
A Subjective Review on
IEEE Std 1800-2023

Kazuya Shinozuka
Artgraphics



IEEE Std 1800-2023
• A new revision of SystemVerilog was published on February 28 

this year as IEEE Std 1800-2023.
• The new revision includes corrections and clarifications in the 

aspect of the language definition in IEEE Std 1800-2017. It has 
also introduced enhancements that ease design and improve 
verification effort.

• As for corrections, checking for errata will suffice. Further, many 
of important clarifications were presented thoroughly at DVCon
last year by Dave Rich. Thus, we feel that reviewing of both 
corrections and clarifications can be safely skipped in this 
tutorial.

• Thus, this tutorial intends to summarize the enhanced language 
features that will bring various benefits to users.



What are the enhancements?
• Tripple-quoted strings allow you to insert quotes and new lines without 

using backslashes, which is convenient for long string literals.
• Soft packed union, which is less restrictive than hard packed one, is added.
• Parameterized class type can be represented with type(this).
• Array method syntax is extended so that index iterator can be specified.
• The array map() method is added to transform one array to another with 

concise description on the conversion process.
• Specifiers are added to class and class methods to avoid accidental 

overrides. Similar specifiers are also added to constraint.
• Subclass constructor can call superclass one with super.new(default).
• Variable of real type can be made random.
• It is now possible to extend covergroup in subclass.
• There are some others. Key language enhancements are listed in Table 1 

on next page.



Summary of Enhancements
• Enhanced features in this revision are listed below, each of 

which will be reviewed shortly.
Table 1  List of Enhanced Features

1 triple-quoted string 10 [ expr +/- expr ], [ expr +%- expr ]

2 type(this) 11 rand real

3 soft packed union 12 constraint with extends, initial, and final

4 index_argument is added to array manipulation 13 dist_item with default :/ expression

5 array mapping method 14 covergroup can be extended

6 class with final 15 $timeunit

7 class constructor with default 16 $timeprecision

8 class method with extends, initial, and final 17 $stacktrace

9 weak_reference#(T) 18 compiler directives added &&, ||, etc.



Subtle Differences
• As stated elsewhere, the new revision added clarifications on 

language features that might have misled users. In addition, rigorous 
descriptions on operation results are also presented. A typical 
example is shown below.

Table 2  Differences in Operation Result between the Two Revisions

• Since not all the changes are necessarily covered in this tutorial, a 
quick perusal of LRM is recommended if concerns about operation 
result arise.

operators IEEE Std 1800-2017 IEEE Std 1800-2023
relational ( <, >, <=, >= ) 1, 0, 1’bx 1’b1, 1’b0, 1’bx
equality( ==, != ) 1, 0, 1’bx 1’b1, 1’b0, 1’bx
equality ( ===, !== ) 1, 0 1’b1, 1’b0



Triple-quoted string ("""...""")
• In string literals, quotes and new lines must be escaped with 

backslashes. With triple-quoted string, backslashes can be 
omitted.

• An example using triple-quoted strings is shown below ([1]).

$display("""Humpty Dumpty sat on a "wall".
Humpty Dumpty had a great fall.""");

Humpty Dumpty sat on a "wall".
Humpty Dumpty had a great fall.

Quotes are not escaped. A new line is here but invisible.

Text strings will be printed 
as shown left.

Tripple-quoted 
string.



type(this)
• type(this) represents the type of enclosing class. For example, 

in the following code, datatype of m_inst is registry#(T).

• By using type(this), use of typedef can be avoided, which is one of benefits 
of this enhancement.

• In addition, even if class parameters change, declaration of m_inst will not 
be affected at all, which is substantial benefits brought by this feature.

class registry #(type T=int);
static type(this) m_inst;
...
endclass



Soft packed union
• In packed untagged union, all members must be integral and 

have the same size. The soft qualifier is added to alleviate the 
restriction. In soft packed union, members do not have to be of 
the same size. The size of soft packed union is determined by 
maximum size of members. The bits of each member are right-
adjusted.

• An example of soft packed union is shown below. When 
assigning value to m_byte, all MSBs beyond m_byte will stay 
intact. In other words, m_word[15:8] will not be affected at all.
typedef union soft {

logic [15:0] m_word;
logic [7:0] m_byte;

} word_u;

m_word[15:0]

m_byte[7:0]unused

Two members share 
the same location.



Array manipulation method
• Previously, array index iterator had fixed name called “index“, 

which causes conflicts to occur with member names of item. 
With this enhancement, however, users can specify the name of 
index iterator to avoid conflicts.

• The following code fragment illustrates use of index iterator. In 
this example, item has a member called “index”, therefore 
default index iterator will not work. In this example “iter_index“ is 
used instead of "index" as shown below.
typedef struct {int index; ...} idx_type;
idx_type arr[], q[$];
...
q = arr.find(item,iter_index) with (item.index != item.iter_index);



Array mapping method
• Array mapping method is similar to mathematical map function 
𝑦 = 𝑓(𝑥), where both 𝑥 and 𝑦 serve as array iterator. Index 
iterator is also available to users.

• Typically, assignments and foreach are used to copy arrays, but 
with this enhancement copy can be done in a mathematical way.

• For example, the following code defines y = 𝑓 𝑥 = 𝑥 + 1.

byte A[] = '{ 1, 2, 3 },
B[];

B = A.map(x) with (x+1); // B = { 2, 3, 4 }

1

2
3

2

3
4

A B

map(x)



Class and final specifier
• Adding the final specifier keeps a class from being extended.

class :final process;
typedef enum {FINISHED, RUNNING, WAITING, SUSPENDED, KILLED} state;
static function process self();
function state status();
function void kill();
task await();
function void suspend();
function void resume();
function void srandom(int seed);
function string get_randstate();
function void set_randstate(string state);

endclass

process is a class but cannot be extended by users.



Class constructor with default keyword
• The argument list of a subclass constructor may include default 

keyword that represents the whole argument list of superclass 
constructor. With it, superclass constructor can be called as 
simple as super.new(default).

• As shown below, subclass constructor must have default 
keyword in the argument list.
class sub_t extends base_t;
...
function new(default,byte v);

super.new(default);
...

endfunction
endclass

Subclass constructor must have default 
keyword in its argument list. 

If this statement is absent, it will be 
automatically generated. 



Class method with extends, initial, and final
• In order to avoid accidental mistakes, specifiers extends, initial 

and final are added in method declaration. These specifiers 
must be placed after class keyword and preceded by a colon(:).

• Method qualified with extends must be a virtual override, which 
means that corresponding method must be defined as virtual in 
base class.

• Conversely, method qualified with initial may not be a virtual 
override, which implies that the method shall not be defined as 
virtual in base class.

• Method may be qualified with final to indicate that no further 
overrides of the method shall be allowed.



An example using class method specifiers
• Methods build_phase() and run_phase() are supposedly virtual 

overrides, and each one is attached the extends specifier.
• Conversely, get_and_drive() and drive_dut() are not virtual 

overrides. Thus, they are assigned initial.
class simple_driver_t extends uvm_driver #(simple_item_t);
virtual simple_if vif;
`uvm_component_utils(simple_driver_t)
function new(default);

super.new(default);
endfunction
extern function :extends void build_phase(uvm_phase phase);
extern task :extends run_phase(uvm_phase phase);
extern task :initial get_and_drive();
extern task :initial drive_dut(input simple_item_t item);
endclass



[ expr +/- expr ], [ expr +%- expr ]
• Operator +/- is called absolute tolerance and +%- relative 

tolerance, each of which is defined as follows.

• In relative tolerance, when real value is converted to integer, it 
will be truncated.

[A +/- B] ::= [A-type(A)’(B) : A+type(A)’(B)]
[A +%- B] ::= [A-type(A)’(A*B/100.0) : A+type(A)’(A*B/100.0)]

case for real type: A=7.0

[A+%-25]
=[A-real'(A*25/100.0):A+real'(A*25/100.0)]
=[7.0-1.75:7.0+1.75]
=[5.25:8.75]

case for integral type: A=7

[A+%-25]
=[A-int'(A*25/100.0):A+int'(A*25/100.0)]
=[7-1:7+1]
=[6:8]



rand real
• Previously, only integral type is allowed for random variables. 

Now, real type variable can be made random.
• Typical example is shown below.

class sample_t;
rand logic [7:0] a;
rand real r;
constraint C1 {

a inside {[0:7]};
r > 0.0 && r < 2.0;

}
endclass



constraint with extends, initial, and final
• Similar to class method, constraint can also be qualified with 

extends, initial and final.
• A constraint with initial specifier shall not be an override, which 

implies that it will be an error if it is defined in base class.
• A constraint with extends specifier shall be an override, which 

means that it must be defined in base class as well.
• A constraint with final indicates that no further override is 

possible in any subclass.
• Note that initial and extends are mutually exclusive.



Examples of constraint with specifiers
• Shown below are examples of typical usage.

class base_t;
constraint C1 {}
constraint :final FC {}
endclass

class sub2_t extends base_t;
constraint :initial C1 {} // error
constraint :extends C2 {} // error
constraint FC {} // error
endclass

class sub1_t extends base_t;
constraint :extends C1 {}
constraint :initial C2 {}
constraint :final C3 {}
endclass

class sample_t;
constraint :extends C {} // error
endclass



dist_item with default :/ expression
• When dist is used, value outside the designated ranges makes 

the constraint false. Adding default :/ into the constraint makes it 
true even if value is outside the ranges. In other words, default 
implies “otherwise” similar to default used in case statement.

• In the following example, any value of x is accepted. However, if 
"defaut:/1" is omitted, only value in ranges [0:3] and [8:10] are 
accepted.

constraint C1 { x dist { [0:3]:= 3, [8:10]:/2, default:/1}; }



Covergroup can be extended
• If a covergroup is defined in a class, it can be extended in 

subclasses.
• Shown below is a typical way to extend base covergroup.
class base_t;
rand bit [2:0] a;
covergroup cg(int low,int high);
coverpoint a {
ignore_bins value ={ [low:high] };

}
endgroup
function new(int low,int high);

cg = new(low,high);
endfunction
endclass

class sub_t extends base_t;
rand logic [3:0] value;
covergroup extends cg;
coverpoint value {
bins value_bins[4] = {[0:15]};

}
endgroup
function new(default);

super.new(default);
endfunction
endclass



$timeunit, $timeprecision
• Both system functions return value in the range [-15:2] 

according to time unit and time precision setups.
• Return value n indicates 10! seconds. Thus, -15 means 1fs, -14 

is 10fs, -13 is 100fs, and so on.
function string get_timeunit(int v);
string unit;
int n;

case (v) inside
[-15:-13]: begin unit="fs"; n=v+15; end
[-12:-10]: begin unit="ps"; n=v+12; end
[-9:-7]:   begin unit="ns"; n=v+9; end
[-6:-4]:   begin unit="us"; n=v+6; end
[-3:-1]:   begin unit="ms"; n=v+3; end
[0:2]:     begin unit="s";  n=v; end
endcase
get_timeunit = {"1",{n{"0"}},unit};

endfunction

Given a value v in the range [-15:2], 
this function returns a string indicating 
time units. For instance, if v==2, then 
the function  returns “100s“.



$stacktrace
• This system task can be used to retrieve the call stack. 

Although the definition of “call stack“ is not readily available in 
LRM, presumably it implies traces of subroutine calls and 
process invocations.

• It can be called as either a task or a function.
• However, information to be collected is highly implementation 

dependent. Please consult your tool manual for details.



A possible example of $stacktrace
• Below is information retrieved from a tool.
module test;
initial begin

run();
end
task run();

$stacktrace;
fork

proc1(1);
proc2("sum");

join_none
endtask
task proc1(int v);

$stacktrace;
endtask
task proc2(string name);

#20;
$stacktrace;

endtask
endmodule

STACKTRACE StackTrace_N003.sv(10) @0:
(1) StackTrace_N003.sv(5) test::initial
(2) StackTrace_N003.sv(9) test::run()

STACKTRACE StackTrace_N003.sv(18) @0:
(1) StackTrace_N003.sv(5) test::initial
(2) StackTrace_N003.sv(9) test::run()
(3) StackTrace_N003.sv(17) test::proc1(input int signed v)

STACKTRACE StackTrace_N003.sv(23) @20:
(1) StackTrace_N003.sv(5) test::initial
(2) StackTrace_N003.sv(9) test::run()
(3) StackTrace_N003.sv(21) test::proc2(input string name)



Compiler directives
• `ifdef, `ifndef, `elsif macros added the following logical operator.

• For example, operators can be used as shown below.
binary_logical_operator ::= && | || | -> | <->

`define macro1_m
module test;
initial begin

`ifdef (macro1_m || macro2_m)
$display("`ifdef (macro1_m || macro2_m)");

`endif
`ifdef (macro1_m && !macro2_m)

$display("`ifdef (macro1_m && !macro2_m)");
`endif

end
endmodule



weak_reference#(T)
• weak_reference#(T), where parameter T is a class type, is a 

parameterized class that allows access to an object while not 
preventing garbage collection (GC). It can be redefined by user code 
in any other scope.

• When a class handle is assigned object, it becomes strong reference. 
The object will not be deallocated as long as strong references exist.

• A weak reference is a sort of handle but indirect and ignored by GC. 
That is, when strong references no longer exist, GC starts reclaiming 
space used by unreferenced objects by clearing up weak references.

• Strong reference can be created at any time from weak reference’s 
get() method unless it is cleared yet. Thus, effective use of weak 
references helps GC work efficiently.



Weak reference’s methods
• The weak reference class provides the following methods:

• Create a new weak reference: new()
• Query the referent of the weak reference: get()
• Clear the referent of the weak reference: clear()
• Query the identification value for an object: get_id()

function new(T referent);
function T get();
function void clear();
static function longint get_id(T obj);

obj strong_obj = new();
weak_reference#(obj) weak_obj = new(strong_obj);
obj get_obj = weak_obj.get(); // get_obj is a strong reference!



An example usage of weak reference
• The following is a typical use of weak reference. However, 

functionality highly depends on implementation. Please consult 
your tool manual.

module test;
sample_t sample;
weak_reference#(sample_t) weak_obj;
initial begin

sample = new; // strong reference
weak_obj = new(sample); // weak reference
wait( weak_obj.get() == null )

$display("@%0t: weak_obj is cleared",$time);
end
initial begin

#70;
sample = null;

end
endmodule

class sample_t;
...
endclass

At $time==70, strong reference count  
becomes 0, which causes GC to clear weak 
references and start reclaiming the object.

Weak reference is useful 
as long as it’s not cleared.
At $time==70 or later, 
wait will be unblocked 
whenever GC gets ready.



References
[1] IEEE Std 1800-2023: IEEE Standard for SystemVerilog –

Unified Hardware Design, Specification and Verification 
Language. 

[2] IEEE Std 1800-2017: IEEE Standard for SystemVerilog –
Unified Hardware Design, Specification and Verification 
Language. 

[3] Dave Rich, What’s Next for SystemVerilog in the Upcoming 
IEEE 1800 standard, DVCon 2023.



Thank you
• Any question?


