
The Best Verification Strategy You’ve
Never Heard Of

David Aerne, Amir Attarha, Harry Foster, Kurt Takara

Siemens EDA

Introduction
Harry Foster

2
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

The Crisis

3
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Productivity Gap

1997 SEMATECH sets off an alarm about the Design
Productivity Gap

• IC manufacturing productivity gains increased 40% CAGR

• IC design productivity gains increased 20% CAGR

Design Productivity Gap solved through EDA
improvements and IP Reuse

A more ominous productivity gap has emerged with
respect to verification

Design Gap

Verification Gap

Time

Tr
a

n
si

st
o

rs
/M

o
n

th

Tr
an

si
st

o
rs

/C
h

ip

4
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

IC Verification & Validation Cost by Process Feature Size

$11.0
$21.3

$46.6

$96.4

$5.1

$9.7

$23.4

$40.0

$0

$25

$50

$75

$100

$125

$150

28nm 16nm 7nm 5nm

M
ai

n
st

re
a

m
 D

es
ig

n
 C

o
st

 ($
M

)

Verification Validation

Source: IBS Report, Design Activities and Strategies Implications, July 2020

5
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Mean Peak Number of Engineers on an ASIC/IC Project
Design engineers has increased by 32%, verification engineers has increased by 143%.

7.8
8.5

10.5 10.3

4.8

8.4

11.6 11.4

0.0

2.0

4.0

6.0

8.0

10.0

12.0

2007 2012 2016 2020

D
es

ig
n

Pr
o

je
ct

s

Mean Peak Number of Engineers on ASIC/IC Projects

Design Engineers

Verification Engineers

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

6
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

ASIC Number of Required Spins Before Production

0%

10%

20%

30%

40%

50%

1 (FIRST SILICON
SUCCESS)

2 3 4 5 6 7 SPINS or MORE

D
es

ig
n

 P
ro

je
ct

s

Number of Required ASIC Spins Before Production

2012

2016

2020

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

7
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Number of Non-trivial FPGA Bug Escapes into Production

0%

5%

10%

15%

20%

25%

30%

35%

0 1 2 3 4 5 6 or More

FP
G

A
 D

es
ig

n
 P

ro
je

ct
s

Number of Non-trivial Bug Escapes into Production for Previous FPGA Project

2016

2018

2020

83% of FPGA design projects
have non-trivial bugs escape
into production

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

8
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

ASIC Completion to Project's Original Schedule

0%

10%

20%

30%

More than 10%
EARLY

10% EARLY ON-SCHEDULE 10% BEHIND
SCHEDULE

20% 30% 40% 50%

A
SI

C
 D

es
ig

n
Pr

o
je

ct
s

Actual ASIC design completion compared to project's original schedule

2012

2016

2020

2012: 67% Behind Schedule

2016: 69% Behind Schedule

2020: 68% Behind Schedule

Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study

9
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

The Problem

10
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Separation of teams
• Ensure an independent interpretation of the specification that would assist in flushing out design errors

• Increased complexity of verification environments required unique engineering skills

• Fallacy that quality can be verified into a product

Specification

Design

Verification

Signoff

11
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Quality cannot be inspected into a product; it must be built into it.

W. Edwards Deming
Father of Statistical Process Control

12
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Cost Multipliers
Finding and Fixing a Bug at Various Development Stages for a 5 nm ASIC

$1

$10

$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

Coding IP Verification Integration/Top
Verification

System Validation / ECO Post--Silicon

1x

8x

24x

130x

41Kx

13
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

The Prescription

14
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Improve RTL Quality While Reducing Bug
Density with Intent Focused Insight

Design+Intent

15
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Three Pillars of a Design+Intent Methodology

Produce

Produce correct intent by
construction

Prove

Prove intent is met

Protect

Protect intent throughout
development lifecycle

16
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Bug Prevention through HLL Design
15-50 Bugs per 1000 Lines of Code

1–5 bugs for HLL design vs. 15–50 bugs for equivalent RTL design

Expect a 10x reduction in the average number of bugs

100 lines of HLL is equivalent to 1000 lines of RTL

17
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

C/C++

Untimed TLM

Timed TLM

Cycle Accurate RTL

Event Accurate RTL
clk

clk

Protocol

Protocol

Transaction

Transaction

Function
Arguments

1x (7 days)

10x

100x

1,000x

10,000x (1 min)

Simulation

Closing The Verification Gap
Abstraction

18
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Beyond Verification: The SoC Lifecycle

SoC

Verification & Validation

PrototypingSimulation Emulation

HW validation

FW enablement

SW enablement

System validationVerification

19
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Siemens EDA Whitepaper:
Out of the Verification Crisis: Improving RTL Quality

https://resources.sw.siemens.com/en-US/white-paper-
out-of-the-verification-crisis-improving-rtl-quality

20
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Produce
Produce correct intent by construction

David Aerne

21
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Addressing the Productivity Gaps

• High-Level Synthesis (HLS)
• Design at a higher level of abstraction

• Rapid architecture exploration

• Target Technology Library to meet PPA goals

• High-Level Verification (HLV)
• Using known and trusted techniques

• Speedup compared to RTL

• Efficient & Predictable post-HLS RTL verification
signoff

Design Gap

Verification Gap

Time

Tr
an

si
st

o
rs

/M
o

n
th

Tr

a
n

si
st

o
rs

/C
h

ip

Produce ProtectProve

22
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

HLS for Rapid Algorithm to HW

• Accelerate design time with higher level of abstraction
• 5-10X less code than RTL

• Faster verification cycles, 30-1000x compared to RTL

• New features added in days not weeks

• Quickly evaluate power and performance of algorithms
• Rapidly explore multiple options for optimal Power Performance Area (PPA)

• Enable late functional changes without impacting schedule
• Algorithms can be easily modified and regenerated

• New technology nodes are easy (or FPGA to ASIC)

void func (short a[N],

for (int i=0; i<N; i++) {

if (cond)

z+=a[i]*b[i];

else

RTL

23
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

HLS synthesizes C++ and SystemC to RTL

• SoC design is complex, one challenge is timely creation of optimal hand-crafted RTL

• Alternatively, HLS to produce correct-by-construction RTL

void simpleDesign(<function interface variables>){

<function body>

}

module simpleDesign (<module ports>);

always@(posedge clk)

begin

<module body>

end

endmodule

class simpleDesign{

…

public:

void run(<method interface variables>){

<method body>

}};

class simpleDesign : public sc_module {

<module ports>

SC_CTOR(simpleDesign){

SC_THREAD(run)

}

void run(){

<function body>

}};

24
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Demonstration Vehicle
Digital Pre-Distortion (DPD) concept

Training

Predistortion PA

digital analog

Source:
https://www.sciencedirect.com/science/article/pii/S0167926017300032

Time, temperature, frequency variant characteristics
• Difficult to model. Need physical component to

know real algorithm performance
• Simulation slow, does not parallelize
• Multiple PA types, constantly evolving
• High bandwidth validation require high data rates

Linearization bandwidth depends on
data rates. Low prototype speed
increases risk in ASIC

Frame-based throughput,
coefficient updates to
predistortion block

Sample-based continuous
throughput

25
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Demonstration Vehicle
Digital Pre-Distortion (DPD) design + tb

applyPredistortion

training
FillMem

Collect
Data

FIFO

PA-model

Data
and sync
control

coefficients

Pa_In

Dpd_In

FIFO

trainingCalcCoeffs

U
h

z

II=1,
throughput = 1

Uh

matrix
mul

chol
dcp

chol
inv

chol
inv

Uh
U

U

matrixInversion

UhUInv

dpdDemo

trainingTop

• Multi-block design
• Bottom-up approach
• Assemble at DPD top

26
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Quickly Simulate Real HW Behavior in C++/SystemC

• Many various implementations for DPD
• How to know which is best suited for application?

• Model bit-accurate precision in C++
• Directly measure and observe the effects of quantization

• Not limited to power-of-two bit-widths

• Plug back into environment for verification

• Rapid simulation of true hardware behavior
• 30x to 1000x faster than RTL

• Simulate in minutes/hours vs. hours/days/weeks

C++/SystemC using bit

accurate integer/fixed-point

Measure/Verify
Refine/Explore

Precision

Floating-point Model

Bit-accurate RTL

HLS Verify

“Advantage is ability to compare C

reference model with HLS C HW model”

27
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Bit-Accurate Date Types are a necessity
Required as modeling actual hardware

• Choice between AC Datatypes and SystemC, both are public domain
• https://hlslibs.org

• https://github.com/accellera-official/systemc/

• HLS Designers generally prefer AC types, even for SystemC HLS
• AC types simulate faster than SystemC types, even in SystemC Designs

• Especially the Fixed-Point types

• Include optional rounding and saturation modes

28
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

https://hlslibs.org/
https://github.com/accellera-official/systemc/

HLS IP Libraries
Provide needed productivity gain

• HLS Designers rely on pre-established IP libraries
• AC Math synthesizable C++ operations common in DSP applications

• AC DSP synthesizable C++ objects for common DSP operations

• AC Math, AC DSP and AC ML are all public domain
• https://hlslibs.org

• Customizable
• Data type support built-in

• PPA tradeoffs

29
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

https://hlslibs.org/

HLS Makes PPA Goals Achievable

• Loop optimizations
• Unrolling

• Pipelining

• Automatic merging

• Scheduling
• Automatic timing closure based

on target technology

• Register and Resource sharing
• Automatic lifetime and mutual exclusivity

analysis and optimization

for (int i=0;i<4;i++) {

acc += data_in[i] * coef_in[i] ;

}

A
rc

h
it

e
c

tu
re

C
o

n
s

tr
a

in
ts

+x

+
x

x

x

x

+

+

+
a

b

c

d
dout

t1

t2

t3

+

+

Resource

Allocation

Characterized

Library of

Components

+++

Operations

+
Hardware Resource

Delay = 3 ns

Area = 320 um2

+

3x1

2x1

Reg

a

b

c
d

dout

Shared
register

Shared
resource

30
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

HLS Builds Complex Multi-block Systems

• HW architectures often require multiple concurrent processes to meet performance

• Untimed HLS Builds Parallel Concurrent Processes from Sequential C++ Classes
• Easy to design and debug

• Connect HLS blocks together using channels
• Channels mapped to fifo’s in post-HLS RTL

dpdDemo

Apply
Predist

Train
Coeffs

ac_channel

d
p

d
In

d
p

d
O

u
t

Synchronization handled
automatically

Clocked process

31
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

C Design Checker
Static & Formal analysis to find issues early

• Quickly and easily find coding bugs and errors in HLS source
before synthesis or simulation

• Some C++ language behavior can be too ambiguous for
describing hardware

• Leads to mismatches between C++ and RTL sim

• Inefficient to debug in dynamic RTL simulation

• Collection of Quality of Results (QofR) checks,
static lint checks, and formal property checking

• e.g. Out of bounds array reads and writes (ABR, ABW)
and uninitialized memory reads (UMR)

HLS Design

Generated RTL

Ok?

y

n

C Design Checker

HLS Synthesis

Produce ProtectProve

32
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

C Design Checker

• Results on DPD from running “Sim Mismatch”
and “QofR” modes

• Reports analyzed within the Catapult GUI
• Violations are cross-linked to design source

• Template Waiver File is automatically generated
• Can be edited and reused for future runs

• Can also specify waivers directly in source

• Constraints supported as ‘assume’ pragmas

Clean HLS design source results in less debug of post-HLS RTL

33
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Properties in HLS
Deploy properties to catch issues early

• Catapult HLS supports immediate assertions &
cover properties

• HLS C++ and SystemC

• Properties are propagated from HLS source to RTL

• Assertions in generated RTL
• SVA, PSL, or OVL

#include <ac_assert.h>

#pragma hls_design top
uint16 alu(uint8 a, uint8 b, opcode_t
opcode) {

uint16 r = 0;
switch(opcode) {
case ADD:
r = a+b;
break;

case SUB:
assert(a>=b); // no negative results
r = a-b;
break;

case DIV:
assert(b!=0); // no divide-by-zero
r = a/b;
break;

}

// Cover all of the possible opcodes
cover((opcode==ADD));
cover((opcode==SUB));
cover((opcode==DIV));

return r;
}

Applying common RTL debug and verification techniques to HLS design source

34
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Metric Driven Dynamic HLV

• Supported in a wide range of tb environments
• C++, OSCI, MATLAB®, Python, SV/UVM, etc.

• Using known and trusted verification
techniques

• Supporting wide range of verification requirements

• DUT at a higher level of abstraction
• Fewer lines of code

• Simulations run faster

• Re-use for predictable and efficient
post-HLS RTL signoff

“99% of the functional bugs found

in (HLS-ready) C++ before running

any RTL simulation”
Hot Chips 2021
https://hc33.hotchips.org/

35
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

https://hc33.hotchips.org/

C Coverage
RTL-like coverage for HLS Design Source

• Bring RTL coverage into HLS world
• C++ and SystemC design source

• Match coverage concepts from RTL
• Statement, branch, expression

• Functional coverage including covergroups,
coverpoints, bins and crosses

• HLS-aware code coverage
• Function inlining

• Loop unrolling

• Array access coverage

36
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Verification Coverage Closure
Achieve coverage closure on HLS design source

• Unified Coverage Database (UCDB)

• Coverage analysis, report generation, exclusion development

• Test merging & ranking, test plan integration and tracking

Questa®

Verification Management

37
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Catapult High-Level Synthesis & Verification
Comprehensive flow providing needed productivity gains

HLL and HLS to design bit-accurate HW.
DPD HLS 600 lines of code thus > 10x
reduction compared to Verilog RTL

HLV using known and trusted approaches
for functional verification of HLS source.
DPD HLS sims > 300x speedup over RTL

Efficiencies gained by designing and verifying
via HLL. Productivity gains via faster and
predictable post-HLS RTL verification signoff

Design Gap

Verification Gap

Time

Tr
an

si
st

o
rs

/M
o

n
th

Tr

an
si

st
o

rs
/C

h
ip

38
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Prove
Prove intent is met

Kurt Takara

39
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Simulate RTL until you’re done*
The verification methodology you have heard of

System design and HW/SW interaction
Unanticipated HW/SW interface bottlenecks
Datapath and dataflow inconsistencies
Power management functions

Functional errors
Incorrect implementation of specified algorithms or architecture
Unintended functional interactions
Initialization issues

Construction errors
Register specification and construction/connection errors
Interconnect issues
Clocking, testing

Issues not found in simulation
Asynchronous crossing issues
Trojan attacks and hidden functionality
Implementation issues

*What “done” means Is an entirely different topic

Coding errors
Syntax, style, semantics, structural issues
Cut-and-paste creation errors
Simple mistakes

Si
m

u
la

ti
o

n
-b

as
e

d
 V

e
ri

fi
ca

ti
o

n

40
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review netlist for new issues

Produce ProtectProve

Correct-by-construction Meets intent Retains intent

41
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Using intent-focused insight flushes issues before simulation
Reduce bug density with a non-simulation verification methodology

Static code analysis finds mistakes without testing
Code analyses find RTL issues early, ensure highest quality code into verification

Are the
states and
sequences

well-
formed?Se

q
u

e
n

ti
alDo the

pieces form
a coherent

whole?

St
ru

ct
u

ra
lDo the

elements
make

contextual
sense?Se

m
an

ti
cIs the code

properly
constructed

?

Sy
n

ta
ct

ic Are all
items

defined
where

needed?

Will the design
behave

consistently?

Sp
e

ci
fi

c

Li
n

ti
n

g

In
it

ia
liz

at
io

n
/

X-

C
h

ec
ki

n
g

A
d

va
n

ce
d

 L
in

ti
n

g

Is the code
properly
named,

commented
and laid out

to meet
requirements?

St
yl

is
ti

c

42
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Static analysis

• Fast, requires no input apart from RTL

• Semantic issues – do the elements make sense in context?

• Unsynthesizable code, simulation/synthesis mismatch risks,
improper assignments, etc.

• Structural issues – do the elements form a coherent whole?

• Width mismatches, unreachable or dead FSM states, latch
inference, dead code, inconsistent clock/reset styles

• Stylistic issues – do the elements meet coding style requirements?

• Adequate commenting, naming conventions, unused objects,
maintainability

RTL Lint

undriven
input

combinational
loop

outputs
connected

reset used
as data

Blk1

Linting analyzes RTL statically, finding issues quickly without simulation
Find & fix syntactic, semantic, stylistic and structural issues early during design

43
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Statically-detectable design issue

case (qstate)

3’b001: if (en) dstate = 3’b010;

else dstate = 3’b001;

3’b010: dstate = 3’b100;

3’b100: if (rtn) dstate = 3’b100;

else dstate = 3’b100;

default: dstate = 3’b001;

endcase

• Both next states of if-else are the same

Formally-detectable design issue

case (qstate)

3’b001: if (en) dstate = 3’b010;

else dstate = 3’b001;

3’b010: dstate = 3’b100;

3’b100: if (rtn) dstate = 3’b001;

else dstate = 3’b100;

default: dstate = 3’b001;

endcase

• Formal analysis will exhaustively
determine if rtn can ever be 1

Advanced Linting identifies issues based on deep formal design knowledge
Code analyses find RTL issues early, ensure highest quality code into verification

44
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Verify if X values propagate to initialized registers and other control logic

• FSM’s, outputs, clocks, resets …

• Can be customized with SVA properties

• All X sources are considered

• Find and fix X source bugs, report all uninitialized registers

• X accurate analysis (no optimism)

• Flow RTL Formal
Analysis

‘X’ Results
✓ ‘X’ sources
✓ ‘X’ initialization
✓ ‘X’ propagation

init

Exhaustive initialization/X analysis determines if uninitialized states cause device failure
Initialization and X-Checking examines the design to find unintended issues

45
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Verify if X values propagate to initialized registers and other control logic

• FSM’s, outputs, clocks, resets …

• Can be customized with SVA properties

• All X sources are considered

• Find and fix X source bugs, report all uninitialized registers

• X accurate analysis (no optimism)

• Flow

• Example

RTL Formal
Analysis

‘X’ Results
✓ ‘X’ sources
✓ ‘X’ initialization
✓ ‘X’ propagation

init

||1
&1

clk

rstn

Exhaustive initialization/X analysis determines if uninitialized states cause device failure
Initialization and X-Checking examines the design to find unintended issues

46
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Verify if X values propagate to initialized registers and other control logic

• FSM’s, outputs, clocks, resets …

• Can be customized with SVA properties

• All X sources are considered

• Find and fix X source bugs, report all uninitialized registers

• X accurate analysis (no optimism)

• Flow

• Example

RTL Formal
Analysis

‘X’ Results
✓ ‘X’ sources
✓ ‘X’ initialization
✓ ‘X’ propagation

init

||1
&1

X X

X X

clk

rstn

Exhaustive initialization/X analysis determines if uninitialized states cause device failure
Initialization and X-Checking examines the design to find unintended issues

47
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Verify if X values propagate to initialized registers and other control logic

• FSM’s, outputs, clocks, resets …

• Can be customized with SVA properties

• All X sources are considered

• Find and fix X source bugs, report all uninitialized registers

• X accurate analysis (no optimism)

• Flow

• Example

RTL Formal
Analysis

‘X’ Results
✓ ‘X’ sources
✓ ‘X’ initialization
✓ ‘X’ propagation

init

||1
&1

0

X X

0

clk

rstn

Exhaustive initialization/X analysis determines if uninitialized states cause device failure
Initialization and X-Checking examines the design to find unintended issues

48
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Verify if X values propagate to initialized registers and other control logic

• FSM’s, outputs, clocks, resets …

• Can be customized with SVA properties

• All X sources are considered

• Find and fix X source bugs, report all uninitialized registers

• X accurate analysis (no optimism)

• Flow

• Example

RTL Formal
Analysis

‘X’ Results
✓ ‘X’ sources
✓ ‘X’ initialization
✓ ‘X’ propagation

init

||1
&1

0

X X

0

clk

rstn

Exhaustive initialization/X analysis determines if uninitialized states cause device failure
Initialization and X-Checking examines the design to find unintended issues

49
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Verify if X values propagate to initialized registers and other control logic

• FSM’s, outputs, clocks, resets …

• Can be customized with SVA properties

• All X sources are considered

• Find and fix X source bugs, report all uninitialized registers

• X accurate analysis (no optimism)

• Flow

• Example

RTL Formal
Analysis

‘X’ Results
✓ ‘X’ sources
✓ ‘X’ initialization
✓ ‘X’ propagation

init

||1
&1

1 X

1 X
clk

rstn

Exhaustive initialization/X analysis determines if uninitialized states cause device failure
Initialization and X-Checking examines the design to find unintended issues

50
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Using intent-focused insight flushes issues before simulation

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Reduce bug density with a non-simulation verification methodology

Produce ProtectProve

Correct-by-construction Meets intent Retains intent

51
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

1. The design has missing or incorrect synchronizers

2. The design does not adhere to the required CDC protocols to ensure
correct data transfer

3. The design does not account for non-deterministic delays through
synchronizers

1 32

What is a clock domain crossing (CDC)?
A CDC is the transit of a signal or group of signals from one clock domain to another

52
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

1. The design does not adhere to the required CDC protocols to ensure
correct data transfer

2. The design does not account for non-deterministic delays through
synchronizers

1 32

1. Complete structural analysis to find all synchronizers

What is a clock domain crossing (CDC)?
A CDC is the transit of a signal or group of signals from one clock domain to another

53
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

1. The design does not account for non-deterministic delays through
synchronizers

1 32

1. Complete structural analysis to find all synchronizers

2. Automated assertion-based verification to ensure correct implementation of CDC protocols

What is a clock domain crossing (CDC)?
A CDC is the transit of a signal or group of signals from one clock domain to another

54
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

1 32

1. Complete structural analysis to find all synchronizers

2. Automated assertion-based verification to ensure correct implementation of CDC protocols

3. Accurate simulation of metastability effects in synchronizers
to predict true silicon behavior

What is a clock domain crossing (CDC)?
A CDC is the transit of a signal or group of signals from one clock domain to another

55
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Synchronization between clock domains requires a transfer protocol
• To ensure that data is predictably transferred between domains

• Simplest example: Stability check on input to 2-DFF synchronizer
• Signal must be held stable long enough in the transmitting clock domain

• These protocols must be verified

• When protocol is violated
• Data can be lost

• Simulation may not show a failure

• Silicon implementation will eventually fail!

Why does a crossing protocol matter?
Adding or checking for a synchronizer across every CDC isn’t enough

56
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

CDC
Protocol

Assertions

RTL

Proven
Assertions

RTL

• Formally prove CDC protocols are
implemented correctly
– fully automatic

• Simulate CDC protocol
assertions jointly with
the design and testbench

CDC
Protocol

Assertions

Simulation
Non-proven

Covered
Assertions

Coverage Reporting

RTL and
Testbench

Review Assertion
Violations

CDC
Static Analysis

CDC
Formal

Analysis

How much of the protocol can be verified without simulation?
As many crossings as possible are verified without a testbench

57
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

dff2

rst1 rst2

clk1 clk2

Issue: if rst1 is asserted
while rst2 is not asserted

Not an issue: if rst2 is
already asserted when

rst1 is asserted

Reset Condition Clock condition Result

rst1 and rst2 are asynchronous clk1 and clk2 are same domain violation

rst1 and rst2 are asynchronous clk1 and clk2 are different domains caution – CDC verification needed

rst1 and rst2 follow ordering constraints NA evaluation

dff1 Combo
logic

What is a reset domain crossing (RDC)?
An RDC is the transit of a signal or group of signals from one reset domain to another

58
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Using intent-focused insight flushes issues before simulation

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Reduce bug density with a non-simulation verification methodology

Produce ProtectProve

Correct-by-construction Meets intent Retains intent

59
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Check that design connection implementation matches the specification

• Endless applications: pin muxes, power rails, clock trees, etc.

• Both functional and structural connectivity checked

• Checks include: connect, conditional, constants, delays, etc.

• ASIC and FPGA designs from block to SoC level verification

• Flow

• Example

Main Clock Domain

Sub
Clock

Domain

CPU

AMBA AHB/AXIArbiter

Bridge

AMBA APB

UART

Slave IF

GPIO

Slave IF

PCI
Express

PHY

Bridge

Memory

DMA

Master IF

Custom
Core

PHY

Slave IF

Protocol

PHY

Master IF

Ethernet

PHY

Master IF

USB

PHY

SlaveIFMaster IF

CPU

Master IF

RTL Formal
Analysis

Connectivity Results
✓ Connection pass/fail
✓ Connection coverage

spec

spec
type src dest cond
conn iA.o1 out1
cond iA.o2 out2 sel

Formal
Analysis

out2

out1

sel

iA
o1

o3

o2

properties
conn1: iA.o1 == out1
cond1: sel |-> iA.o2 == out2

Review design construction integrity with interconnect verification
Verify the correctness of connectivity in the design

0

1

60
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Verify memory mapped register implementation matches the specification

• IP-XACT, UVM, and other custom specs

• Front door and back door

• Common interfaces supported, can be customized

• Flow

• Example

RTL Formal
Analysis

MemMap Reg Results
✓ Initialization
✓ Addr/data decode/route
✓ Policies (RW,RC,…)
✓ Volatility
✓ Coverage

spec

spec
reg policy addr init
R1 RW A1 0
…

Formal
Analysis

properties
R1i: $rose(rstn) |-> R1 == 0
R1w: wr & A1 |=> R1 == Di
R1r: rd & A1 |=> Do == R1
R1n: rw & !A1 |=> R1 == R1

APB

E

E

…

addr

…

…

…

d
e
c
o
d
e

dati

Bus Interface

dato

R1

R2

R3

A1

0D1

A2

D2

Ensuring register implementation correctness and construction is vita
Consistency between spec and implementation aids working systems downstream

61
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Using intent-focused insight flushes issues before simulation

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Reduce bug density with a non-simulation verification methodology

Produce ProtectProve

Correct-by-construction Meets intent Retains intent

62
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Operational assertions enable verification of conformance to specification

• Capture your design functionality as a set of operations

• Start state, i.e. a starting condition

• Trigger condition – event that triggers the operations

• Expected output behavior

• End state

• Use standard languages to write operational assertions

• TiDAL : OneSpin SystemVerilog library

• Allow timing diagram style assertions

• Generate proof or CEX for operational assertions

• Enable Operational Assertion Based Verification

• Ensure verification completeness

• Automatically detect gaps between operations

A timing diagram can be transcribed to assertions for formal verification

state

transfer

complete

Wait

1

Finish

t t_complete

Cause

Effect

sequence t_complete; nxt(t,4); endsequence

property transfer;
t ##0 state == wait and

t ##0 transfer == 2’d1

implies

t_complete ##0 state == finish and

t_complete ##0 complete;

endproperty

transfer_a: assert property(transfer);

transfer == 1

Transfer != 1

Wait
S1

S2
S3 Finish

S5S4

complete == 1

63
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

•

Verification against specifications can find unanticipated functionality

Automated Design AnalysisCore RTL

Arch & µArch Database

Signoff

Custom Extensions

Proof (Assertions/ Completeness)

Implementation Info GUI (Visualize/ Extend)

Automated Assertion Generation

Arch & µArch Database

Verification Database (SV)

Coverage Database

Retune
Core Checker

Run
Assertions/ Completeness

Automated
Design Analysis

Provide Core Specific
Information

Automated
Verification File Generation

Debug

Processor verification confirms implementation against ISA

64
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Benefits

• Detects errors and inconsistencies in the specification

• Prove 100% equivalence between specification and
implementation

• Demonstrates absence of bugs/Trojans/ambiguities

• Successes

• Paper “Complete Formal Verification of RISC-V Processor IPs
for Trojan-Free Trusted ICs” presented at GOMACTech 2019
identified bugs reported on GitHub (Discovered CEASE
instruction – a “trojan kill switch” to those without
knowledge)

Extending a GapFree analysis to processor verification finds what shouldn’t be there
Processor trojan verification shifts from verifying what is to what isn’t

GapFreeVerification™

RTL Specification

Trusted RTL Trusted
Executable

Specification

65
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Using intent-focused insight flushes issues before simulation

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Reduce bug density with a non-simulation verification methodology

Produce ProtectProve

Correct-by-construction Meets intent Retains intent

66
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• Synthesis can break corrective circuitry or add surprise paths

• MUX used at RTL for CDC crossing

• Synthesis tool may implement combinational logic which produces glitch

o X+!X or X&!X

• Potential chip failure issue if glitch is caught by the receiving flip-flop

Verifying the implementation matches the original intent is critical

Synthesis

Example: Synthesis (or other implementation stages) can compromise a clean RTL design

67
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

• FPGA Specifics

• Fixed interconnect grid, LUTs, shift registers, block RAMs, configurable DSP
blocks, etc.

• Many timing, fan-out, capacity restrictions

• Synthesis maximizes utilization by register duplication, retiming, and other
sequential optimizations

Check for combinational and sequential equivalence from Golden RTL through final

Setup
Compile and Code Check

Golden
RTL

Netlist +
Library

Map
Inputs, Outputs, State Relations

Compare
Sequential and Combinational

Report
Error Trace Generation

Debug
Waveforms and Design

O
n

e
Sp

in
 3

6
0

 E
C

-F
P

G
A

Look Up Table
(LUT)

Look Up Table
(LUT)

FPGA synthesis tools balance logic between
LUTs to improve QoR

Equivalence checking flows for FPGAs finds implementation-caused issues

68
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Using intent-focused insight flushes issues before simulation

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Reduce bug density with a non-simulation verification methodology

Produce ProtectProve

Correct-by-construction Meets intent Retains intent

69
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Revisiting the verification methodology you have heard of
Static and Formal capabilities enable cleaner RTL into simulation-based verification

System design and HW/SW interaction
Unanticipated HW/SW interface bottlenecks
Datapath and dataflow inconsistencies
Power management functions

Functional errors
Incorrect implementation of specified algorithms or architecture
Unintended functional interactions
Initialization issues

Construction errors
Register specification and construction/connection errors
Interconnect issues
Clocking, testing

Issues not found in simulation
Asynchronous crossing issues
Trojan attacks and hidden functionality
Implementation issues

*What “done” means Is an entirely different topic

Coding errors
Syntax, style, semantics, structural issues
Cut-and-paste creation errors
Simple mistakes

Si
m

u
la

ti
o

n
-b

as
e

d
 V

e
ri

fi
ca

ti
o

n

70
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Protect
Protect intent throughout development lifecycle

Amir Attarha

71
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Veloce emulation and prototyping
A complete and integrated verification and validation platform

OS

Virtual and ICE Solutions by Vertical

Market

DFT Fault
Deterministic

ICE
PAVE360 Virtual Network

Power
Coverage

Assertions

Enterprise

Server
Visualizer HYCON

Apps

HW Platform

SW Workloads

Enabled by Apps
Using Vertical

Market Solutions

SW Apps

Veloce PrimoVeloce Strato+ Veloce proFPGA

72
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Scalable Veloce Architecture for HW-Accelerated Verification

Veloce Strato OS

Core Compiler
(Synthesis, Partition, P & R)

Use Modes
(ICE, TBX, Virtual)

Debug
(Waveform, Replay Technology, LiveStream)

Custom Crystal
device

Hardware System with backplane and co-
model channel architecture Comprehensive OS+Apps

SW Framework

Siemens’ chip/sys/SW is purpose-built for emulation

• Design scalability (12 BG, in Production Use)

• Fast compile (5 min/chip, patented VirtualWires)

• Co-model bandwidth (64 channels/StratoM)

• Full-visibility for complete debug (1M signals / 5min)

+

73
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Veloce Accelerates Progress Cycle

74
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Veloce Strato: Architected to scale

• Low latency, high bandwidth channel

• Independent co-model channel for each AVB

• Concurrent execution of TB, Comm, DUT

• Directly impacts on these use models
• Virtual environments

• Time to visibility and debug

• Simulation acceleration and coverage closure

• Monitors/trackers for data collection

• Power trend analysis and measurements

• Data analytics

No performance-throughput degradation
with capacity scaling

Veloce Strato+M Veloce Strato+M

St
ra

to
M

 L
in

k

Veloce Strato+M

St
ra

to
M

 L
in

k

Veloce Strato+M

St
ra

to
M

 L
in

k

Veloce Strato+4M

75
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Clock frequency vs. throughput: An important HAV system
attribute

76
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Fast 100% visibility built-in
• Always available for every compile

• No model performance impact

• No capacity impact

• No probes

AutoUpload for long simulation time captures
• 1 Million cycle upload in 5 mins

• Unlimited trace depth for full debug

• Scalable, independent of design size

LiveStream with marching waves
• Leverage multiple co-model channels

Ensuring optimized and productive debug with Veloce Strato

Advanced debug Flows
• Checkpoint Save & Restore

• Backup Replay etc.

Protocol analyzer
• Virtual and ICE

• All major protocols

Triggers (no recompile needed)

Virtual FSDB support (Verdi)

1 million cycles with full visibility takes 5 minutes irrespective of design size

77
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Software

Hardware

Design and verification milestones
V

e
ri

fi
c

a
ti

o
n

 A
c

ti
v

it
y

Low

High

IP, Blocks, Sub-System
Verification

SoC Integration SW VerificationBoot-OS Silicon Bring-up

IP-block level
RTL

2

SoC RTL
Available

3

Stable SoC RTL

4

SoC RTL Ready

Gate Level Available

5

Tapeout

6

Silicon Available

7

Virtual Platform

1

78
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Veloce providing a complete and integrated solution
‘right tool for the right task’

Low

High

IP, Blocks, Sub-System
Verification

SoC Integration SW VerificationBoot-OS Silicon Bring-up

Desktop FPGA Prototyping:

Veloce ProFPGA

Ease of bring-up, Virtual /ICE

and speed are key

V
e

ri
fi

c
a

ti
o

n
 A

c
ti

v
it

y

Gate-level Emulation:

Veloce Strato & Strato+
Gate level flow and

capacity scaling are key

Power Flow Emulation:

Veloce Strato & Strato+

Visibility, workloads, capacity

scaling and integration to power &
Performance analysis are key

Hybrid Virtual Platform: Veloce HYCON

Virtual models, SW workloads,

integration to HAV, speed and
integration are key

RTL Emulation: Veloce Strato & Strato+
RTL debug /visibility, broad use

models, capacity scaling are key

Enterprise FPGA Prototyping:

Veloce Primo

Speed, SW workloads,

compatibility with emulation
and capacity scaling are key

Emulation

Offload

79
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Satisfying SW workload and benchmark requirements
with Hardware-Assisted Verification (HAV)

Software, Workload-based requirements

• Long software sequences take extensive verification cycles to complete

• From boot-sequences to benchmarks

Power and performance analysis

• Accurate power/performance analysis during workload and benchmark cycles

requires:

• Visibility to power activity

• Accurate analysis

• Comprehensive debug tools

Size and complexity of SoCs and Systems

• Billion-gate designs and rapidly growing

• Latest AMD 3rd Gen EPYC as an example of SOC size and complexity

80
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Enabling analysis & insights based on real workloads and benchmarks

RTL
Design

Emulation identifies power peaks running
real workload benchmarks

GFXBench 3.1, Manhattan, Kishonti GFXBench 4.0, Car Chase, Kishonti

Conf. SW Platform HW-Assisted Verification

Software/Hardware Debug

81
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Accelerate validation of zero-delay patterns prior to tape out

Efficient job scheduling and management of Veloce HW

Repeatable debug for non-deterministic ICE environments

Accelerate functional safety and ISO 26262 certification

Deterministic and non-intrusive offline SW-HW co-debug

Configurable hybrid, high-speed, ready-to-use SoC reference platform

Early power profiling, analysis, metric tracking and UPF verification

Accelerate code and functional coverage closure

Efficient debug of design violations using SVA

Veloce Apps offering
Broad portfolio of Apps to address specific verification needs

Assertion App

DFT App

Coverage App

ES App

Power App

De-ICE App

Fault App

Codelink App

HYCON App

82
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Veloce Codelink App

RTL Driver/Firmware development and debug
• Built-in PC Trace Monitor, Reg/Mem Visualization

• SW Coverage data

Enables efficient sharing of emulation resources
• Multiple software engineers debug offline in

parallel

• Freeing up valuable Emulator resource

HW/SW Correlation
• Correlate between events in HW and SW executing

• Power/performance

• Waveforms and protocol analyzer

Deterministic and Non-intrusive Debug
• with unique forward and backward execution via

replay functionality

SW Code Coverage and SW Performance Profiling

83
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Veloce Power App: Real scenario and workload-based power
analysis Early power trend analysis, estimation and sign-off power

Power profiling at 100s of KHz Power analysis/ optimization Sign-off power numbers

File-based Power tools

Veloce API
10x faster

TTP

PowerArtist

Veloce activity plot

Design hotspot

Average power

Peak power

Billions of cycles

PowerPro

File-based

Gate-level sign off
(PrimePower, PowerArtist,

PowerPro, …)

Profile real workloads on full SoC
Identify hotspots, peaks, di/dt
Metric based power Tracking (CGE/FFE)

Analyze using Veloce API for real scenarios
(FSDB/SAIF)
Identify/optimize SoC/ IP for power

Sign off power analysis using RTL or Gate
switching activity at full SoC

Millions of cycles Thousands of cycles

Gate-level sign off

Veloce API
PrimePower (PTPX)

(Veloce API integration)
Work in

Progress

No compile and
visibility restriction

Veloce
platform

RTL/ Gate

84
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Summary

Harry Foster

85
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Three Pillars of a Design+Intent Methodology

Produce

Produce correct intent by
construction

Prove

Prove intent is met

Protect

Protect intent throughout
development lifecycle

86
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Three Pillars of a Design+Intent Methodology

Produce

Produce correct intent by
construction

Prove

Prove intent is met

Protect

Protect intent throughout
development lifecycle

87
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Catapult High-Level Synthesis & Verification
Comprehensive flow providing needed productivity gains

HLL AND HLS > 10X REDUCTION IN
CODE RESULTING IN A REDUCTION

OF BUG DENSITY

HLV RESULTED IN TWO ORDERS OF
MAGNITUDE SPEEDUP IN

SIMULATION

EFFICIENCIES GAINED BY DESIGNING
AND VERIFYING VIA HLL.

PRODUCTIVITY GAINS VIA FASTER
AND PREDICTABLE POST-HLS RTL

VERIFICATION SIGNOFF

88
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Three Pillars of a Design+Intent Methodology

Produce

Produce correct intent by
construction

Prove

Prove intent is met

Protect

Protect intent throughout
development lifecycle

89
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Using intent-focused insight flushes issues before simulation
Reduce bug density with a non-simulation verification methodology

90
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Three Pillars of a Design+Intent Methodology

Produce

Produce correct intent by
construction

Prove

Prove intent is met

Protect

Protect intent throughout
development lifecycle

91
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Software

Hardware

Protect Intent Throughout the Development Lifecycle
Emulation is critical in the age of SoC verification and validation

V
e

ri
fi

c
a

ti
o

n
A

c
ti

v
it

y

Low

High

IP, Blocks, Sub-System
Verification

SoC Integration SW VerificationBoot-OS Silicon Bring-up

IP-block level
RTL

2

SoC RTL
Available

3

Stable SoC RTL

4

SoC RTL Ready

Gate Level Available

5

Tapeout

6

Silicon Available

7

Virtual Platform

1

92
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Q & A

The Best Verification Strategy
You’ve Never Heard Of

DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |
March 2022 | © Siemens 2022

93
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

Disclaimer

© Siemens 2022

Subject to changes and errors. The information given in this document only contains
general descriptions and/or performance features which may not always specifically
reflect those described, or which may undergo modification in the course of further
development of the products. The requested performance features are binding only when
they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or other rights of
Siemens AG, its affiliated companies or other companies whose use by third parties for
their own purposes could violate the rights of the respective owner.

94
DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

March 2022 | © Siemens 2022​​

