
The Open Source DRAM Simulator DRAMSys4.0
Dr. Matthias Jung, Fraunhofer IESE

DRAMSys in a Nutshell
Simulation and Design Space Exploration of Modern DRAM-based Memory Systems:
• Which DRAM configuration?
• When to support DDR5 or LPDDR5?
• How to configure the memory controller?
• What is the system-level application behavior?

DRAMSys Offers:
• High-speed and flexible models of all standards
• Fast and accurate design space exploration
• Early identification of bottlenecks
• Connection to cores (e.g. SystemC, gem5, …)

DRAMSys Open Source Model

• Open source: DDR3/4, LPDDR4, Wide I/O 1/2,
GDDR5/X, GDDR6, and HBM2
• Commercial/academic licenses: DDR5,

LPDDR5, HBM3, Trace Analyzer tool
• New standard models will be open-sourced

when a level of maturity is reached
• Customer-specific consulting, modifications

and developments

Fork me on Github!

Thanks to our Key Partners:

Recap: How does DRAM Work?

03.04.2017Matthias Jung5

Invented by Robert H. Dennard in 1966

1970

1024 bit

The DRAM Cell

• Data is stored by capacity
• Cell is selected with access transistor
• Charged capacitor represents a ‘1’
• Discharged capacitor represents a ‘0’
• Memory is volatile
• Cell is leaky
• Refresh needed à dynamic

Access Transistor

Wordline

Bi
tli

ne

Storage
Capacitor

‘0’‘1’

The DRAM Device / Operation

Column Decoder & SSA

Ro
w

 D
ec

od
er

Column Decoder & SSA

Ro
w

 D
ec

od
er

Column Decoder & SSA

Ro
w

 D
ec

od
er

Column Decoder & SSA

Ro
w

 D
ec

od
er

Column Decoder & SSA

Row
 D

ecoder

Column Decoder & SSA

Row
 D

ecoder

Column Decoder & SSA
Row

 D
ecoder

Column Decoder & SSA

Row
 D

ecoder

Storage
Capacitor

Access Transistor

Wordline

Bi
tli

ne

Sub-Array

E.g. Samsung DDR3,
by Chipworks

Bank

• Using Sub-Arrays for efficient wiring

• Bank parallelism, but banks share data and command bus

512x512

DRAMs Basic Operations

B0

PSAs

…

… …

SSAs
(e.g. 8B)

e.g. 1kB

B2 B4 B6

B1 B3 B5 B7

x8

Important DRAM Commands:

• ACT: Activates a specific row
in a specific bank (sensing into
PSA) [tRCD]

• RD: Read from activated row
(prefetch from PSA to SSA and
burst out) [tCL + tBURST]

• PRE: Precharges set LWL=0
set LBL=VDD/2 [tRP]

• REFA: DRAM cells are leaky
and have to be refreshed
[tREFI & tRFC]

JEDEC Standard: e.g. Timing Dependencies

Timing
dependencies
must be
fulfilled by the
DRAM
controller

Different DRAM Subsystems

Memory Cube:
3D-Stacked, Memory Controller on

Bottom Layer, Serial Interconnect (SerDes)
e.g. HMC, SMC

CPU

3D/2.5D-Integrated:
Stacked on Logic or Silicon Interposer

by means of TSVs
e.g. Wide I/O, HBM

Compute Logic Silicon Interposer / Package Substrate

GPU

DIMM Based:
General Purpose Computers

e.g. DDR3, DDR4

Computational Units

Device Based:
Embedded / Tablets / Graphic Cards

e.g. LPDDR3, GDDR5

x16

FPGA
or MPSoC

x16

. . .

Package on Package (PoP):
Soldered on top of the MPSoC.

Smartphones
e.g. LPDDR3, LPDDR4

MPSoC

DRAM

Buffer on Board:
Memory Controller on Buffer Chip,

Serial Connection
e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

CPU

Memory Cube:
3D-Stacked, Memory Controller on

Bottom Layer, Serial Interconnect (SerDes)
e.g. HMC, SMC

CPU

3D/2.5D-Integrated:
Stacked on Logic or Silicon Interposer

by means of TSVs
e.g. Wide I/O, HBM

Compute Logic Silicon Interposer / Package Substrate

GPU

DIMM Based:
General Purpose Computers

e.g. DDR3, DDR4

Computational Units

Device Based:
Embedded / Tablets / Graphic Cards

e.g. LPDDR3, GDDR5

x16

FPGA
or MPSoC

x16

. . .

Package on Package (PoP):
Soldered on top of the MPSoC.

Smartphones
e.g. LPDDR3, LPDDR4

MPSoC

DRAM

Buffer on Board:
Memory Controller on Buffer Chip,

Serial Connection
e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

CPU

Memory Cube:
3D-Stacked, Memory Controller on

Bottom Layer, Serial Interconnect (SerDes)
e.g. HMC, SMC

CPU

3D/2.5D-Integrated:
Stacked on Logic or Silicon Interposer

by means of TSVs
e.g. Wide I/O, HBM

Compute Logic Silicon Interposer / Package Substrate

GPU

DIMM Based:
General Purpose Computers

e.g. DDR3, DDR4

Computational Units

Device Based:
Embedded / Tablets / Graphic Cards

e.g. LPDDR3, GDDR5

x16

FPGA
or MPSoC

x16

. . .

Package on Package (PoP):
Soldered on top of the MPSoC.

Smartphones
e.g. LPDDR3, LPDDR4

MPSoC

DRAM

Buffer on Board:
Memory Controller on Buffer Chip,

Serial Connection
e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

CPU

Memory Cube:
3D-Stacked, Memory Controller on

Bottom Layer, Serial Interconnect (SerDes)
e.g. HMC, SMC

CPU

3D/2.5D-Integrated:
Stacked on Logic or Silicon Interposer

by means of TSVs
e.g. Wide I/O, HBM

Compute Logic Silicon Interposer / Package Substrate

GPU

DIMM Based:
General Purpose Computers

e.g. DDR3, DDR4

Computational Units

Device Based:
Embedded / Tablets / Graphic Cards

e.g. LPDDR3, GDDR5

x16

FPGA
or MPSoC

x16

. . .

Package on Package (PoP):
Soldered on top of the MPSoC.

Smartphones
e.g. LPDDR3, LPDDR4

MPSoC

DRAM

Buffer on Board:
Memory Controller on Buffer Chip,

Serial Connection
e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

CPU

Memory Cube:
3D-Stacked, Memory Controller on

Bottom Layer, Serial Interconnect (SerDes)
e.g. HMC, SMC

CPU

3D/2.5D-Integrated:
Stacked on Logic or Silicon Interposer

by means of TSVs
e.g. Wide I/O, HBM

Compute Logic Silicon Interposer / Package Substrate

GPU

DIMM Based:
General Purpose Computers

e.g. DDR3, DDR4

Computational Units

Device Based:
Embedded / Tablets / Graphic Cards

e.g. LPDDR3, GDDR5

x16

FPGA
or MPSoC

x16

. . .

Package on Package (PoP):
Soldered on top of the MPSoC.

Smartphones
e.g. LPDDR3, LPDDR4

MPSoC

DRAM

Buffer on Board:
Memory Controller on Buffer Chip,

Serial Connection
e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

CPU

Memory Cube:
3D-Stacked, Memory Controller on

Bottom Layer, Serial Interconnect (SerDes)
e.g. HMC, SMC

CPU

3D/2.5D-Integrated:
Stacked on Logic or Silicon Interposer

by means of TSVs
e.g. Wide I/O, HBM

Compute Logic Silicon Interposer / Package Substrate

GPU

DIMM Based:
General Purpose Computers

e.g. DDR3, DDR4

Computational Units

Device Based:
Embedded / Tablets / Graphic Cards

e.g. LPDDR3, GDDR5

x16

FPGA
or MPSoC

x16

. . .

Package on Package (PoP):
Soldered on top of the MPSoC.

Smartphones
e.g. LPDDR3, LPDDR4

MPSoC

DRAM

Buffer on Board:
Memory Controller on Buffer Chip,

Serial Connection
e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

CPU

Analysis

Trace Analyzer

Functional Models

TLM
DRAMml

Power
Thermal

Errors

Non-Functional

DRAM Simulation Models
DRAM

Simulation

Models
Cycle-

Accurate

Models

Non-Cycle-

Accurate

Models

Discrete

Event

Simulations

Custom

Simulation

Kernels

Pure

Functional

Models

Cycle-

Approximate

Models

Statistical

Models

Analytical

Models

Neural

Networks

RTL

Models

Fixed-Latency

Models

Loop-Based

Models

TLM

Models

DRAMSys Architecture

• Based on SystemC TLM2,
compliant with TLM-AT coding
style

• Flexible SW-Architecuture to
support various JEDEC DRAM
standards (e.g., DDR4, LPDDR4,
GDDR6, HBM, …)

• For RTL-like accuracy a custom
TLM protocol (DRAM-AT) is used

DRAM-AT

TLM2 Core, Cache and Bus Models

Channel Controller

Channel Controller

Ar
bi

tr
at

io
n

&
M

ap
pi

ng

DRAM

DRAM

Power
Estimation

Thermal
Model

Error Model

Co
re

N
Co

re
N

Sc
he

du
le

r

Bank
Machines

Refresh
Managers

Timing
Checker

Co
m

m
an

d
M

ul
tip

le
xe

r

DRAM-AT

Custom TLM Protocol

• Simulation speed can be increased by reducing the number of events
• Clock signal has the highest event generation rate
• Do we need to simulate each clock cycle to generate cycle-accurate results?

• Simulation of state changes is sufficient, idle clock cycles can be skipped!
• Large event reduction at low memory access densities
• No loss of accuracy

CLK
CMD
ADD

ACT NOP NOP NOP NOP NOP NOP NOP NOP RD NOP

B/R B/C

tRCD

RTL

Custom TLM Protocol

• Simulation speed can be increased by reducing the number of events
• Clock signal has the highest event generation rate
• Do we need to simulate each clock cycle to generate cycle-accurate results?

• Simulation of state changes is sufficient, idle clock cycles can be skipped!
• Large event reduction at low memory access densities
• No loss of accuracy

ACT RD

tRCD

TLM

Custom TLM Protocol

DRAMSys Simulation Speed

• Simulation of only the
important events
• Speedup from 4x to 10.000x

depending on trace density
• Average speedups depend

on applications
• Typical values: 400x
• 100% RTL Accuracy0,1

1

10

100

1000

10000

1,E-07 1,E-06 1,E-05 1,E-04 1,E-03 1,E-02 1,E-01 1,E+00

Sp
ee

d
u

p

Memory Access Density

RTL as Baseline

Loop Based

DRAMSys TLM

Analysis

Trace Analyzer

Functional Models

TLM
DRAMml

Power
Thermal

Errors

Non-Functional

Number of DRAM Standards is Growing!

DDR5 JEDEC Standards

• Defines commands, states,
timings and interface properties
• Very complex protocol
• DDR3: 226 pages
• DDR4: 266 pages
• DDR5: 496 pages

• Descriptions are not formal
• And not even correct …

JEDEC Standard Description “State Machine”

DDR3 JEDEC Standard:
“This simplified State Diagram is intended to provide an overview of the possible state transitions and the
commands to control them. In particular, situations involving more than one bank, the enabling or disabling
of on-die termination, and some other events are not captured in full detail.”
a

Drawbacks:

• Only 1 Bank shown i.e. no bank parallelism (because of state
explosion)

• States like Activating, Precharging, REF … do not exist (There
are only 5 state types!)

• Double States (2x Reading and Writing)

• Inconsistencies using automatic sequences (eg. Reading
state)

DRAMml: a formal Description for JEDEC Standards

A new standard
requires a serious
amount of
handcraft:
• New models for

fast simulation
and verification
• Adapt memory

models and HW
IP every time

Information
of ~100
Pages in

the Standard

1 Page

The ideal case: A formal language, which has the power to …

A Single Memory Bank

• In the beginning we are IDLE state

• If we want to read or write we
have to be in the ACTIVE state.

• A specific row is stored in the
bank’s row buffer (ACT)

• Then we can perform read (RD)
or write (WR) operations

• If we want to read data from
another row we have to close the
current row (PRE)

Row Buffer

Ro
w

s

Write Read

IDLE ACTIVE

ACT

PRE

RD or WR

Two Memory Banks

Row Buffer

Ro
w

s

Write Read

Row Buffer

Ro
w

s

Write Read

IDLE

ACTIVE
0,1

ACT
B=1

RD or WR
B=1 || B=0

ACTIVE
1,0

ACTIVE
1,1

RD or WR
B=0

ACT
B=0

RD or WR
B=1

PRE
B=1

PRE
B=0

PRE
B=1

PRE
B=0

ACT
B=1

ACT
B=0

Four Memory Banks

Row Buffer

Ro
w

s

Write Read

Row Buffer
Ro

w
s

Write Read

Row Buffer

Ro
w

s

Write Read

Row Buffer

Ro
w

s

Write Read

8 Memory Banks

• DDR3 Memory
• State Explosion can happen!

• Number of banks: 𝐵
• Number of states/nodes: 2!
• Number of edges: 2 # "#!

!$% + 2! − 1

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Recap: Petri Nets

Petri Nets

Petri Nets are models for concurrent asynchronous systems:
• Places, which usually represent states
• Transitions, which usually represent events
• Arcs

• Connect places and transitions
• Can have a weight

• Tokens
• Firing rules:

• Enabled if #𝑡𝑜𝑘𝑒𝑛𝑠 ≥ 𝑤𝑒𝑖𝑔ℎ𝑡
• Enabled transition may fire
• Firing removes and generates new tokens, transition may be disabled

𝑡!

𝑝!

𝑝"

𝑝#1

2

2

Petri Net Extensions

Reset Arcs: Inhibitor Arcs:

𝑡!

𝑝!

𝑝# 𝑝$

𝑡"
𝑝"

𝑡!

𝑝!

𝑝# 𝑝$

𝑡"
𝑝"

Modeling DRAMs with Petrinets

IDLE

ACT

ACTIVE

RD WRPRE

• State modeled as place
• DRAM command modeled as transition
• In the beginning we are IDLE state
• If we want to read or write we must be in the ACTIVE

state.
• A specific row is stored in the bank’s row buffer (ACT)
• Then we can perform read (RD) or write (WR)

operations
• If we want to read data from another row we must

close the current row and precharge the bitlines (PRE)

Row Buffer

Ro
w

s

Write Read

IDLE

Two Memory Banks
Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

Row Buffer

Ro
w
s

Write Read

IDLE

ACT

ACTIVE

RD WRPRE

ACT

ACTIVE

RD WRPRE

8 Memory Banks

IDLE

ACTIVE

ACT

RD WRPRE

ACTIVE

ACT

RD WRPRE

ACTIVE

ACT

RD WRPRE

ACTIVE

ACT

RD WRPRE

ACTIVE

ACT

RD WRPRE

ACTIVE

ACT

RD WRPRE

ACTIVE

ACT

RD WRPRE

ACTIVE

ACT

RD WRPRE

Modeling All DRAM States and Commands

• Comprehensive Model with clear separation
between states and commands

• Models only 5 state types

• Support of multiple banks i.e. bank parallelism

• Divided in several subnets:

• Banks

• Refresh

• Power-Down

• Bankgroups

• Ranks

Bank B-1

Modeling DRAM Timing

• DRAMs feature a complex timing protocol
• E.g. 90 out of 260 pages of DDR3 standard

are showing timing diagrams and
explanations for the timings.
• DRAM command timing dependencies can

be modeled by a timed inhibitor arc:
• For example, ACT to RD would be 𝑡-./𝑝%

[0, 𝑡%[

𝜏! 𝜏"

𝑡%

𝜏! 𝜏"

≡

Modeling Timing (2 Banks)

Modeling DRAM Timing (8 Banks)

Code Generation and Validation
• Timed Petri nets allow a formal representation of a DRAM protocol, however, no graphical handling possible

• DRAMml is a DSL to describe DRAM’s behavior with a petri net semantic

• DSL is as a basis for correct-by-construction DRAMSys TLM code generation
• For example: from DDR5 release it took 2 weeks to implement the model

DDR3-800
DRAM {
Name = "DDR3-800D";
B = 8;
N = 4;

Device {
Places {
IDLE (B);
PDNP;
SREF;
PDNA;

}

Transitions {
REFA;
PREA;
PDEP;
PDXP;
SREFEN;
SREFEX;
PDEA;
PDXA;

}

Arcs {
// Normal Arcs:
IDLE -> REFA (Weight = B);
REFA -> IDLE (Weight = B);
PREA -> IDLE (Weight = B);
IDLE -> PDEP (Weight = B);
PDEP -> PDNP;
PDNP -> PDXP;
PDXP -> IDLE (Weight = B);
IDLE -> SREFEN (Weight = B);
SREFEN -> SREF;
SREF -> SREFEX;
SREFEX -> IDLE (Weight = B);
PDEA -> PDNA;
PDNA -> PDXA;

IDLE -> ACT;
RDA -> IDLE;
WRA -> IDLE;
PRE -> IDLE;

// Inhibitor Arcs:
PDNA -o REFA;
PDNA -o PREA;
PDNP -o PREA;
SREF -o PREA;
PDNA -o PDEP;

PDNA -o SREFEN;
PDNA -o PDEA;
PDNP -o PDEA;
SREF -o PDEA;
IDLE -o PDEA (Weight = B);

PDNA -o ACT;
PDNA -o RD;
PDNA -o WR;
PDNA -o PRE;
PDNA -o RDA;
PDNA -o WRA;

// Reset Arcs:
ACTIVE ->> PREA;
IDLE ->> PREA;

}

// Define 8 Banks:
B : Bank {
Places {
ACTIVE;

}

Transitions {
ACT;
RD;
RDA;
PRE;
WR;
WRA;

}

Arcs {
// Normal Arcs:
ACT -> ACTIVE;
ACTIVE -> RD;
RD -> ACTIVE;
ACTIVE -> RDA;
ACTIVE -> WR;
WR -> ACTIVE;
ACTIVE -> WRA;
ACTIVE -> PRE;

// Inhibitor Arcs:
ACTIVE -o ACT;

}
}

}

// Define Timing Constraints:
TimingConstraints {
Timings {
tCK = 2.5;
tCCD = 10;
tRCD = 12.5;
tRP = 12.5;
tRAS = 37.5;
tRL = 5*tCK;
tWL = 5*tCK;
tRTP = 4*tCK;
tWTR = 4*tCK;
tRRD = 4*tCK;
tWR = 15;
tFAW = 40;
tRFC = 110;
tREFI = 7800;
tREFMAX = 9*tREFI;

tRC = tRAS + tRP;
tRDWR = tRL+tCCD+2*tCK-tWL;
tWRRD = tWL + tCCD + tWTR;
tRDAACT = tRTP + tRP;
tWRPRE = tWL + tCCD + tWR;
tWRAACT = tWRPRE + tRP;

tXP = 3*tCK;
tXS = tRFC + 10;
tXSDLL = 512*tCK;
tCKE = 3*tCK;
tCKESR = tCKE + tCK;
tPD = tCKE;
tRDPDEN = tRL + 5*tCK;
tWRPDEN = tWL + 4*tCK + tWR;
tWRAPDEN= tWL + 5*tCK + tWR;
tREFPDEN= tCK;
tACTPDEN= tCK;
tPRPDEN = tCK;

}

Places {
CMD_BUS;
NAW_POOL (N);

}

Arcs {
ACT -<> PRE (tRAS,0);
ACT -<> RD (tRCD,0);
ACT -<> WR (tRCD,0);
ACT -<> RDA (tRCD,0);
ACT -<> WRA (tRCD,0);

ACT -<> ACT (tRC,tRRD);
ACT -<> PDEA (0,tACTPDEN);
ACT -<> REFA (0,tRC);
ACT -<> PREA (0,tRAS);

// Timing from RD/RDA
RD -<> PRE (tRTP,0);
RD -<> PREA (0,tRTP);
RD -<> PDEA (0,tRDPDEN);
RD -<> PDEP (0,tRDPDEN);
RDA -<> PDEA (0,tRDPDEN);
RDA -<> PDEP (0,tRDPDEN);
RD -<> RD (tCCD,tCCD);
RD -<> RDA (tCCD,tCCD);
RDA -<> RD (0,tCCD);
RDA -<> RDA (0,tCCD);
RD -<> WR (tRDWR,tRDWR);
RD -<> WRA (tRDWR,tRDWR);
RDA -<> WR (0,tRDWR);
RDA -<> WRA (0,tRDWR);
RDA -<> ACT (tRDAACT,0);
RDA -<> REFA (0,tRTP+tRP);
RDA -<> PREA (0,tRTP);
RDA -<> SREFEN (0,tRDPDEN);

// Timing from WR/WRA
WR -<> PRE (tWRPRE,0);
WR -<> PREA (0,tWRPRE);
WR -<> PDEA (0,tWRPDEN);
WRA -<> PDEA (0,tWRAPDEN);
WRA -<> PDEP (0,tWRAPDEN);
WR -<> WR (tCCD,tCCD);
WR -<> WRA (tCCD,tCCD);
WRA -<> WR (0,tCCD);
WRA -<> WRA (0,tCCD);
WR -<> RD (tWRRD,tWRRD);
WR -<> RDA (tWRRD,tWRRD);
WRA -<> RD (0,tWRRD);
WRA -<> RDA (0,tWRRD);
WRA -<> ACT (tWRAACT,0);
WRA -<> REFA (0,tWRPRE+tRP);
WRA -<> PREA (0,tWRPRE);
WRA -<> SREFEN (0,tWRPRE+tRP);

// Timing from PRE/PREA
PRE -<> ACT (tRP,0);
PRE -<> REFA (0,tRP);
PRE -<> PDEA (0,tPRPDEN);
PRE -<> PDEP (0,tPRPDEN);
PRE -<> SREFEN (0,tRP);
PREA -<> ACT (0,tRP);

PREA -<> REFA (0,tRP);
PREA -<> PDEP (0,tPRPDEN);
PREA -<> SREFEN (0,tRP);

// Timing constraints from PDN
PDEP -<> PDXP (0,tPD);
PDEA -<> PDXA (0,tPD);
PDXA -<> PDEA (0,tCKE);
PDXP -<> PDEP (0,tCKE);
PDXP -<> REFA (0,tXP);
PDXP -<> SREFEN (0,tXP);
PDXA -<> ACT (0,tXP);
PDXP -<> ACT (0,tXP);
PDXA -<> PRE (0,tXP);
PDXA -<> PREA (0,tXP);
PDXA -<> RD (0,tXP);
PDXA -<> RDA (0,tXP);
PDXA -<> WR (0,tXP);
PDXA -<> WRA (0,tXP);

// Timing from REFA/SREF
REFA -<> ACT (0,tRFC);
REFA -<> REFA (0,tRFC);
REFA -<> PREA (0,tRFC);
REFA -<> SREFEN (0,tRFC);
REFA -<> PDEP (0,tREFPDEN);
SREFEX -<> ACT (0,tXS);
SREFEX -<> REFA (0,tXS);
SREFEX -<> PDEP (0,tXS);
SREFEX -<> SREFEN (0,tXS);
SREFEX -<> RD (0,tXSDLL);
SREFEX -<> RDA (0,tXSDLL);
SREFEX -<> WR (0,tXSDLL);
SREFEX -<> WRA (0,tXSDLL);
SREFEN -<> SREFEX (0,tCKESR);

// Arcs for the CLK
CMD_BUS -> * [tCK, inf];
* -> CMD_BUS;

// Arcs for the NAW
NAW_POOL -> ACT [tFAW, inf];
ACT -> NAW_POOL;

// Arcs for the Refresh
REFA -<> WARNING (0,tREFMAX);
SREF -o WARNING;
SREFEX -<> WARNING (0,tREFMAX);

}
}

}

Analysis

Trace Analyzer

Functional Models

TLM
DRAMml

Power
Thermal

Errors

Non-Functional

Overview (Our) Tools

§ Estimation of future DRAM
Timings and Power
Consumption

§ Memory Subsystem Model
based on SystemC-TLM2

§ Exploration of Scheduling
§ Simulation of System Behavior

§ Measuring DRAM Timings
Power Consumption

§ Measuring Retention Errors

§ Estimation of DRAM Power
consumption based on
Datasheets!

§ Trace files analysis, w/ DRAM
Scheduler

§ Temperature Simulation
§ 3D-Stacked ICs
§ Microchannel Cooling
§ Icewrapper for SystemC

Coupling

§ Multicore Simulation
§ SystemC Coupling
§ Elastic Trace Concept for Fast

Simulation

DRAMPower

• State-of-the-art: Micron
Model (Pessimistic)
• Highly Accurate DRAM

power model developed
together with TU/e
• Bank-wise calculation
• Temperature dependency
• Widely used by Industry

DRAM
Power
Model#(RD,WR,ACT,…)

DRAM Energy
and Average Power
per Bank

Datasheet:
§ IDD Currents
§ Timings

Simulation Stimuli:

Calibration:

3D-ICE

§ Material
§ Floorplan

DRAM Power

Other Power

Thermal
Map

SystemC Wrapper:
IceWrapper

3D-ICE

• Thermal RC networks
• Solving differential equations
• Co-simulation with SystemC

Bank 0 Bank 1 Bank 2 Bank 3

Bank 4 Bank 5 Bank 6 Bank 7

38.5°C

39.0°C

39.5°C

40.0°C

40.5°C

41.0°C

41.5°C

Peripherals

Retention Error Model

• When not refreshing correctly
• DDR3 & Wide I/O
• Calibrated with Measurements

Retention
Errors

Retention
Error

Model

0%

10%

20%

30%

40%

50%

60%

70%

0 20 40 60 80 100
Retention Time [s]

25°C 60°C
80°C 90°C

1E+06
0

20

40

60

4E+06

100s 25°C

C
um

ul
at

iv
e

C
el

l F
ai

lu
re

 P
ro

ba
bi

lit
y

Temperature
Map

DRAM
Commands

Holistic Simulation

System Behavior
& Retention Error

Modeling

Cores: DRAM:

Power Analysis
DRAM:

Cores:
IPC based estimation

Thermal Analysis

Reliability vs. Power & Performance

Simulation of an Android Smart Phone

Lateral

Vertical

• 3D MPSoC with 4 ARM
Cortex A9

• 4 channel stacked Wide I/O
DRAM

• Running Android OS

• Dynamic Voltage and
Frequency Scaling (DVFS)
for the Cores

• Closed loop simulation

• Temperature sensors for
each bank and core

Analysis

Trace Analyzer

Functional Models

TLM
DRAMml

Power
Thermal

Errors

Non-Functional

Trace
Analyzer

Trace
Analyzer

Where to get the tools:
DRAMSys:
https://github.com/tukl-msd/DRAMSys

gem5:
https://gem5.googlesource.com/

DRAMPower:
https://github.com/tukl-msd/DRAMPower

3D-ICE:
https://github.com/esl-epfl/3d-ice

Fork me on Github!

https://github.com/tukl-msd/DRAMSys
https://gem5.googlesource.com/
https://github.com/tukl-msd/DRAMPower
https://github.com/esl-epfl/3d-ice

The Open Source DRAM Simulator DRAMSys4.0
Dr. Matthias Jung, Fraunhofer IESE

