
The Test Bench Factory: Building Verification
Environments Faster, Better, Smarter

Thorsten Dworzak, Dr. Johannes Grinschgl
Infineon Technologies AG, Neubiberg, Germany

State-of-the-Art1

Motivation2

VIP Reuse3

The TB Architecture4

Stimulus, Checking, Coverage5

Agenda

State-of-the-Art

• Industry uses verification code generation for
• Configuration and Status Register (CSR) Modelling

• Structural test benches (TBs)

• Formal property generation

• Very specific tasks (see DVCon papers)

• OpenSource and commercial solutions available for SystemVerilog
• E.g. UVMF: Universal Verification Methodology Framework

Motivation

• Several in-house solutions exist that are either
• Too simplistic (e.g, DVT Eclipse templates)

• Using Specman/e (being phased out)

• Tied to a specific DUV architecture

• Introducing TBGen: a universal UVM-SV test bench generator that
• Increases productivity

• Is suitable for module and system-level

• Facilitates Verification IP (VIP) and TB re-use

• Provides a standard TB architecture based on SV libraries

VIP Reuse

• Each verification component (VC) is associated with meta-data

• This meta-data contains all the information needed to instantiate the VC and for
generating a VC (e.g. TB)
• Interfaces

• Sequencers

• Configuration

• Environments

• VCs which should be instantiated

• Register model instantiations

• All reuseable VCs are shared company wide over a central repository.

Taxonomy of VIPs
Type of VC Description

iVC an interface VC drives and monitors connection to a DUV via SV interfaces; the iVC needs
minimal information from the user to control the UVM-VIP-generator, because most
information is implicitly inferred from the generator (standard UVM architecture)

iVCg same as iVC but the "g" denotes a 3rd party iVC that does not follow the structure of
generated VCs; it contains explicit information about its sequencers, analysis ports etc.

mVC typically containing an agent with a scoreboard; does not connect to the DUV (no SV
interfaces) but receives items from iVCs on TLM1 analysis ports

sysVC the integration layer environment; typically containing instances of iVC(g)s, mVCs, other
sysVCs, and register components

TB this is similar to a sysVC but also contains tests, HDL testbench modules etc.

The TB Architecture

High-level Description of TB Topology

• Global information (DUV name, UVM environment name, etc)

• File path to imported VC meta-data

• Instantiation of VCs (interface parameters, number of agents, etc.)

• Topology of a bus-fabric (components, buses, bus interfaces, address-
maps, routing information, etc.)

• CSR model generation attributes (e.g. path to specification)

• CSR address maps and connection to VC analysis ports,
adapter/predictor types, etc.

TTD Input in HOCON Format

global {
project: mac_env
dut: mac_fe
dut_instance: dut_i
…

}

vc_list: [
/home/vips/ahb/meta/ahb_ivc.json
/home/vips/libraries/meta/ifx_uvm.json
…

]

uvcs {
ahb_0 {
name : ahb_ivc
hdl_bb : true
bind_to : dut_i
harness : ahb_ivc_harness
embed : false

}
scoreboard_0 {
name : ahb_sb
embed : false
generate : true
default_conn_schema : all

}

Stimulus, Checking, Coverage

• A bus-fabric topology has
• components (peripherals, bridges,

…), buses, bus-interfaces

• attributes like routing, address maps
and supported protocol features

• TBGen supports
• A sequence framework

• Automatic scoreboard inference

• Functional coverage collection on
checked scoreboard items

Results

DUV No. of different

iVC/mVC

types/instances

No. of different sysVC

types/instances

Lines of code for top-

level test bench

(generated)

SPI memory controller (IP) 8/9 - 18900

CPU with interconnect, DMA,

memory controllers

7/22 6/6 144k (120k of which

for registers)

System Resources sub-system

(clock, reset, power etc.)

49/529 18/18 220k (146k of which

for registers)

Questions?

