
Tutorial	7		
Tutorial	on	RISC-V	Design	and	Verification	

Kevin	McDermott	-	Imperas	Software	Ltd.	
Zdenek	Prikryl	-	Codasip	Ltd.	

Peter	Shields	-	UltraSoC	Technologies	Ltd.	

© Accellera Systems Initiative 1

Tutorial	on	RISC-V	Design	and	Verification	
•  Speakers:			

–  Kevin	McDermott	-	Imperas	Software	Ltd:	 		
–  Zdenek	Prikryl	-	Codasip	Ltd.	
–  Peter	Shields	-	UltraSoC	Technologies	Ltd.	

•  RISC-V	Tutorial	overview	
1.  Introduction	to	RISC-V	ISA	&	The	RISC-V	Foundation:	ISA	Freedom	&	innovation	
2.  Imperas:	adding	RISC-V	custom	instructions	for	software	development	
3.  Codasip:	hardware	design	flow	for	RISC-V	IP	core	and	extensions	
4.  UltraSoC:	on-chip	Analytics	for	SoC,	and	heterogeneous	architectures	

© Accellera Systems Initiative 2

Introduction	to	RISC-V	ISA	
•  https://riscv.org	

•  RISC-V	(pronounced	“risk-five”)	is	an	open,	free	ISA	enabling	a	new	era	
of	processor	innovation	through	open	standard	collaboration.	Born	in	
academia	and	research,	RISC-V	ISA	delivers	a	new	level	of	free,	
extensible	software	and	hardware	freedom	on	architecture,	paving	the	
way	for	the	next	50	years	of	computing	design	and	innovation.	

	

© Accellera Systems Initiative 3

RISC-V	Background	
•  In	2010,	after	many	years	and	many	projects	using	MIPS,	SPARC,	and	
x86	as	basis	of	research,	it	was	time	for	the	Computer	Science	team	at	
UC	Berkeley	to	look	at	what	ISAs	to	use	for	their	next	set	of	projects	

•  Obvious	choices:	x86	and	ARM	
–  x86	impossible	–	too	complex,	IP	issues	
–  ARM	mostly	impossible	–	complex,	IP	issues	

•  So	UC	Berkeley	started	“3-month	project”	during	the	summer	of	2010	
to	develop	their	own	clean-slate	ISA	

© Accellera Systems Initiative 4

RISC-V	Background	(cont’d)	
•  Four	years	later,	in	May	of	2014,	UC	Berkeley	released	frozen	base	user	
spec	
–  many	tapeouts	and	several	research	publications	along	the	way	

•  The	name	RISC-V	(pronounced	risk-five),	was	chosen	to	represent	the	
fifth	major	RISC	ISA	design	effort	at	UC	Berkeley	
–  RISC-I,	RISC-II,	SOAR,	and	SPUR	were	the	first	four	projects	with	the	original	RISC-
I	publications	dating	back	to	1981	

•  In	August	2015,	articles	of	incorporation	were	filed	to	create	a	non-
profit	RISC-V	Foundation	to	govern	the	ISA	

© Accellera Systems Initiative 5

What’s	Different	about	RISC-V?	

© Accellera Systems Initiative 6

•  Simple	
–  Far	smaller	than	other	commercial	ISAs	

•  Clean-slate	design	
–  Clear	separation	between	user	and	privileged	ISA	
–  Avoids	µarchitecture	or	technology-dependent	features	

•  A	modular	ISA	
–  Small	standard	base	ISA	
–  Multiple	standard	extensions	

•  Designed	for	extensibility/specialization	
–  Variable-length	instruction	encoding	
–  Vast	opcode	space	available	for	instruction-set	extensions	

•  Stable	
–  Base	and	standard	extensions	are	frozen	
–  Additions	via	optional	extensions,	not	new	versions	

RISC-V	Base	Plus	Standard	Extensions	

© Accellera Systems Initiative 7

•  Four	base	integer	ISAs	
–  RV32E,	RV32I,	RV64I,	RV128I	
–  Only	<50	hardware	instructions	needed	for	base	

•  Standard	extensions	
–  M:	Integer	multiply/divide	
–  A:	Atomic	memory	operations	(AMOs	+	LR/SC)	
–  F:	Single-precision	floating-point	
–  D:	Double-precision	floating-point	
–  G	=	IMAFD,	“General-purpose”	ISA	
–  Q:	Quad-precision	floating-point	
–  C:	compressed	16b	encodings	for	32b	instructions	

•  All	the	above	are	a	fairly	standard	RISC	encoding	in	a	fixed	32-bit	instruction	format	

RISC-V Reference Card ④
 Optional Compressed Instructions: RVC

Category Name Fmt RV{32|64|128)I Base Fmt RV mnemonic Fmt RV{F|D|Q} (HP/SP,DP,QP) Category Name Fmt RVC
Loads Load Byte I LB rd,rs1,imm R CSRRW rd,csr,rs1 I FL{W,D,Q} rd,rs1,imm Loads Load Word CL C.LW rd′,rs1′,imm

 Load Halfword I LH rd,rs1,imm R CSRRS rd,csr,rs1 S FS{W,D,Q} rs1,rs2,imm Load Word SP CI C.LWSP rd,imm

Load Word I L{W|D|Q} rd,rs1,imm R CSRRC rd,csr,rs1 R FADD.{S|D|Q} rd,rs1,rs2 Load Double CL C.LD rd′,rs1′,imm
 Load Byte Unsigned I LBU rd,rs1,imm R CSRRWI rd,csr,imm R FSUB.{S|D|Q} rd,rs1,rs2 Load Double SP CI C.LWSP rd,imm

Load Half Unsigned I L{H|W|D}U rd,rs1,imm R CSRRSI rd,csr,imm R FMUL.{S|D|Q} rd,rs1,rs2 Load Quad CL C.LQ rd′,rs1′,imm
Stores Store Byte S SB rs1,rs2,imm R CSRRCI rd,csr,imm R FDIV.{S|D|Q} rd,rs1,rs2 Load Quad SP CI C.LQSP rd,imm

Store Halfword S SH rs1,rs2,imm Change Level Env. Call R ECALL R FSQRT.{S|D|Q} rd,rs1 Load Byte Unsigned CL C.LBU rd′,rs1′,imm
Store Word S S{W|D|Q} rs1,rs2,imm R EBREAK R FMADD.{S|D|Q} rd,rs1,rs2,rs3 Float Load Word CL C.FLW rd′,rs1′,imm

Shifts Shift Left R SLL{|W|D} rd,rs1,rs2 R ERET R FMSUB.{S|D|Q} rd,rs1,rs2,rs3 Float Load Double CL C.FLD rd′,rs1′,imm
 Shift Left Immediate I SLLI{|W|D} rd,rs1,shamt R MRTS R FMNSUB.{S|D|Q} rd,rs1,rs2,rs3 Float Load Word SP CI C.FLWSP rd,imm

 Shift Right R SRL{|W|D} rd,rs1,rs2 R MRTH R FMNADD.{S|D|Q} rd,rs1,rs2,rs3 Float Load Double SP CI C.FLDSP rd,imm

 Shift Right Immediate I SRLI{|W|D} rd,rs1,shamt R HRTS R FSGNJ.{S|D|Q} rd,rs1,rs2 Stores Store Word CS C.SW rs1′,rs2′,imm
 Shift Right Arithmetic R SRA{|W|D} rd,rs1,rs2 Interrupt Wait for Interrupt R WFI R FSGNJN.{S|D|Q} rd,rs1,rs2 Store Word SP CSS C.SWSP rs2,imm
 Shift Right Arith Imm I SRAI{|W|D} rd,rs1,shamt MMU Supervisor FENCE R SFENCE.VM rs1 R FSGNJX.{S|D|Q} rd,rs1,rs2 Store Double CS C.SD rs1′,rs2′,imm

Arithmetic ADD R ADD{|W|D} rd,rs1,rs2 R FMIN.{S|D|Q} rd,rs1,rs2 Store Double SP CSS C.SDSP rs2,imm

 ADD Immediate I ADDI{|W|D} rd,rs1,imm Category Name Fmt R FMAX.{S|D|Q} rd,rs1,rs2 Store Quad CS C.SQ rs1′,rs2′,imm
 SUBtract R SUB{|W|D} rd,rs1,rs2 Multiply MULtiply R R FEQ.{S|D|Q} rd,rs1,rs2 Store Quad SP CSS C.SQSP rs2,imm

 Load Upper Imm U LUI rd,imm MULtiply upper Half R R FLT.{S|D|Q} rd,rs1,rs2 Float Store Word CSS C.FSW rd′,rs1′,imm
 Add Upper Imm to PC U AUIPC rd,imm MULtiply Half Sign/Uns R R FLE.{S|D|Q} rd,rs1,rs2 Float Store Double CSS C.FSD rd′,rs1′,imm

Logical XOR R XOR rd,rs1,rs2 MULtiply upper Half Uns R R FCLASS.{S|D|Q} rd,rs1 Float Store Word SP CSS C.FSWSP rd,imm

 XOR Immediate I XORI rd,rs1,imm Divide DIVide R R FMV.S.X rd,rs1 Float Store Double SP CSS C.FSDSP rd,imm

OR R OR rd,rs1,rs2 DIVide Unsigned R R FMV.X.S rd,rs1 Arithmetic ADD CR C.ADD rd,rs1

OR Immediate I ORI rd,rs1,imm RemainderREMainder R R FCVT.{S|D|Q}.W rd,rs1 ADD Word CR C.ADDW rd',rs2'
AND R AND rd,rs1,rs2 REMainder Unsigned R R FCVT.{S|D|Q}.WU rd,rs1 ADD Immediate CI C.ADDI rd,imm

AND Immediate I ANDI rd,rs1,imm R FCVT.W.{S|D|Q} rd,rs1 ADD Word Imm CI C.ADDIW rd,imm

Compare Set < R SLT rd,rs1,rs2 Category Name Fmt R FCVT.WU.{S|D|Q} rd,rs1 ADD SP Imm * 16 CI C.ADDI16SP x0,imm

 Set < Immediate I SLTI rd,rs1,imm Load Load Reserved R LR.{W|D|Q} rd,rs1 R FRCSR rd ADD SP Imm * 4 CIW C.ADDI4SPN rd',imm

 Set < Unsigned R SLTU rd,rs1,rs2 Store Store Conditional R SC.{W|D|Q} rd,rs1,rs2 R FRRM rd Load Immediate CI C.LI rd,imm

 Set < Imm Unsigned I SLTIU rd,rs1,imm Swap SWAP R AMOSWAP.{W|D|Q} rd,rs1,rs2 R FRFLAGS rd Load Upper Imm CI C.LUI rd,imm

Branches Branch = SB BEQ rs1,rs2,imm Add ADD R AMOADD.{W|D|Q} rd,rs1,rs2 R FSCSR rd,rs1 MoVe CR C.MV rd,rs1

 Branch ≠ SB BNE rs1,rs2,imm Logical XOR R AMOXOR.{W|D|Q} rd,rs1,rs2 R FSRM rd,rs1 SUB CR C.SUB rd',rs2'

 Branch < SB BLT rs1,rs2,imm AND R AMOAND.{W|D|Q} rd,rs1,rs2 R FSFLAGS rd,rs1 SUB Word CR C.SUBW rd',rs2'

 Branch ≥ SB BGE rs1,rs2,imm OR R AMOOR.{W|D|Q} rd,rs1,rs2 I FSRMI rd,imm Logical XOR CS C.XOR rd',rs2'
 Branch < Unsigned SB BLTU rs1,rs2,imm Min/Max MINimum R AMOMIN.{W|D|Q} rd,rs1,rs2 I FSFLAGSI rd,imm OR CS C.OR rd',rs2'

 Branch ≥ Unsigned SB BGEU rs1,rs2,imm MAXimum R AMOMAX.{W|D|Q} rd,rs1,rs2 AND CS C.AND rd',rs2'

Jump & Link J&L UJ JAL rd,imm MINimum Unsigned R AMOMINU.{W|D|Q} rd,rs1,rs2 Category Name Fmt RV{F|D|Q} (HP/SP,DP,QP) AND Immediate CB C.ANDI rd',rs2'

 Jump & Link Register I JALR rd,rs1,imm MAXimum Unsigned R AMOMAXU.{W|D|Q} rd,rs1,rs2 R FMV.{D|Q}.X rd,rs1 Shifts Shift Left Imm CI C.SLLI rd,imm

Synch Synch thread I FENCE R FMV.X.{D|Q} rd,rs1 Shift Right Immediate CB C.SRLI rd',imm

 Synch Instr & Data I FENCE.I R FCVT.{S|D|Q}.{L|T} rd,rs1 Shift Right Arith Imm CB C.SRAI rd',imm

System System CALL I SCALL R FCVT.{S|D|Q}.{L|T}U rd,rs1 Branches Branch=0 CB C.BEQZ rs1′,imm
 System BREAK I SBREAK 16-bit (RVC) and 32-bit Instruction Formats R FCVT.{L|T}.{S|D|Q} rd,rs1 Branch≠0 CB C.BNEZ rs1′,imm

Counters ReaD CYCLE I RDCYCLE rd R FCVT.{L|T}U.{S|D|Q} rd,rs1 Jump Jump CJ C.J imm

 ReaD CYCLE upper Half I RDCYCLEH rd CI Jump Register CR C.JR rd,rs1

 ReaD TIME I RDTIME rd CSS R Jump & Link J&L CJ C.JAL imm

 ReaD TIME upper Half I RDTIMEH rd CIW I Jump & Link Register CR C.JALR rs1

 ReaD INSTR RETired I RDINSTRET rd CL S System Env. BREAK CI C.EBREAK

 ReaD INSTR upper Half I RDINSTRETH rd CS SB
CB U
CJ UJ

Category Name

Convert to Int Unsigned

Swap Rounding Mode Imm
Swap Flags Imm

3 Optional FP Extensions: RV{64|128}{F|D|Q}

Move Move from Integer
Move to Integer

Convert Convert from Int
Convert from Int Unsigned

Convert to Int

Configuration Read Stat
Read Rounding Mode

Read Flags
Swap Status Reg

Swap Rounding Mode
Swap Flags

REMU{|W|D} rd,rs1,rs2 Convert from Int Unsigned
Optional Atomic Instruction Extension: RVA Convert to Int

RV{32|64|128}A (Atomic) Convert to Int Unsigned

DIV{|W|D} rd,rs1,rs2 Move Move from Integer
DIVU rd,rs1,rs2 Move to Integer
REM{|W|D} rd,rs1,rs2 Convert Convert from Int

MULH rd,rs1,rs2 Compare Float <
MULHSU rd,rs1,rs2 Compare Float ≤
MULHU rd,rs1,rs2 Categorize Classify Type

Optional Multiply-Divide Extension: RV32M Min/Max MINimum
RV32M (Mult-Div) MAXimum

MUL{|W|D} rd,rs1,rs2 Compare Compare Float =

Redirect Trap to Hypervisor Negative Multiply-ADD
Hypervisor Trap to Supervisor Sign Inject SiGN source

Negative SiGN source
Xor SiGN source

Environment Breakpoint Mul-Add Multiply-ADD
Environment Return Multiply-SUBtract

Trap Redirect to Supervisor Negative Multiply-SUBtract

SUBtract
Atomic Read & Set Bit Imm MULtiply

Atomic Read & Clear Bit Imm DIVide
SQuare RooT

Category Name
CSR Access Atomic R/W Load Load
 Atomic Read & Set Bit Store Store
 Atomic Read & Clear Bit Arithmetic ADD

 Atomic R/W Imm

 ① ② ③
Base Integer Instructions (32|64|128) RV Privileged Instructions (32|64|128) 3 Optional FP Extensions: RV32{F|D|Q}

RV32I / RV64I / RV128I + M, A, F, D, Q, C

+14
Privileged

+ 8 for M

+ 11 for A

+ 34
 for F, D, Q + 46 for C

8

© Accellera Systems Initiative

RISC-V Reference Card ④
 Optional Compressed Instructions: RVC

Category Name Fmt RV{32|64|128)I Base Fmt RV mnemonic Fmt RV{F|D|Q} (HP/SP,DP,QP) Category Name Fmt RVC
Loads Load Byte I LB rd,rs1,imm R CSRRW rd,csr,rs1 I FL{W,D,Q} rd,rs1,imm Loads Load Word CL C.LW rd′,rs1′,imm

 Load Halfword I LH rd,rs1,imm R CSRRS rd,csr,rs1 S FS{W,D,Q} rs1,rs2,imm Load Word SP CI C.LWSP rd,imm

Load Word I L{W|D|Q} rd,rs1,imm R CSRRC rd,csr,rs1 R FADD.{S|D|Q} rd,rs1,rs2 Load Double CL C.LD rd′,rs1′,imm
 Load Byte Unsigned I LBU rd,rs1,imm R CSRRWI rd,csr,imm R FSUB.{S|D|Q} rd,rs1,rs2 Load Double SP CI C.LWSP rd,imm

Load Half Unsigned I L{H|W|D}U rd,rs1,imm R CSRRSI rd,csr,imm R FMUL.{S|D|Q} rd,rs1,rs2 Load Quad CL C.LQ rd′,rs1′,imm
Stores Store Byte S SB rs1,rs2,imm R CSRRCI rd,csr,imm R FDIV.{S|D|Q} rd,rs1,rs2 Load Quad SP CI C.LQSP rd,imm

Store Halfword S SH rs1,rs2,imm Change Level Env. Call R ECALL R FSQRT.{S|D|Q} rd,rs1 Load Byte Unsigned CL C.LBU rd′,rs1′,imm
Store Word S S{W|D|Q} rs1,rs2,imm R EBREAK R FMADD.{S|D|Q} rd,rs1,rs2,rs3 Float Load Word CL C.FLW rd′,rs1′,imm

Shifts Shift Left R SLL{|W|D} rd,rs1,rs2 R ERET R FMSUB.{S|D|Q} rd,rs1,rs2,rs3 Float Load Double CL C.FLD rd′,rs1′,imm
 Shift Left Immediate I SLLI{|W|D} rd,rs1,shamt R MRTS R FMNSUB.{S|D|Q} rd,rs1,rs2,rs3 Float Load Word SP CI C.FLWSP rd,imm

 Shift Right R SRL{|W|D} rd,rs1,rs2 R MRTH R FMNADD.{S|D|Q} rd,rs1,rs2,rs3 Float Load Double SP CI C.FLDSP rd,imm

 Shift Right Immediate I SRLI{|W|D} rd,rs1,shamt R HRTS R FSGNJ.{S|D|Q} rd,rs1,rs2 Stores Store Word CS C.SW rs1′,rs2′,imm
 Shift Right Arithmetic R SRA{|W|D} rd,rs1,rs2 Interrupt Wait for Interrupt R WFI R FSGNJN.{S|D|Q} rd,rs1,rs2 Store Word SP CSS C.SWSP rs2,imm
 Shift Right Arith Imm I SRAI{|W|D} rd,rs1,shamt MMU Supervisor FENCE R SFENCE.VM rs1 R FSGNJX.{S|D|Q} rd,rs1,rs2 Store Double CS C.SD rs1′,rs2′,imm

Arithmetic ADD R ADD{|W|D} rd,rs1,rs2 R FMIN.{S|D|Q} rd,rs1,rs2 Store Double SP CSS C.SDSP rs2,imm

 ADD Immediate I ADDI{|W|D} rd,rs1,imm Category Name Fmt R FMAX.{S|D|Q} rd,rs1,rs2 Store Quad CS C.SQ rs1′,rs2′,imm
 SUBtract R SUB{|W|D} rd,rs1,rs2 Multiply MULtiply R R FEQ.{S|D|Q} rd,rs1,rs2 Store Quad SP CSS C.SQSP rs2,imm

 Load Upper Imm U LUI rd,imm MULtiply upper Half R R FLT.{S|D|Q} rd,rs1,rs2 Float Store Word CSS C.FSW rd′,rs1′,imm
 Add Upper Imm to PC U AUIPC rd,imm MULtiply Half Sign/Uns R R FLE.{S|D|Q} rd,rs1,rs2 Float Store Double CSS C.FSD rd′,rs1′,imm

Logical XOR R XOR rd,rs1,rs2 MULtiply upper Half Uns R R FCLASS.{S|D|Q} rd,rs1 Float Store Word SP CSS C.FSWSP rd,imm

 XOR Immediate I XORI rd,rs1,imm Divide DIVide R R FMV.S.X rd,rs1 Float Store Double SP CSS C.FSDSP rd,imm

OR R OR rd,rs1,rs2 DIVide Unsigned R R FMV.X.S rd,rs1 Arithmetic ADD CR C.ADD rd,rs1

OR Immediate I ORI rd,rs1,imm RemainderREMainder R R FCVT.{S|D|Q}.W rd,rs1 ADD Word CR C.ADDW rd',rs2'
AND R AND rd,rs1,rs2 REMainder Unsigned R R FCVT.{S|D|Q}.WU rd,rs1 ADD Immediate CI C.ADDI rd,imm

AND Immediate I ANDI rd,rs1,imm R FCVT.W.{S|D|Q} rd,rs1 ADD Word Imm CI C.ADDIW rd,imm

Compare Set < R SLT rd,rs1,rs2 Category Name Fmt R FCVT.WU.{S|D|Q} rd,rs1 ADD SP Imm * 16 CI C.ADDI16SP x0,imm

 Set < Immediate I SLTI rd,rs1,imm Load Load Reserved R LR.{W|D|Q} rd,rs1 R FRCSR rd ADD SP Imm * 4 CIW C.ADDI4SPN rd',imm

 Set < Unsigned R SLTU rd,rs1,rs2 Store Store Conditional R SC.{W|D|Q} rd,rs1,rs2 R FRRM rd Load Immediate CI C.LI rd,imm

 Set < Imm Unsigned I SLTIU rd,rs1,imm Swap SWAP R AMOSWAP.{W|D|Q} rd,rs1,rs2 R FRFLAGS rd Load Upper Imm CI C.LUI rd,imm

Branches Branch = SB BEQ rs1,rs2,imm Add ADD R AMOADD.{W|D|Q} rd,rs1,rs2 R FSCSR rd,rs1 MoVe CR C.MV rd,rs1

 Branch ≠ SB BNE rs1,rs2,imm Logical XOR R AMOXOR.{W|D|Q} rd,rs1,rs2 R FSRM rd,rs1 SUB CR C.SUB rd',rs2'

 Branch < SB BLT rs1,rs2,imm AND R AMOAND.{W|D|Q} rd,rs1,rs2 R FSFLAGS rd,rs1 SUB Word CR C.SUBW rd',rs2'

 Branch ≥ SB BGE rs1,rs2,imm OR R AMOOR.{W|D|Q} rd,rs1,rs2 I FSRMI rd,imm Logical XOR CS C.XOR rd',rs2'
 Branch < Unsigned SB BLTU rs1,rs2,imm Min/Max MINimum R AMOMIN.{W|D|Q} rd,rs1,rs2 I FSFLAGSI rd,imm OR CS C.OR rd',rs2'

 Branch ≥ Unsigned SB BGEU rs1,rs2,imm MAXimum R AMOMAX.{W|D|Q} rd,rs1,rs2 AND CS C.AND rd',rs2'

Jump & Link J&L UJ JAL rd,imm MINimum Unsigned R AMOMINU.{W|D|Q} rd,rs1,rs2 Fmt RV{F|D|Q} (HP/SP,DP,QP) AND Immediate CB C.ANDI rd',rs2'

 Jump & Link Register I JALR rd,rs1,imm MAXimum Unsigned R AMOMAXU.{W|D|Q} rd,rs1,rs2 R FMV.{D|Q}.X rd,rs1 Shifts Shift Left Imm CI C.SLLI rd,imm

Synch Synch thread I FENCE R FMV.X.{D|Q} rd,rs1 Shift Right Immediate CB C.SRLI rd',imm

 Synch Instr & Data I FENCE.I R FCVT.{S|D|Q}.{L|T} rd,rs1 Shift Right Arith Imm CB C.SRAI rd',imm

System System CALL I SCALL R FCVT.{S|D|Q}.{L|T}U rd,rs1 Branches Branch=0 CB C.BEQZ rs1′,imm
 System BREAK I SBREAK 16-bit (RVC) and 32-bit Instruction Formats R FCVT.{L|T}.{S|D|Q} rd,rs1 Branch≠0 CB C.BNEZ rs1′,imm

Counters ReaD CYCLE I RDCYCLE rd R FCVT.{L|T}U.{S|D|Q} rd,rs1 Jump Jump CJ C.J imm

 ReaD CYCLE upper Half I RDCYCLEH rd CI Jump Register CR C.JR rd,rs1

 ReaD TIME I RDTIME rd CSS R Jump & Link J&L CJ C.JAL imm

 ReaD TIME upper Half I RDTIMEH rd CIW I Jump & Link Register CR C.JALR rs1

 ReaD INSTR RETired I RDINSTRET rd CL S System Env. BREAK CI C.EBREAK

 ReaD INSTR upper Half I RDINSTRETH rd CS SB
CB U
CJ UJ

Category Name

Category Name

Convert to Int Unsigned

Swap Rounding Mode Imm
Swap Flags Imm

3 Optional FP Extensions: RV{64|128}{F|D|Q}

Move Move from Integer
Move to Integer

Convert Convert from Int
Convert from Int Unsigned

Convert to Int

Configuration Read Stat
Read Rounding Mode

Read Flags
Swap Status Reg

Swap Rounding Mode
Swap Flags

REMU{|W|D} rd,rs1,rs2 Convert from Int Unsigned

Optional Atomic Instruction Extension: RVA Convert to Int
RV{32|64|128}A (Atomic) Convert to Int Unsigned

DIV{|W|D} rd,rs1,rs2 Move Move from Integer
DIVU rd,rs1,rs2 Move to Integer
REM{|W|D} rd,rs1,rs2 Convert Convert from Int

MULH rd,rs1,rs2 Compare Float <
MULHSU rd,rs1,rs2 Compare Float ≤
MULHU rd,rs1,rs2 Categorize Classify Type

Optional Multiply-Divide Extension: RV32M Min/Max MINimum
RV32M (Mult-Div) MAXimum

MUL{|W|D} rd,rs1,rs2 Compare Compare Float =

Redirect Trap to Hypervisor Negative Multiply-ADD
Hypervisor Trap to Supervisor Sign Inject SiGN source

Negative SiGN source
Xor SiGN source

Environment Breakpoint Mul-Add Multiply-ADD
Environment Return Multiply-SUBtract

Trap Redirect to Supervisor Negative Multiply-SUBtract

SUBtract
Atomic Read & Set Bit Imm MULtiply

Atomic Read & Clear Bit Imm DIVide
SQuare RooT

Category Name
CSR Access Atomic R/W Load Load
 Atomic Read & Set Bit Store Store
 Atomic Read & Clear Bit Arithmetic ADD

 Atomic R/W Imm

 ① ② ③
Base Integer Instructions (32|64|128) RV Privileged Instructions (32|64|128) 3 Optional FP Extensions: RV32{F|D|Q}

+ 4 for
64M/128M

RV32I / RV64I / RV128I + M, A, F, D, Q, C

+ 12
 for 64I/128I

+ 11 for
64A/128A

+ 6 for
64{F|D|Q}/
128{F|D|Q}

9

© Accellera Systems Initiative

RISC-V	in	Education,	new	books!	

© Accellera Systems Initiative 10

RISC-V	Foundation	Overview	
•  Incorporated	August,	2015	as	a	501c6	non-profit	Foundation	
•  Membership	Agreement	&	Bylaws	ratified	December	2016	
•  The	RISC-V	ISA	and	related	standards	shall	remain	open	and	license-free	to	all	

parties	
–  RISC-V	ISA	specifications	shall	always	be	publicly	available	as	an	online	download	

•  The	compliance	test	suites	shall	always	be	publicly	available	as	a	source	code	
download	

•  To	protect	the	standard,	only	members	(with	commercial		RISC-V	products)	of	
the	Foundation	in	good	standing	can	use	“RISC-V”	and	associated	trademarks,	
and	only	for	devices	that	pass	the	tests	in	the	open-source	compliance	suites	
maintained	by	the	Foundation	

© Accellera Systems Initiative 11

Foundation	Organization	
•  The	Board	of	Directors	consists	of	seven+	members,	whose	replacements	are	

elected	by	the	membership		
•  The	Board	can	amend	the	By-Laws	of	the	RISC-V	foundation	via	a	two-thirds	

affirmative	vote	
•  The	Board	appoints	chairs	of	ad-hoc	committees	to	address	issues	concerning	

RISC-V,	and	has	the	final	vote	of	approval	of	the	recommendation	of	the	ad-
hoc	committees.		
–  Technical	Committee	Chair	–	Yunsup	Lee,	SiFive	
–  Security	Standing	Committee	Chair	-	Helena	Handschuh,	Rambus	
–  Marketing	Committee	Chair	–	Ted	Marena,	Western	Digital	

•  All	members	of	committees	must	be	members	of	the	RISC-V	Foundation	

© Accellera Systems Initiative 12

RISC-V	ISA	&	Foundation	Summary	
•  The	free	and	open	RISC-V	ISA	is	enabling	a	new	innovation	
frontier	for	all	computing	devices	

•  Strong	Industry	Support	
– 150+	members;	Broad	commercial	and	academic	interest	

•  RISC-V	Summit	registration	is	open	
– December	3-6	2018,	Santa	Clara,	CA	

•  RISC-V	Workshop	
–  June	2019,	Zurich	–	further	details	to	be	announced	soon	

© Accellera Systems Initiative 13

RISC-V	extended	with	Custom	Instructions,	
Virtual	Platform	for	Design	and	Verification	

Duncan	Graham,	Sr.	Applications	Engineer	
Kevin	McDermott,	VP	Marketing	

© Accellera Systems Initiative 14

Imperas	Introduction	
•  Focus	on	simulation,	modeling,	tools	for	embedded	software	

–  SoC	designers	that	need	early	software	development	for	design	and	test	
–  Software	developers	that	need	platforms	before	hardware	is	available	

•  Founded	2008,	based	in	Thame,	UK	
•  Management	Background:	Verilog,	VCS,	Verisity,	Exemplar,	Arm,	MIPS	
•  Business	model	based	on	tools	and	ecosystem	partnerships	
•  Active	members	of	RISC-V	Foundation	

–  Technical	Task	Groups:	vector,	bitmanip,	compliance	

© Accellera Systems Initiative 15

Most	adopters	of	RISC-V	want	to	add	their	own	
custom	extension	instructions	

•  Traditional	ISA	choice	has	been	hard	if	you	want	to	add	your	own	custom	processor	
instructions	to	an	ISA	

•  RISC-V	as	an	open	standard	has	specific	regions	of	instruction	decode	space	specifically	
allocated	for	users	to	add	their	own	instructions	

•  There	are	multiple	issues	with	the	tools	that	will	be	needed	…	
–  You	need	to	evaluate	effectiveness	and	performance	gains	of	new	instructions	
–  Challenge	of	how	to	efficiently	and	safely	add	new	instructions	to	existing	quality	simulation	models	
–  Need	to	be	able	to	trace,	debug	and	analyse	applications	using	the	new	instructions	
–  Complete	SoC	tools	covering	heterogeneous,	multi-core	and	many-core	compute	configurations	
–  Often	need	to	provide	to	developers	&	customers	models/platforms	without	issues	of	GPL	licenses	

© Accellera Systems Initiative 16

In	this	tutorial…	

© Accellera Systems Initiative 17

•  Simulator	ISS	of	RISC-V	which	includes	
the	model	+	memory	
–  Just	like	the	ISS	as	used	in	the	RISCV.org	
Compliance	Task	Group	GitHub	repository	

–  Though	in	this	tutorial	we	use	the	Imperas	
professional	simulator	which	allows	model	
and	tool	extensions	

§  Application	software	is	character	stream	encoder,	based	on	ChaCha20	encryption	algorithm	
§  Instruction	Extensions	to	RISC-V	courtesy	of	Cerberus	Security	Laboratories	Ltd	
§  https://cerberus-laboratories.com	

•  Tutorial	will	show	adding	extension	for	the	model	and	analysis	including	timing	estimation	

Semihosted
File I/O

RISC-V CPU model
variant selection and

configuration

ISS
(cpu+memory)	

Application
<cross>.elf	

GDB
Debugger

Flow to add new custom instructions	

© Accellera Systems Initiative 18

•  Instruction Accurate Simulation
•  Trace / Debug
•  Timing Simulation
•  Function Timing / Profiling

Characterize C Application

Flow to add new custom instructions	

© Accellera Systems Initiative 19

•  Instruction Accurate Simulation
•  Trace / Debug
•  Timing Simulation
•  Function Timing / Profiling

Characterize C Application
 •  Design Instructions

•  Add to Application
•  Add to Model
•  Add Timing

Develop New Custom
Instructions

Flow to add new custom instructions	

© Accellera Systems Initiative 20

•  Instruction Accurate Simulation
•  Trace / Debug
•  Timing Simulation
•  Function Timing / Profiling

Characterize C Application
 •  Design Instructions

•  Add to Application
•  Add to Model
•  Add Timing

Develop New Custom
Instructions

•  Instruction Accurate Simulation
•  Trace / Debug
•  Timing Simulation
•  Function Timing / Profiling

Characterize New
Instructions in Application

Flow to add new custom instructions	

© Accellera Systems Initiative 21

•  Instruction Coverage
•  Line Coverage
•  Instruction Performance
•  Generate PDF model doc

Optimize & Document model

•  Instruction Accurate Simulation
•  Trace / Debug
•  Timing Simulation
•  Function Timing / Profiling

Characterize C Application
 •  Design Instructions

•  Add to Application
•  Add to Model
•  Add Timing

Develop New Custom
Instructions

•  Instruction Accurate Simulation
•  Trace / Debug
•  Timing Simulation
•  Function Timing / Profiling

Characterize New
Instructions in Application

Flow to add new custom instructions	

© Accellera Systems Initiative 22

•  Check RISC-V Compliance
•  Use as reference for RTL Design Verification
•  Use in Imperas/OVP Platforms, EPKs

•  Heterogeneous / Homogeneous
•  Multi-core, Many-core

•  Imperas Multi-Processor Debug, VAP tools
•  Port OS, RTOS (Linux, FreeRTOS…)
•  Use in many simulation envs (inc. SystemC)
•  Deliver to end users

Release & Deploy

•  Instruction Accurate Simulation
•  Trace / Debug
•  Timing Simulation
•  Function Timing / Profiling

Characterize C Application
 •  Design Instructions

•  Add to Application
•  Add to Model
•  Add Timing

Develop New Custom
Instructions

•  Instruction Accurate Simulation
•  Trace / Debug
•  Timing Simulation
•  Function Timing / Profiling

Characterize New
Instructions in Application

•  Instruction Coverage
•  Line Coverage
•  Instruction Performance
•  Generate PDF model doc

Optimize & Document model

Checklist	and	Tasks	
•  Instruction	Accurate	simulation	of	C	application	
•  Cycle	Approximate	simulation	of	C	application	
•  Profile	the	C	application	
•  Add	custom	instructions	to	application	
•  Add	custom	instructions	to	model	
•  Cycle	Approximate	simulation	including	custom	instructions	
•  Profile	custom	instructions	application	
•  Trace	custom	instructions	
•  Debug	custom	instructions	
•  Documenting	custom	instructions	
•  Further	tools	for	model	developers	

© Accellera Systems Initiative 23

Instruction	Accurate	simulation	C	application	

© Accellera Systems Initiative 24

•  Cross	compiled	C	application	targeting	RV32IM	
–  Character	stream	encoder,	with	ChaCha20	encryption	

algorithm	
•  IA	simulation	

–  Imperas	RISC-V	ISS	with	configurable	model	of	RISC-V	
specification	selecting	RV32IM	

•  Semihosting	
–  Enables	bare	metal	application	to	very	simply	access	

host	I/O	

Ø  runs	fast	
–  Over	1	billion	instructions	a	second	(standard	PC)	

•  Linux	and	Windows	supported	host	OS	

Profile	C	Application	

© Accellera Systems Initiative 25

•  Same	C	application	
•  IA	simulation	+	timing	annotation	
•  With	sampled	profiling	with	call	stack	
analysis	

Ø Shows	cycle	approximate	timing	of	
each	application	function	

	

Cycle	Approximate	simulation	including	
custom	instructions	

© Accellera Systems Initiative 26

•  IA	simulation	+	timing	annotation	+	custom	
instructions	
–  Includes	timing	estimation	for	RV32IM	processor	
–  Need	to	add	timing	estimation	for	new	custom	

instructions	
•  Simulate	using	C	code	application	with	inline	

assembler	of	custom	extensions	
•  IA	simulator	+	timing	tool	+	custom	extension	

instruction	library	

Ø  See	estimated	improvement	in	throughput	of	
application	on	new	processor	

Profile	custom	instructions	application	

© Accellera Systems Initiative 27

•  IA	simulation	+	timing	annotation	+	
custom	instructions	with	sampled	
profiling	

Ø Shows	where	slowest	function	is	
–  Now	much	faster…		

Ø Shows	benefits	of	using	custom	
instructions	

Debug	&	Trace	custom	instructions	

© Accellera Systems Initiative 28

•  Imperas	MPD	is	Eclipse	
based	source	code	debug	
tool	

•  Can	debug	using	source	line	
or	instruction	level	

•  See	new	custom	instructions	
and	any	new	additional	
state	registers	

Document	custom	instructions	

© Accellera Systems Initiative 29

•  Imperas	tools	automatically	
generate	a	processor	model	
document	PDF	

•  Includes	all	base	model	registers	
and	any	new	registers	

•  Provides	detailed	documentation	
of	new	custom	instructions	

Further	tools	for	model	developers	

© Accellera Systems Initiative 30

•  Model	source	line	coverage	
–  To	see	how	completely	the	tests	exercise	the	model	

Checking	RISC-V	compliance	
•  Imperas	ISS	can	be	used	to	check	RISC-V	specification	compliance	
•  Imperas	ISS	is	used	in	the	RISCV.org	Compliance	Working	Group’s	
compliance	tests	is	a	version	of	the	Imperas	ISS	

•  With	your	new	custom	instructions	modelled	you	can	run	the	RISC-V	
Foundation’s	compliance	suite	and	ensure	that	your	processor	is	still	
RISC-V	compliant	
–  The	official	RISC-V	Compliance	suite	is	available	at	

•  Compliance	Task	Group	GitHub	repository	https://github.com/riscv/riscv-compliance	

© Accellera Systems Initiative 31

Summary	
•  If	you	are	adding	new	instructions	or	state	to	a	processor	–	then	the	tools	and	

design	flow	will	need	to	cover:	
–  Modelling,	simulation,	timing,	tracing,	debug,	coverage,	and	profiling	of	new	
instructions	

–  Documentation,	and	checklist	methodology	/	solution		
•  Leverage	the	technical	working	groups	of	the	RISC-V	Foundation	

–  Compliance	Working	Group	GitHub	repository	is	a	useful	starting	point	
–  Ensure	design	Compliance	and	follow	similar	methodology	on	the	new	instructions	

•  Software	teams	can	start	porting	software	to	the	new	model/instructions	
•  Virtual	Platforms	also	provide	a	basis	for	early	software	development	at	

customers	and	partners	as	pre-sales	evaluation	and	development		

© Accellera Systems Initiative 32

Contacts	and	Links	
•  https://riscv.org	

•  Visit	www.imperas.com	and	www.OVPworld.org	for	more	information	

•  RISC-V	Foundation	Compliance	Suite	&	riscvOVPsim	download	
https://github.com/riscv/riscv-compliance	

•  Duncan	Graham,	Sr.	Applications	Engineer	-	graham@imperas.com	
•  Kevin	McDermott,	VP	Marketing	-	kevinm@imperas.com	

© Accellera Systems Initiative 33

Questions	

Finalize	slide	set	with	questions	slide	

© Accellera Systems Initiative 34

RISC-V	Configuration	and	Customization	

Zdeněk	Přikryl,	Chris	Jones	

35 © Accellera Systems Initiative

Who	Is	Codasip	
•  Leading	provider	of	RISC-V	processor	IP	

–  Introduced	its	first	RISC-V	processor	in	November	2015	
–  Offers	its	own	portfolio	of	RISC-V	processors	(Codasip	Bk)	
–  Provides	unique	design	automation	tools	for	easy	modification	of	RISC-V	
processors	

•  Founding	member	of	RISC-V	Foundation	(www.riscv.org)	
– Member	of	several	working	groups	within	the	Foundation	

•  Active	contributor	to	LLVM	and	other	open-source	projects	

© Accellera Systems Initiative 36 © Codasip Ltd.

Configuration	vs	Customization	
•  RISC-V	offers	a	wide	range	of	ISA	extensions:	

–  I/E	for	integer	instructions	
– M	for	multiplication	and	division	
–  C	for	compact	instruction	
– WIP:	B,	P,	V,	…	
–  and	others	

•  Configuration:	Selecting	multiple	ISA	extensions	
–  Enabled	by	some	vendors	or	open-source	projects	
–  Still	insufficient	for	some	application	domains	

© Accellera Systems Initiative 37 © Codasip Ltd.

Customer	Use	Case	

© Accellera Systems Initiative 38

Configuration	 Clock	Cycles1	 Code	size2	 Speedup	
Against	Base	

Area	(Gates)3	 Area	Expansion	
Against	Base	

Base	 1,764,256	 232	 16.0k	

Base	+	Serial	Multiplier	 427,561	 148	 4.12	x	 19.7k	 1.24	x	

Base	+	Parallel	Multiplier	 133,061	 148	 13.26	x	 26.2k	 1.64	x	

Base	+	DSP	Extensions	 31,371	 64	 56.24	x	 38.7k	 2.43	x	

De
sig

n	
Ite

ra
tio

ns
	

© Codasip Ltd.

1	Fewer	clock	cycles	→	same	software	takes	less	time	to	run.	
2	Smaller	code	size	(optimized	software)	→	less	memory	saves	money.	
3	More	gates	in	advanced	cores	→	higher	cost.	Here,	only	2x	area	increase	provides	50x	performance	gain.	

Performance	improvement	through	high-level	optimization:	
FIR	implementation	in	C	with	200	16-bit	input	samples	and	16	16-bit	coefficients	

Standard	Approach	to	Customization	
•  Manually	adding	new	instructions	to	the	RISC-V	ISA:	

– Model	and	simulate	the	instruction	
– Modify	the	compiler	
–  Add	support	in	the	debugger	
– Write	Verilog	to	implement	in	hardware	
–  Verify,	verify,	verify,	…	

•  Challenging	and	time-consuming	
•  Automation	desirable	for	each	step	above	

© Accellera Systems Initiative 39 © Codasip Ltd.

Automatization	Approach	to	Customization	

© Accellera Systems Initiative 40

Processor	Modeling	 Software	
analysis	 SDK	Synthesis	 RTL	Synthesis	 Verification	

Implementation	
Model	

RTL	Models	CA	Simulator,	Profiler,	Debugger	

Application(s)/Programs(s)	

C/C++	Compiler	

Assembler	

Linker	

IA	Simulator,	Profiler,	Debugger	
Functional	Model	 Reference	Model	

UVM	
Verification	

© Codasip Ltd.

Codasip	Approach	to	Customization	

© Accellera Systems Initiative 41

Codasip	Studio	 CodAL	–	processor	description	language	
element i_mac {
 use reg as dst, src1, src2;
 assembler { “mac” dst “,” src1 “,” src2 };
 binary { OP_MAC:8 dst src1 src2 0:9 };
 semantics {
 rf[dst] += rf[src1] * rf[src2];
 };
};

Integrated	processor	development	environment	SDK	automation	
Standards-based	tools	&	models	

Verification	Automation	
VSP	and	processor	validation	

RTL	Automation	
Powerful	High-level	Syntheses	

© Codasip Ltd.

Codasip	Studio:	
•  Introduced	in	2014	
•  Silicon-proven	by	major	

vendors	
•  Allows	for	fast	&	easy	

customization	of	base	
instruction	set:	
–  Single	cycle	MAC	
–  Floating	point	
–  Custom	crypto	functions	
–  …	

CodAL	Models	

© Accellera Systems Initiative 42

CodAL Description

Semantics Instruction
Set Resources μArch(s)

Instruction Accurate (IA)

Cycle Accurate (CA)

/*				Multiply	and	accumulate:	semantics	
	 	dst	+=	src1	*	src2																								*/	

	
element	i_mac	{	

	use	reg	as	dst,	src1,	src2;	
	assembler	{	“mac”	dst	“,”	src1	“,”	src2	};	
	binary	{	OP_MAC:bit[8]	dst	src1	src2	0:bit[9]	};	
	semantics	{	
	 	rf[dst]	+=	rf[src1]	*	rf[src2];	
	};	

};	

© Codasip Ltd.

•  Processor	IP	at	High	Level	of	Abstraction	
•  Easy	to	understand	C-like	language		
•  Features:	

–  Can	model	a	rich	set	of	processor	
capabilities	

–  Can	implement	multiple	microarchitectures	
in	a	single	model	

•  Usage:	
–  Used	to	model	and	verify	all	Codasip	

processors	
–  Provided	to	Codasip	IP	customers	as	

a	starting	point	for	their	processor	
optimizations	and	modifications	

B	ISA	Extension	
•  Bit	manipulation	instructions,	ca	30:	

–  Bit	insert	and	extract	
–  Byte	swapping	
–  Rotations	
–  Bit	swapping/shuffling	
–  Zero/one	counters	
–  ...	

•  Not	yet	ratified	
– Must	be	implemented	as	custom	extensions	

© Accellera Systems Initiative 43 © Codasip Ltd.

Functional	Model	

•  Written	in	CodAL		
–  in	10	days	by	a	single	engineer		

•  900	LOC	
•  Software	development	kit	(SDK)	
automatically	generated	by	
Studio,	including		
–  C	compiler	
–  Instruction	set	simulator	(ISS)	
–  Profiler	for	checking	the	impact	
of	the	extensions	

© Accellera Systems Initiative 44 © Codasip Ltd.

Implementation	Model	
•  Written	in	CodAL	

–  in	3	weeks	by	a	single	engineer	
•  1500	LOC	
•  Hardware	design	kit	(HDK)	
automatically	generated	by	Studio,	
including	
–  RTL	
–  Testbench		
–  UVM-based	verification	environment	

© Accellera Systems Initiative 45 © Codasip Ltd.

Verification	
•  Consistency	checker	
•  Random	assembler	program	generator	
•  UVM	Verification	Environment	

–  For	checking	that	RTL	corresponds	to	specification	(in	this	case,	IA	model	definition)	
–  Environment	in	SystemVerilog	generated	automatically	from	Codasip	Studio	

© Accellera Systems Initiative 46

Equivalence	

Cycle-accurate	CodAL		
Processor	Model	

Instruction-accurate	CodAL	
Processor	Model	

Synthesizable	RTL	

Reference	Model	

Test	Cases	

© Codasip Ltd.

Conclusion	
•  Configurability	

–  Useful,	but	often	not	sufficient	
•  Customization	

–  When	the	best	PPA	for	your	application	domain	is	required	
•  Standard	(manual)	approach	for	custom	ISA	extensions		

–  Error-prone	and	time-consuming	
	
Codasip	offers	an	easy,	automatized	way	to	add	your	secret	sauce:	

–  Custom	ISA	extensions		
–  Microarchitectural	improvements	

Example:	B	ISA	extension,	supported	by	SDK	and	RTL,	done	in	a	couple	of	weeks.	

© Accellera Systems Initiative 47 © Codasip Ltd.

Questions	

© Accellera Systems Initiative 48

Post	Silicon	Debug	and	Analytics	for	
RISC-V	Based	SoCs	

Peter	Shields	
UltraSoC	Technologies	Ltd.	
DVCon	Europe	October,	2018	

© Accellera Systems Initiative 49

Corporate	Overview	
•  We	are	a	provider	of	SoC	analytics	solutions	consisting	of	on-chip	RTL	IP	and	

software	
•  VC-funded	and	based	in	Cambridge	UK	
•  £4.7M	VC	round	in	2017	with	addition	of	Alberto	Sangiovanni-Vincentelli	
•  25	patents	granted	+	16	pending	
•  Seasoned	management	team	
•  Key	partners	&	ecosystem	
•  Silicon	proven	technology	in	multiple	customer	designs	
•  Revenue,	blue-chip	customers,	repeat	business	

50 © Accellera Systems Initiative

A	coherent	architecture	to	debug,	develop,	optimize	&	secure	
–  Full	SoC	visibility,	HW	&	SW	
–  Support	all	architectures:	Freedom	of	IP	selection	
–  Real-time	&	non-intrusive	
–  Advanced	analytics	&	forensics	
–  Power/Performance	optimization	
–  “in	life”	analytics	&	SLA	compliance	
–  Supports	Functional	Safety	
–  Supports	Bare	Metal	Security™	
–  High-speed	debug	over	USB	or	SerDes	

On-chip	Analytics	for	SoC	

51 © Accellera Systems Initiative

xtensa	

A	High	Level	View	of	SoC	

52

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	DSP	

System Block

UltraSoC IP

© Accellera Systems Initiative

xtensa	

Processor	Control	and	Trace	

53

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	
Portfolio of

Analytic Modules

DSP	

System Block

UltraSoC IP

© Accellera Systems Initiative

xtensa	

Messaging	Subsystem	

54

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	

Message Engine

Message Engine	

Portfolio of
Analytic Modules

Flexible & Scalable
Message Fabric

System Block

UltraSoC IP

DSP	

© Accellera Systems Initiative

xtensa	

Transaction	Aware	Bus	Monitoring	

55

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	

Message Engine

Message Engine	

Portfolio of
Analytic Modules

Flexible & Scalable
Message Fabric

System Block

UltraSoC IP

DSP	

© Accellera Systems Initiative

xtensa	

Additional	Monitors	

56

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

Portfolio of
Analytic Modules

Flexible & Scalable
Message Fabric

System Block

UltraSoC IP

DSP	

© Accellera Systems Initiative

xtensa	

Control	and	Data	Off	Chip	

57

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

JTAG	
Comm	

Portfolio of
Analytic Modules

Flexible & Scalable
Message Fabric

System Block

UltraSoC IP

DSP	

© Accellera Systems Initiative

xtensa	

High	Speed	Communicators		

58

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

Portfolio of
Analytic Modules

Family of
Communicators

Flexible & Scalable
Message Fabric

System Block

UltraSoC IP

DSP	

© Accellera Systems Initiative

xtensa	

On-Chip	Data	Storage	and	Control	

59

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

Portfolio of
Analytic Modules

Family of
Communicators

Flexible & Scalable
Message Fabric

System Block

UltraSoC IP

DSP	

System	
Memory	
Buffer	

© Accellera Systems Initiative

Intelligent	Analytic	Modules	

60

Use filters,
cross-triggers
and bursting

•  Take	a	Bus	Monitor	as	an	example	
•  Configurable	number	of	

–  filters	
–  counters	
–  trace	buffer	size	

•  Run-time	programmability	
–  Filter	matching	for	triggering	
–  Filter	matching	for	counting	
–  Filtering	for	bus	trace	

•  Gather	statistics	(best,	worst,	average)	
•  Only	meaningful	information	sent	
•  Reduces	bandwidth	&	data	volume	
•  Focus	on	what	is	relevant	

AXI Bus	

Full	speed	bus	monitoring	

Buffering – parameterisable	

Communicator, e.g. USB

Very high
bandwidth

Low
bandwidth

Very low
bandwidth

High bandwidth –
parameterisable

High
bandwidth

Very high
bandwidth

Matches	 Counts	 Trace	

© Accellera Systems Initiative

Software	tools	for	data-driven	insights	

61

Eclipse based UltraDevelop IDE

RISC-V	
CPU	

Multiple	
other	
CPUs	

single	step	&	
breakpoint	
CPU	code	

Real-time	
HW	Data	

SW	&	HW	in	
one	tool	 RISC-V	

instruction	
trace	© Accellera Systems Initiative

RISC-V	Run	Control	
•  Run	control	includes	halt,	resume,	read/write	of	RAM	and	registers,	and	
setting	and	clearing	of	breakpoints.	
–  Extensions	include	watchpoints,	running	arbitrary	code,	semi-hosting	and	
reverse	debugging.		

•  Proposed	debug	standard	for	RISC-V	
–  Debug	Module	
–  Debug	Transport	Mechanism	

•  Transport	could	be	JTAG,	Bus-mapped	or	other	(USB	etc)	
•  https://github.com/riscv/riscv-debug-spec		

© Accellera Systems Initiative 62

RISC-V	Trace	Encoding	
•  Processor	Trace	Task	Group	

–  standardize	both	a	hardware	interface	to	the	RISC-V	core	and	a	packet/data	format	
–  commercial	and	open	source	trace	encoders	
–  provide	enough	information	for	instruction	trace	
–  in-order	and	out-of-order	cores	with	extensions	
–  standardize	the	data	format	for	compressed	branch	trace	so	that	program	flow	can	be	
reconstructed	by	debugging	tools	

•  Proposed	standard	for	RISC-V	consists	of	
–  Trace	Interface	
–  Trace	Encoding	algorithm	

•  Efficiency	and	impact	on	trace	bandwidth	
•  https://github.com/riscv/riscv-trace-spec	

© Accellera Systems Initiative 63

RISC-V	Trace	Encoder	
•  Comparators	and	filters	

– What	and	when	to	trace	

•  Trace	Encoding	algorithm	
•  Trace	Buffer	
•  Counters	

–  Statistics	
–  Performance	

© Accellera Systems Initiative 64

Message & Event Interface

Message input Message output

Counters

Time Interval Timer

i-trace i/f d-trace i/f

System
domain

Debug
domain

status gpo

Filters

TraceTrace

ComparatorsComparators
Optional

Standard

Key:

Example	Design	

65

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

System Block

UltraSoC IP

DSP	

System	
Memory	
Buffer	

© Accellera Systems Initiative

DDR	Bandwidth	Example	

66

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

System	
Memory	
Buffer	

DSP	

Why	do	some	
DMA	transfers	
take	too	long?	

© Accellera Systems Initiative

DDR	Bandwidth	Example	

67

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

System	
Memory	
Buffer	

DSP	

Why	do	some	
DMA	transfers	
take	too	long?	

Configure	Bus	Monitor	
to	report	Min/Max/Avg	
bandwidths	to	DRAM	

controller	from	
2	CPUs	&	DSP	

© Accellera Systems Initiative

DDR	Bandwidth	

68

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

System	
Memory	
Buffer	

DSP	

Why	do	some	
DMA	transfers	
take	too	long?	

Configure	Bus	Monitor	
to	report	Min/Max/Avg	
bandwidths	to	DRAM	

controller	from	
2	CPUs	&	DSP	

0.00E+00	
1.00E+08	
2.00E+08	
3.00E+08	
4.00E+08	
5.00E+08	
6.00E+08	
7.00E+08	
8.00E+08	
9.00E+08	

E
ffe

ct
iv

e
B

/s

Time in ns

Windowed DDR traffic

DSP1	 CPU1	 CPU2	

Aggregate bandwidth
within spec (570Mbps avg)

© Accellera Systems Initiative

DDR	Bandwidth	

69

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

System	
Memory	
Buffer	

DSP	

Why	do	some	
DMA	transfers	
take	too	long?	

Configure	Bus	Monitor	
to	report	Min/Max/Avg	
bandwidths	to	DRAM	

controller	from	
2	CPUs	&	DSP	

0.00E+00	
1.00E+08	
2.00E+08	
3.00E+08	
4.00E+08	
5.00E+08	
6.00E+08	
7.00E+08	
8.00E+08	
9.00E+08	

E
ffe

ct
iv

e
B

/s

Time in ns

Windowed DDR traffic

DSP1	 CPU1	 CPU2	

Combined peak
bandwidth
>2Gbps

© Accellera Systems Initiative

Cross	Triggering	-	Deadlock	

70

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

DSP	

System	
Memory	
Buffer	

What	was	
happening	when	

the	system	
deadlocked?	

© Accellera Systems Initiative

Cross	Triggering	-	Deadlock	

71

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

DSP	

System	
Memory	
Buffer	

What	was	
happening	when	

the	system	
deadlocked?	

Configure	Status	
Monitor	to	detect	
illegal	scenario	
(lock	sequence)	

© Accellera Systems Initiative

Cross	Triggering	-	Deadlock	

72

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

DSP	

System	
Memory	
Buffer	

What	was	
happening	when	

the	system	
deadlocked?	

Configure	Status	
Monitor	to	detect	
illegal	scenario	
(lock	sequence)	

Configure	
PAMs	to	halt	
CPUs	on	event	

Configure	
PAMs	to	halt	
CPUs	on	event	

Configure	BUS	
Monitor	to	
report	trace	

“TO”	the	event	

© Accellera Systems Initiative

Cross	Triggering	-	Deadlock	

73

Interconnect (AXI, ACE, ACE-lite, OCP, NoC)

GPU	DRAM	
controller	

Custom	
Logic	

Bus	
Mon	

Trace	
Receiver	 PAM	 PAM	 Trace		

Encoder	 PAM	 Static	
Instrumentation	 DMA	 Status	

Monitor	

Message Engine Message Engine Message Engine

Message Engine	

AXI	
Comm	

JTAG	
Comm	

USB	
Comm	

Universal	
Streaming	
Comm	

DSP	

System	
Memory	
Buffer	

What	was	
happening	when	

the	system	
deadlocked?	

Configure	Status	
Monitor	to	detect	
illegal	scenario	
(lock	sequence)	

Configure	
PAMs	to	halt	
CPUs	on	event	

Configure	
PAMs	to	halt	
CPUs	on	event	

Configure	BUS	
Monitor	to	
report	trace	

“TO”	the	event	

© Accellera Systems Initiative

•  Heterogeneous	architectures	
•  Non-intrusive,	wire-speed	
•  High-speed	analytics	over	USB/SerDes	
•  Debug,	forensics,	optimization	

–  pre-silicon	&	post-silicon	
•  In-life	system	monitoring	
•  Cooperation	within	RISC-V	community	is	critical	

	

74

RISC-V Post Silicon Analytics Summary

© Accellera Systems Initiative

75

Contact	details:	

Peter	Shields	
peter.shields@ultrasoc.com	

www.ultrasoc.com	
@UltraSoC	

Questions	

© Accellera Systems Initiative 76

