

Towards a Hybrid Verification Environment for Signal Processing SoCs Jan Hahlbeck, Steffen Löbel, Chandana G P NXP Semiconductors Germany GmbH

Agenda

- Motivation Why are we using a hybrid approach?
- Introduction to our Hybrid Verification Environment
 - Walking through the six phases of our verification cycle
- Apply Hybrid Verification approach on an exemplary DUT
 - Results
- Summary / Outlook

Motivation

- Dealing with radio SoC verification in automotive domain
- Demand for combination of traditional functional verification flow with formal verification and MATLAB signal processing reference models -> Hybrid Verification
- Be prepared for further methodology shift
 - Formal Property Verification
 - Automated Formal Verification
 - Motivate engineers to try out formal related apps and techniques
- Tackle verification tasks from different angles
- Verification engineers sleep better with a formal proof!

Hybrid Verification Environment - Overview

Phase 1.1: Structural Connectivity

Phase 1: Structural Connectivity

Hybrid Verification Environment Formal Toolkit Code Command Command Generator Scripts Scripts Setup / Update Run Connectivity Connectivity Run **RTL Release** Connectivity **Reverse Connectivity** Maps **Regular Connectivity** Testbench Environment and review maps Test -Connectivity Targets-Specifications

Phase 1.2: MATLAB Model Generation

Phase 1.2: MATLAB Model Generation

Phase 2.1: Functional Verification

Phase 2.1: Functional Verification

Phase 2.2: Formal Property Verification

Phase 2.2: Formal Verification

Phase 3: Regression, Coverage and UNR

Applying Hybrid Verification

Coherent Data Check Flow

Sharing Properties

- Sharing properties between UVM and FPV via System Verilog interfaces
- Limited to DUT interface signals
- Rules
 - No liveness properties
 - No usage of free variables
 - Limit number of cover properties

MATLAB DPI Wrapper

- Required accuracy provided by test specifications
- Reference value check every clock cycle
- Standardized DPI wrapper interface
 - DPI_<name>_initialize()
 - DPI_<name>_terminate()
 - DPI_<name>_reset()
 - DPI_<name>_output()
 - DPI_<name>_update()

Results – Coverage Merge

Module	Properties	Sim Coverage in % (*1)	Formal Coverage in % (*2)	Merged Coverage in %
Wideband Filter	2	75	1.1	75
Filter Crossbar	106	94	100	100
Data Packetizer	150	65	75	88
Interrupt Distribution	66	95	100	100
Synchronization Unit	50	73	90	95

*1 Branch, Expression, Statement, Toggle on interfaces

*2 Normal Precision, Reset excluded

Results – Unreachability Analysis (UNR)

Module	Coverage Pre-UNR in %	Coverage Post-UNR in % (*1)	Total UNR in %
DUT top level	76	82	6
Wideband Filter	75	82	7
Smallband Filter	84	87	3
Data Packetizer	88	88	0
Write DMA	93	95	2

*1 Running UNR with uninitalized start state

Summary

- We created a powerful hybrid verification setup which combines a traditional UVM based approach with powerful extensions like formal property verification, structural connectivity checks, unreachability analysis paired with integrated MATLAB reference models
- Hybrid verification approach provides free choice of methodology for verifications teams based on verifications tasks and team experience
- Outlook
 - Extend the usage of formal property verification (FPV)
 - Evaluate more automated formal verification apps

Questions?

