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DRAMSys in a Nutshell
Simulation and Design Space Exploration of Modern DRAM-based Memory Systems:
• Which DRAM configuration?
• When to support DDR5 or LPDDR5?
• How to configure the memory controller?
• What is the system-level application behavior?

DRAMSys Offers:
• High-speed and flexible models of all standards
• Fast and accurate design space exploration
• Early identification of bottlenecks
• Connection to cores (e.g. SystemC, gem5, …)



DRAMSys Open Source Model

• Open source: DDR3/4, LPDDR4, Wide I/O 1/2, 
GDDR5/X, GDDR6, and HBM2
• Commercial/academic licenses: DDR5, 

LPDDR5, HBM3, Trace Analyzer tool
• New standard models will be open-sourced 

when a level of maturity is reached
• Customer-specific consulting, modifications 

and developments

Fork me on Github!

Thanks to our Key Partners:



Recap: How does DRAM Work?
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Invented by Robert H. Dennard in 1966 

1970

1024 bit



The DRAM Cell

• Data is stored by capacity
• Cell is selected with access transistor
• Charged capacitor represents a ‘1’
• Discharged capacitor represents a ‘0’
• Memory is volatile
• Cell is leaky
• Refresh needed à dynamic
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The DRAM Device / Operation
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E.g. Samsung DDR3,
by Chipworks

Bank

• Using Sub-Arrays for efficient wiring

• Bank parallelism, but banks share data and command bus

512x512



DRAMs Basic Operations

B0
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…

… …

SSAs
(e.g. 8B)

e.g. 1kB
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x8

Important DRAM Commands:

• ACT: Activates a specific row 
in a specific bank (sensing into 
PSA) [tRCD]

• RD: Read from activated row 
(prefetch from PSA to SSA and 
burst out) [tCL + tBURST]

• PRE: Precharges set LWL=0 
set LBL=VDD/2 [tRP]

• REFA: DRAM cells are leaky 
and have to be refreshed
[tREFI & tRFC]



JEDEC Standard: e.g. Timing Dependencies

Timing 
dependencies 
must be 
fulfilled by the 
DRAM 
controller



Different DRAM Subsystems
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DRAM Simulation Models
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DRAMSys Architecture

• Based on SystemC TLM2, 
compliant with TLM-AT coding 
style

• Flexible SW-Architecuture to 
support various JEDEC DRAM 
standards (e.g., DDR4, LPDDR4, 
GDDR6, HBM, …)

• For RTL-like accuracy a custom 
TLM protocol (DRAM-AT) is used

DRAM-AT
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Custom TLM Protocol

• Simulation speed can be increased by reducing the number of events
• Clock signal has the highest event generation rate
• Do we need to simulate each clock cycle to generate cycle-accurate results?

• Simulation of state changes is sufficient, idle clock cycles can be skipped!
• Large event reduction at low memory access densities 
• No loss of accuracy

CLK
CMD
ADD

ACT NOP NOP NOP NOP NOP NOP NOP NOP RD NOP

B/R B/C

tRCD

RTL



Custom TLM Protocol

• Simulation speed can be increased by reducing the number of events
• Clock signal has the highest event generation rate
• Do we need to simulate each clock cycle to generate cycle-accurate results?

• Simulation of state changes is sufficient, idle clock cycles can be skipped!
• Large event reduction at low memory access densities 
• No loss of accuracy

ACT RD

tRCD

TLM



Custom TLM Protocol



DRAMSys Simulation Speed

• Simulation of only the 
important events
• Speedup from 4x to 10.000x 

depending on trace density
• Average speedups depend 

on applications
• Typical values: 400x
• 100% RTL Accuracy0,1

1

10

100

1000

10000

1,E-07 1,E-06 1,E-05 1,E-04 1,E-03 1,E-02 1,E-01 1,E+00

Sp
ee

d
u

p

Memory Access Density

RTL as Baseline

Loop Based

DRAMSys TLM



Analysis

Trace Analyzer

Functional Models

TLM
DRAMml

Power
Thermal

Errors

Non-Functional



Number of DRAM Standards is Growing!



DDR5 JEDEC Standards

• Defines commands, states, 
timings and interface properties
• Very complex protocol
• DDR3: 226 pages
• DDR4: 266 pages
• DDR5: 496 pages

• Descriptions are not formal
• And not even correct …



JEDEC Standard Description “State Machine”

DDR3 JEDEC Standard:
“This simplified State Diagram is intended to provide an overview of the possible state transitions and the
commands to control them. In particular, situations involving more than one bank, the enabling or disabling
of on-die termination, and some other events are not captured in full detail.”
a

Drawbacks:

• Only 1 Bank shown i.e. no bank parallelism (because of state 
explosion)

• States like Activating, Precharging, REF … do not exist (There 
are only 5 state types!)

• Double States (2x Reading and Writing)

• Inconsistencies using automatic sequences (eg. Reading 
state)



DRAMml: a formal Description for JEDEC Standards

A new standard 
requires a serious 
amount of 
handcraft:
• New models for 

fast simulation 
and verification
• Adapt memory 

models and HW 
IP every time

Information 
of ~100 
Pages in

the Standard

1 Page

The ideal case: A formal language, which has the power to …



A Single Memory Bank

• In the beginning we are IDLE state

• If we want to read or write we 
have to be in the ACTIVE state.

• A specific row is stored in the 
bank’s row buffer (ACT)

• Then we can perform read (RD) 
or write (WR) operations

• If we want to read data from 
another row we have to close the 
current row (PRE)
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Two Memory Banks
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Four Memory Banks
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8 Memory Banks

• DDR3 Memory
• State Explosion can happen!

• Number of banks: 𝐵
• Number of states/nodes: 2!
• Number of edges: 2 # "#!

!$% + 2! − 1
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Recap: Petri Nets



Petri Nets

Petri Nets are models for concurrent asynchronous systems:
• Places, which usually represent states
• Transitions, which usually represent events
• Arcs

• Connect places and transitions
• Can have a weight

• Tokens
• Firing rules:

• Enabled if #𝑡𝑜𝑘𝑒𝑛𝑠 ≥ 𝑤𝑒𝑖𝑔ℎ𝑡
• Enabled transition may fire
• Firing removes and generates new tokens, transition may be disabled

𝑡!

𝑝!

𝑝"

𝑝#1

2

2



Petri Net Extensions

Reset Arcs: Inhibitor Arcs:

𝑡!
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𝑝# 𝑝$
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Modeling DRAMs with Petrinets

IDLE

ACT

ACTIVE

RD WRPRE

• State modeled as place
• DRAM command modeled as transition
• In the beginning we are IDLE state
• If we want to read or write we must be in the ACTIVE 

state.
• A specific row is stored in the bank’s row buffer (ACT)
• Then we can perform read (RD) or write (WR) 

operations
• If we want to read data from another row we must 

close the current row and precharge the bitlines (PRE)
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Two Memory Banks
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8 Memory Banks
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Modeling All DRAM States and Commands

• Comprehensive Model with clear separation 
between states and commands

• Models only 5 state types

• Support of multiple banks i.e. bank parallelism

• Divided in several subnets:

• Banks

• Refresh

• Power-Down

• Bankgroups

• Ranks

Bank B-1



Modeling DRAM Timing

• DRAMs feature a complex timing protocol
• E.g. 90 out of 260 pages of DDR3 standard 

are showing timing diagrams and 
explanations for the timings.
• DRAM command timing dependencies can 

be modeled by a timed inhibitor arc:
• For example, ACT to RD would be 𝑡-./𝑝%

[0, 𝑡%[

𝜏! 𝜏"

𝑡%

𝜏! 𝜏"

≡



Modeling Timing (2 Banks)



Modeling DRAM Timing (8 Banks)



Code Generation and Validation
• Timed Petri nets allow a formal representation of a DRAM protocol, however, no graphical handling possible

• DRAMml is a DSL to describe DRAM’s behavior with a petri net semantic

• DSL is as a basis for correct-by-construction DRAMSys TLM code generation
• For example: from DDR5 release it took 2 weeks to implement the model



DDR3-800
DRAM {
Name = "DDR3-800D";
B = 8;
N = 4;

Device {
Places {
IDLE (B);
PDNP;
SREF;
PDNA;

}

Transitions {
REFA;
PREA;
PDEP;
PDXP;
SREFEN;
SREFEX;
PDEA;
PDXA;

}

Arcs {
// Normal Arcs:
IDLE   -> REFA   (Weight = B);
REFA   -> IDLE   (Weight = B); 
PREA   -> IDLE   (Weight = B);
IDLE   -> PDEP   (Weight = B);
PDEP   -> PDNP;
PDNP   -> PDXP;
PDXP   -> IDLE   (Weight = B);
IDLE   -> SREFEN (Weight = B);
SREFEN -> SREF;
SREF   -> SREFEX;
SREFEX -> IDLE   (Weight = B);
PDEA   -> PDNA;
PDNA   -> PDXA;

IDLE -> ACT;
RDA  -> IDLE;
WRA  -> IDLE;
PRE  -> IDLE;

// Inhibitor Arcs:
PDNA -o REFA;
PDNA -o PREA;
PDNP -o PREA;
SREF -o PREA;
PDNA -o PDEP;

PDNA -o SREFEN;
PDNA -o PDEA;
PDNP -o PDEA;
SREF -o PDEA;
IDLE -o PDEA (Weight = B);

PDNA -o ACT;
PDNA -o RD;
PDNA -o WR;
PDNA -o PRE;
PDNA -o RDA;
PDNA -o WRA;

// Reset Arcs:
ACTIVE ->> PREA;
IDLE   ->> PREA;

}

// Define 8 Banks:
B : Bank {
Places {
ACTIVE;

}

Transitions {
ACT;
RD;
RDA;
PRE;
WR;
WRA;

}

Arcs {
// Normal Arcs:
ACT    -> ACTIVE;
ACTIVE -> RD;
RD     -> ACTIVE;
ACTIVE -> RDA;
ACTIVE -> WR;
WR     -> ACTIVE;
ACTIVE -> WRA;
ACTIVE -> PRE;

// Inhibitor Arcs:
ACTIVE -o ACT;

}
}

}

// Define Timing Constraints:
TimingConstraints {
Timings {
tCK = 2.5;
tCCD = 10;
tRCD = 12.5;
tRP = 12.5;
tRAS = 37.5;
tRL = 5*tCK;
tWL = 5*tCK;
tRTP = 4*tCK;
tWTR = 4*tCK;
tRRD = 4*tCK;
tWR = 15;
tFAW = 40;
tRFC = 110;
tREFI = 7800;
tREFMAX = 9*tREFI;

tRC = tRAS + tRP;
tRDWR = tRL+tCCD+2*tCK-tWL;
tWRRD = tWL + tCCD + tWTR;
tRDAACT = tRTP + tRP;
tWRPRE = tWL + tCCD + tWR;
tWRAACT = tWRPRE + tRP;

tXP = 3*tCK;
tXS = tRFC + 10;
tXSDLL = 512*tCK;
tCKE = 3*tCK;
tCKESR = tCKE + tCK;
tPD = tCKE; 
tRDPDEN = tRL + 5*tCK;
tWRPDEN = tWL + 4*tCK + tWR;
tWRAPDEN= tWL + 5*tCK + tWR;
tREFPDEN= tCK;
tACTPDEN= tCK;
tPRPDEN = tCK;

}

Places {
CMD_BUS;
NAW_POOL (N);

}

Arcs {
ACT -<> PRE  (tRAS,0);
ACT -<> RD   (tRCD,0);
ACT -<> WR   (tRCD,0);
ACT -<> RDA  (tRCD,0);
ACT -<> WRA  (tRCD,0);

ACT -<> ACT  (tRC,tRRD);
ACT -<> PDEA (0,tACTPDEN);
ACT -<> REFA (0,tRC);
ACT -<> PREA (0,tRAS);

// Timing from RD/RDA
RD  -<> PRE    (tRTP,0);
RD  -<> PREA   (0,tRTP);
RD  -<> PDEA   (0,tRDPDEN);
RD  -<> PDEP   (0,tRDPDEN);
RDA -<> PDEA   (0,tRDPDEN);
RDA -<> PDEP   (0,tRDPDEN);
RD  -<> RD     (tCCD,tCCD);
RD  -<> RDA    (tCCD,tCCD);
RDA -<> RD     (0,tCCD);
RDA -<> RDA    (0,tCCD);
RD  -<> WR     (tRDWR,tRDWR);
RD  -<> WRA    (tRDWR,tRDWR);
RDA -<> WR     (0,tRDWR);
RDA -<> WRA    (0,tRDWR);
RDA -<> ACT    (tRDAACT,0);
RDA -<> REFA   (0,tRTP+tRP);
RDA -<> PREA   (0,tRTP);
RDA -<> SREFEN (0,tRDPDEN);

// Timing from WR/WRA
WR  -<> PRE    (tWRPRE,0);
WR  -<> PREA   (0,tWRPRE);
WR  -<> PDEA   (0,tWRPDEN);
WRA -<> PDEA   (0,tWRAPDEN);
WRA -<> PDEP   (0,tWRAPDEN);
WR  -<> WR     (tCCD,tCCD);
WR  -<> WRA    (tCCD,tCCD);
WRA -<> WR     (0,tCCD);
WRA -<> WRA    (0,tCCD);
WR  -<> RD     (tWRRD,tWRRD);
WR  -<> RDA    (tWRRD,tWRRD);
WRA -<> RD     (0,tWRRD);
WRA -<> RDA    (0,tWRRD);
WRA -<> ACT    (tWRAACT,0);
WRA -<> REFA   (0,tWRPRE+tRP);
WRA -<> PREA   (0,tWRPRE);
WRA -<> SREFEN (0,tWRPRE+tRP);

// Timing from PRE/PREA
PRE  -<> ACT    (tRP,0);
PRE  -<> REFA   (0,tRP);
PRE  -<> PDEA   (0,tPRPDEN);
PRE  -<> PDEP   (0,tPRPDEN);
PRE  -<> SREFEN (0,tRP);
PREA -<> ACT    (0,tRP);

PREA -<> REFA   (0,tRP);
PREA -<> PDEP   (0,tPRPDEN); 
PREA -<> SREFEN (0,tRP);

// Timing constraints from PDN
PDEP -<> PDXP   (0,tPD);
PDEA -<> PDXA   (0,tPD);
PDXA -<> PDEA   (0,tCKE);
PDXP -<> PDEP   (0,tCKE);
PDXP -<> REFA   (0,tXP);
PDXP -<> SREFEN (0,tXP);
PDXA -<> ACT    (0,tXP);
PDXP -<> ACT    (0,tXP); 
PDXA -<> PRE    (0,tXP);
PDXA -<> PREA   (0,tXP);
PDXA -<> RD     (0,tXP);
PDXA -<> RDA    (0,tXP);
PDXA -<> WR     (0,tXP);
PDXA -<> WRA    (0,tXP);

// Timing from REFA/SREF
REFA   -<> ACT    (0,tRFC);
REFA   -<> REFA   (0,tRFC);
REFA   -<> PREA    (0,tRFC);
REFA   -<> SREFEN (0,tRFC);
REFA   -<> PDEP   (0,tREFPDEN);
SREFEX -<> ACT    (0,tXS);
SREFEX -<> REFA   (0,tXS);
SREFEX -<> PDEP   (0,tXS);
SREFEX -<> SREFEN (0,tXS);
SREFEX -<> RD     (0,tXSDLL);
SREFEX -<> RDA    (0,tXSDLL);
SREFEX -<> WR     (0,tXSDLL);
SREFEX -<> WRA    (0,tXSDLL); 
SREFEN -<> SREFEX (0,tCKESR);

// Arcs for the CLK
CMD_BUS -> * [tCK, inf];
* -> CMD_BUS;

// Arcs for the NAW
NAW_POOL -> ACT [tFAW, inf];
ACT      -> NAW_POOL;

// Arcs for the Refresh
REFA   -<> WARNING (0,tREFMAX);
SREF   -o WARNING;
SREFEX -<> WARNING (0,tREFMAX);

}
}

}
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Overview (Our) Tools

§ Estimation of future DRAM 
Timings and Power 
Consumption

§ Memory Subsystem Model 
based on SystemC-TLM2

§ Exploration of Scheduling
§ Simulation of System Behavior

§ Measuring DRAM Timings 
Power Consumption

§ Measuring Retention Errors

§ Estimation of DRAM Power 
consumption based on 
Datasheets!

§ Trace files analysis, w/ DRAM 
Scheduler

§ Temperature Simulation
§ 3D-Stacked ICs
§ Microchannel Cooling
§ Icewrapper for SystemC

Coupling

§ Multicore Simulation
§ SystemC Coupling
§ Elastic Trace Concept for Fast 

Simulation



DRAMPower

• State-of-the-art: Micron 
Model (Pessimistic)
• Highly Accurate DRAM 

power model developed 
together with TU/e
• Bank-wise calculation
• Temperature dependency
• Widely used by Industry

DRAM
Power
Model#(RD,WR,ACT,…)

DRAM Energy 
and Average Power
per Bank 

Datasheet:
§ IDD Currents
§ Timings

Simulation Stimuli:

Calibration:



3D-ICE

§ Material
§ Floorplan

DRAM Power

Other Power

Thermal
Map

SystemC Wrapper:
IceWrapper

3D-ICE

• Thermal RC networks
• Solving differential equations
• Co-simulation with SystemC

Bank 0 Bank 1 Bank 2 Bank 3

Bank 4 Bank 5 Bank 6 Bank 7
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Retention Error Model

• When not refreshing correctly
• DDR3 & Wide I/O
• Calibrated with Measurements

# Retention
Errors

Retention 
Error 

Model

0%

10%

20%

30%

40%

50%

60%

70%

0 20 40 60 80 100
Retention Time [s]

25°C 60°C
80°C 90°C

1E+06
0

20

40

60

4E+06

100s 25°C

C
um

ul
at

iv
e 

C
el

l F
ai

lu
re

 P
ro

ba
bi

lit
y 

Temperature
Map

DRAM
Commands



Holistic Simulation

System Behavior
& Retention Error 

Modeling

Cores:         DRAM:          

Power Analysis
DRAM:

Cores:
IPC based estimation

Thermal Analysis

Reliability vs. Power & Performance



Simulation of an Android Smart Phone

Lateral

Vertical

• 3D MPSoC with 4 ARM 
Cortex A9

• 4 channel stacked Wide I/O 
DRAM

• Running Android OS

• Dynamic Voltage and 
Frequency Scaling (DVFS) 
for the Cores 

• Closed loop simulation

• Temperature sensors for 
each bank and core



Analysis

Trace Analyzer

Functional Models

TLM
DRAMml

Power
Thermal

Errors

Non-Functional
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Where to get the tools:
DRAMSys:
https://github.com/tukl-msd/DRAMSys

gem5:
https://gem5.googlesource.com/

DRAMPower:
https://github.com/tukl-msd/DRAMPower

3D-ICE:
https://github.com/esl-epfl/3d-ice

Fork me on Github!

https://github.com/tukl-msd/DRAMSys
https://gem5.googlesource.com/
https://github.com/tukl-msd/DRAMPower
https://github.com/esl-epfl/3d-ice


The Open Source DRAM Simulator DRAMSys4.0
Dr. Matthias Jung, Fraunhofer IESE


