

Low Power Verification Using Formal Technology

Synopsys Inc.

Agenda

- Formal Verification of Low Power Designs
- Low Power Connectivity Checking
- Low Power Property Verification
- How to Overcome Formal Verification Challenges
- Summary

Formal Verification of Low Power Designs

Low Power Verification Methodology Today

Find Power Bugs Pre-Silicon

Formal Low Power in the Verification Flow

Find Power Bugs Pre-Silicon

Static

- Structural checks
- Functional checks
- Architectural checks
- PG checks

Formal

- LP Connectivity checks
- Formal LP property checks

Simulation

- Power sequence
- Low Power Coverage
- Low Power Assertions
- PST verification

Emulation

- Complex long running power sequences
- SW PMU verification

Prototyping

- Real world scenarios with real world interfaces
- SW PMU verification

Why Formal for Low Power

Formal is already widely used in verification flows

Find & fix bugs as early as possible

Exhaustive verification
Find hard bugs & corner-case bugs
No testbench required
Early-stage bug-hunting

Low power verification is an extension to functional verification

Formal Low Power Verification

FLP BENEFITS

- Start Power Aware
 Verification at the block
 level
- Complete verification of power controller
- Power aware connectivity checking with the CC App
- Power aware bug hunting with the FPV App

FLP FEATURES

- LP UPF compilation frontend ensures UPF interpretation consistency
- Formal low power query& assertion generation
- Check effect of Power-on-Reset sequence
- Check effect of isolation on outputs of DUT

Formal Analysis of Power Aware Model

- Power Aware Connectivity Checking
 (CC)
 - PG Pin: Power Network connected correctly
 - <u>Functional</u>: Is RTL connection bug free with UPF
- 2. Formal LP Property Checks(FPV)
 - Checking effect of PoR (Power On Reset) sequence
 - Checking effect of isolation on output of DUT
 - Functional Verification of Power Management Controller (PMC)
 - Formal LP Query & LP Assertion Generation (bind checker)

Formal Low Power Applications

- Power aware connectivity checking at SoC level
- Corner-case low-power verification with formal technology
- Verifying power-controller is working correctly with the UPF provided
- Ensuring power-on-reset getting the design back into a known state
- Exhaustive formal verification of retention and isolation control/data paths at block/IP level

Low Power Connectivity Checking

Low Power Connectivity View

Low Power Connectivity Scenarios

- How to check connection passing through always on domains (LPA BASIC)?
 - Expect no isolation cell in the path
 - Both power domains, PD_SRC_PD_DEST are NORMAL
 - En && SD && DD |-> (dest == src)

- How to check connection passing intermediate powered off domain with type of iso cell (LPA_CLAMP1/CLAMP0)?
 - CLAMP1 is OR-type ISO cell & CLAMP0 is AND-type ISO cell
 - En && SD && DD && (iso_en != ISO_SENSE) |-> (src == dest) ... (connectivity component)
 - En && SD && DD && (iso_en == ISO_SENSE) |-> (dest == 'b1) ... (clamping component)

Low Power Connectivity Scenarios

LPA_LATCH

- Same as LPA CLAMP1/0 but having LATCH-type iso cell.
- Consequent of the clamping component becomes (not \$fell(dest) and not \$rose(dest)).

LPA_SUPPLY

- Power/ground (PG) pin connectivity checking.
- Source & Destination should be power supply objects from the UPF.

LPA_CLAMP1_EN/CLAMP0_EN/LATCH_EN

- Connectivity of enable source to enable pin of instrumented isolation cell
- En && SD && DD && (src == ISO_SENSE) |-> (dest == 'b1) (clamped)

Example of FLP CC Bug

Broken connection

Source: data1

Destination: u2.inst_unit.dataout1

Cause: LPA_CLAMP0

Source

* FLP: Formal Low Power

Destination

top_{NORMAL}

unit2_{NORMAL}

UNITNORMAL

* CC: Connectivity Check

Case Study: FLP Connectivity Checking

Catching Bugs Earlier Shortens Project Cycle

Design	Low Power Formal Checks	# of Bugs Found	Benefits
Design 1	Isolation mismatch between spec and UPF	100+	Verified in 1 day.
Design 2	PG pin connectivity checks	2+	Verified in ½ hour
Design 3	Isolation signal propagation checks	1+	Verified in 1 day

* FLP: Formal Low Power

Low Power Property Verification

Power Aware Formal Property Verification

- What is Power Aware FPV
 - It is checking LP behavior of the PA-RTL using PA assertions
 - Formal checking of power aware reset sequence
 - Checking for X propagating due to incorrect low power behavior
- What is the Purpose of Power Aware FPV (PA FPV)
 - Power intent UPF design can be tested in any existing FPV testbench
 - Properties failure point to LP issues in the design
 - Provide GUI based debug platform for LP issues
 - Shift left PowerOnReset functional verification
- Leverage existing NLP:bind_checker infrastructure for FLP FPV

* FLP: Formal Low Power

* PA: Power Aware

* FPV: Formal Property Verification

Formal Low Power Property Verification

FLP BENEFITS

- Start Power Aware Verification at the block level
- Complete verification of power controller
- Power aware bug hunting with the FPV App

FLP FEATURES

- Formal low power query & assertion generation
- Check effect of Power-on-Reset sequence
- Check effect of isolation on outputs of DUT

- Is my power controller working correctly with the UPF provided?
- Are my isolation clamp values correct?
- Are my retention signals ordered correctly?
- Are there signals becoming unknown due to upstream power domain powering off?
- Does the power on reset get the design back into a known state?

^{*} FLP: Formal Low Power

^{*} FPV: Formal Property Verification

Low Power Property Examples

Checking effect of isolation on output signal of DUT

property p isolation check1;

```
Iso enable Isolation output should clamp to value 1
```

```
disable iff(rst )
  @(posedge clk)
   ##1 (SRC_PD_en ==0) &&(clamp_enable==1) |=> (ISO_element_OUT ==1) ;
Endproperty

isolation check1 : assert property (p isolation check1);
```

Checking effect of reset sequence on power up

Check signal value is equal to reset value

```
Power collapse
exit ,clock
disable and
reset state
enable
```

• Check if sequential logic is uninitialized on wakeup, propagating through:

Power domain control signals ==0

Case Study: FLP Formal Property Verification

Catching Bugs Earlier Shortens Project Cycle

Design	Low Power Formal Checks	# of Bugs Found	Benefits
Design 1	Isolation is not enabled in power shutdown	10	Verified in 1 Day

How to Overcome Formal Verification Challenges

Challenges in Formal Low Power App

- SoC size to verify low power in FPV
 - UPF created in chip level verification
 - Power management controllers at the top level
- Lack of existing FPV testbench
- Lack of knowledge in BOTH formal and low power
- Lack of connectivity specification

Techniques to Overcome SoC CC Challenge

- Identify elements to blackbox before design compilation
 - Memory blocks
 - FIFOs
 - Use tools auto-blackbox feature
- Do not combine retention instrumentation in FLP Connectivity Checking
 - Run retention checking separately

Techniques to Overcome SoC FPV Challenge

- Power management controllers
 - Verify at the block level
 - Create at IP level based on their UVM power control logic
 - Review simulation waveform and create FSM for PMU.

* FPV: Formal Property Verification

Reduce Complexity for Better Convergence

- Identify elements to blackbox before design compilation
 - Blocks without isolation cells
 - Blocks in always on domain
 - Memory blocks
 - FIFOs
- Abstract complex logic
 - Counters
- Run retention instrumentation separately from FPV

Overcome Other FLP Challenges

- FLP connectivity checking
 - EDA vendors like Synopsys can provide example connections and test cases for different scenarios
 - Work with design architect for critical paths and scenarios to test design and create connectivity spec
- FLP FPV checking
 - Synopsys can provide sample FPV Assertion test bench
 - Additional scenarios by user adding more SVA properties
 - Recommend at least basic training for both Formal Apps and Low power before applying

* FLP: Formal Low Power

* FPV: Formal Property Verification

Summary

Summary

- Low power verification using formal enables shift left
- Formal verification Apps for connectivity check is easy to use
- The failure trace for debug are short
- Bugs can be found very quickly
- Apply reducing complexity and divide and conquer techniques to over come the challenges in the formal low power FPV verification

Thank You