Post-Fault Simulation
	Slide 87: FSV Integration with Xcelium Safety Simulator
	Slide 88: FSV Formal Analysis Check Types
	Slide 89: Generating Properties
	Slide 90: FSV Formal – Debugging Visualize Waveforms
	Slide 91: FSV Formal – Visualize Fault Detection Traces
	Slide 92: FSV Formal – Visualize Highlight Propagation Path
	Slide 93: Palladium Safety
	Slide 94: Palladium Safety Flow Overview
	Slide 95: Fault Campaign Automation
	Slide 96: Campaign Invocation
	Slide 97: Campaign Preparation
	Slide 98: Campaign Parameters
	Slide 99: Campaign Configuration
	Slide 100: Fault Set Minimization
	Slide 101: Statistical Sampling - Sample Size Calculation
	Slide 102: Test Pruning & Ordering
	Slide 103: Fault Pruning
	Slide 104: Fault Injection Execution
	Slide 105: Fault Dropping
	Slide 106: Test Dropping
	Slide 107: Reporting Campaign Results
	Slide 108: Fault Campaign Analysis
	Slide 109: Fault Simulation Results
	Slide 110: Fault Campaign Results – Hierarchical View
	Slide 111: Fault Campaign Analysis
	Slide 112: Fault Campaign Results – Annotated Fault List
	Slide 113: Fault Annotation Distribution per Test
	Slide 114: Fault Annotation Traceability
	Slide 115: Fault Annotation Refinement
	Slide 116: Fault Tagging
	Slide 117: Scripted Annotation Refinement Leveraging Fault Tagging
	Slide 118: Fault Campaign Debug
	Slide 119: Fault Campaign Closure
	Slide 120: Approach 1 – Fault Analysis to Improve Tests
	Slide 121: Approach 2 – Design Constraints to Jasper FSV
	Slide 122: Approach 3 – Fault Refinement
	Slide 123: Approach 4 – Enable Formal
	Slide 124: Fault Metric Analysis
	Slide 125: Fault Pruning Results Per Test
	Slide 126: Individual Annotation Contribution of Each Test
	Slide 127: Fault Merged Annotation Per Each Test
	Slide 128: Functional Safety Flow: Barrier Analysis Details
	Slide 129: Waveform Generation
	Slide 130: Rerun vs Incremental
	Slide 131: Fault Sub-Set Selection
	Slide 132: Waveform Debug
	Slide 133: Digital Safety Verification
	Slide 134: Summary
	Slide 135: Advantages of the Cadence Functional Safety Solution
	Slide 136

