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Productivity Gap

1997 SEMATECH sets off an alarm about the Design
Productivity Gap
* IC manufacturing productivity gains increased 40% CAGR

X

* |Cdesign productivity gains increased 20% CAGR Design Gap

Verification Gap

Design Productivity Gap solved through EDA %%
improvements and IP Reuse g2

A more ominous productivity gap has emerged with
respect to verification
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|C Verification & Validation Cost by Process Feature Size
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Mean Peak Number of Engineers on an ASIC/IC Project

Design engineers has increased by 32%, verification engineers has increased by 143%.
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Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study
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ASIC Number of Required Spins Before Production
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Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study
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Number of Non-trivial FPGA Bug Escapes into Production

35% 83% of FPGA design projects
have non-trivial bugs escape 2016
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Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study
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ASIC Completion to Project's Original Schedule
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Source: Wilson Research Group and Mentor, A Siemens Business, 2020 Functional Verification Study
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Separation of teams

* Ensure an independent interpretation of the specification that would assist in flushing out design errors

* Increased complexity of verification environments required unique engineering skills

Signoff

Specification

Verification

* Fallacy that quality can be verified into a product
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Quality cannot be inspected into a product; it must be built into it.

W. Edwards Deming
Father of Statistical Process Control




Cost Multipliers

Finding and Fixing a Bug at Various Development Stages for a 5 nm ASIC
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The Prescription
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Three Pillars of a Design+Intent Methodology

@ Produce @ @ Protect

Produce correct intent by Prove intent is met Protect intent throughout
construction development lifecycle




Bug Prevention through HLL Design
15-50 Bugs per 1000 Lines of Code

100 lines of HLL is equivalent to 1000 lines of RTL

Expect a 10x reduction in the average number of bugs

1-5 bugs for HLL design vs. 15-50 bugs for equivalent RTL design




Closing The Verification Gap

Abstraction

Simulation

Function — C/C++ t
Arguments

10,000x (1 min)

Transaction — Untimed TLM
1,000x
Transaction — Timed TLM I
100x

—— 4| 4 I

S 10x

= - I
Protocol e s Event AccurateRTL

—

1x (7 days)
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Beyond Verification: The SoC Lifecycle
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Siemens EDA Whitepaper:

Out of the Verification Crisis: Improving RTL Quality

https://resources.sw.siemens.com/en-US/white-paper-
out-of-the-verification-crisis-improving-rtl-quality
Out of the

Verification Crisis
Improving RTL Quality
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Produce

Produce correct intent by construction

David Aerne
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Addressing the Productivity Gaps

* High-Level Synthesis (HLS)
* Design at a higher level of abstraction
* Rapid architecture exploration
* Target Technology Library to meet PPA goals

Design Gap

Verification Gap

* High-Level Verification (HLV)
e Using known and trusted techniques
e Speedup compared to RTL

* Efficient & Predictable post-HLS RTL verification Tim% |
signoff :

Transistors/Month
Transistors/Chip

acce//era

SVSTEMS INITIATIVE



HLS for Rapid Algorithm to HW

* Accelerate design time with higher level of abstraction vstemc ege
¢ 5'10)( |ESS COde than RTL : A{féiirft(l-?it(igftizgil],iﬁ) {
* Faster verification cycles, 30-1000x compared to RTL Y ) bl

else

* New features added in days not weeks

* Quickly evaluate power and performance of algorithms
» Rapidly explore multiple options for optimal Power Performance Area (PPA)

-
* Enable late functional changes without impacting schedule =
* Algorithms can be easily modified and regenerated |
* New technology nodes are easy (or FPGA to ASIC)
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HLS synthesizes C++ and SystemC to RTL

e SoC design is complex, one challenge is timely creation of optimal hand-crafted RTL
* Alternatively, HLS to produce correct-by-construction RTL

void simpleDesign (<function interface variables>) {

<function body> \
}

class simpleDesign{

] module simpleDesign ( <module ports> );
public: always@ (posedge clk)
volid run (<method interface variables>) { begin

<method body> <module body>
™ end
endmodule

class simpleDesign : public sc_module ({
<module ports>
SC _CTOR (simpleDesign) {
SC_THREAD (run)
}
void run () {
<function body>
|
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Demonstration Vehicle
Digital Pre-Distortion (DPD) concept

4

Chwiput
{wiput
et

%

Sample-based continuous
throughput

—> Predistortion

Training y
Linearization bandwidth depends on

Frame-based throughput, N data rates. Low prototype speed
coefficient updates to digital i analog increases risk in ASIC

predistortion block

Time, temperature, frequency variant characteristics
= * Difficult to model. Need physical component to
» know real algorithm performance
* Simulation slow, does not parallelize

*  Multiple PA types, constantly evolving
* High bandwidth validation require high data rates
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Demonstration Vehicle
Digital Pre-Distortion (DPD) design + tb

Data / \
> applyPredistortion 4 PA-model |m

I1=1, >

throughw

e Bottom-up approach Collect

* Assemble at DPD top ;91 Uhtiny aini Data

and sync
control

coefficien ts

<

@trixInversion j trainingTop J

dpdDemo
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Quickly Simulate Real HW Behavior in C++/SystemC

* Many various implementations for DPD
* How to know which is best suited for application?
* Model bit-accurate precision in C++

* Directly measure and observe the effects of quantization
* Not limited to power-of-two bit-widths

* Plug back into environment for verification

* Rapid simulation of true hardware behavior
e 30x to 1000x faster than RTL

Refine/Explore
Precision

Measure/Verify

C++/SystemC using bit
. . n accurate integer/fixed-point
« Simulate in minutes/hours vs. hours/days/weeks 2 >

2

Horizon
ﬂ‘é Robotics

“Advantage is ability to compare C
reference model with HLS C HW model”

Bit-accurate RTL
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Bit-Accurate Date Types are a necessity

Required as modeling actual hardware

* Choice between AC Datatypes and SystemC, both are public domain

e https://hlslibs.org
e https://github.com/accellera-official/systemc/

* HLS Designers generally prefer AC types, even for SystemCHLS

* ACtypes simulate faster than SystemC types, even in SystemC Designs
* Especiallythe Fixed-Point types

UG AL AEORNWRAG O~
>

* Include optional rounding and saturation modes

, true> I0 FXP TYPE;
2,1,true,AC RND INF,AC SAT> IO FXP TYPE
<I0 FXP TYPE> I0 TYPE;

ex<I0 FXP TYPE RND SAT> IO TYPE RND SAT;

SYSTEMS INITIATIVE


https://hlslibs.org/
https://github.com/accellera-official/systemc/

HLS IP Libraries

Provide needed productivity gain

* HLS Designers rely on pre-established IP libraries
* AC Math synthesizable C++ operations common in DSP applications

* ACDSP synthesizable C++ objects for common DSP operations /7\:

 AC Math, AC DSP and AC ML are all public domain ]
e https://hlslibs.org

e Customizable

* Datatype support built-in class complexAbs c{

. public:
PPA tradeoffs complexAbs c(){}

ABS TYPE calcAbs (IO TYPE &inputSample){

ABS TYPE TEMP absSampleTemp, tempForSqrt = inputSample.mag sqr();

ac_math::ac sqrt pwl(tempForSqrt, absSampleTemp); // sqrt()
ABS TYPE absSample = (ABS TYPE SAT)absSampleTemp; // Rnd&Sat
return(absSample);

}
¥;

"src/dpdDemo.h" 622 lines --4%--

accellefa DVCon US | Tutorial: The Best Verification Strategy You Never Heard Of |

2022
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https://hlslibs.org/

HLS Makes PPA Goals Achievable

* Loop optimizations oy 20— -6 -
_ for (int i=0;i<d;i++) { ER= /
* Unrolling acc += data_in[i] * coef_in[i] ; |mmm) §,§
* Pipelinin } 5§ \ R,
P g . <° —»./n/'.\‘
* Automatic merging +.\E~»./‘ ! g
—»./k
0
) N
¢ SChedUIlng Characterized
. o o Eﬁjco;;zgi A\‘:j Library of
e Automatic timing closure based Componens
on target technology

Area = 320 um2

Shared
resource

dout

Shared
register

* Register and Resource sharing

e Automatic lifetime and mutual exclusivity
analysis and optimization
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HLS Builds Complex Multi-block Systems

 HW architectures often require multiple concurrent processes to meet performance

* Untimed HLS Builds Parallel Concurrent Processes from Sequential C++ Classes
* Easyto design and debug

* Connect HLS blocks together using channels
e Channels mapped to fifo’s in post-HLS RTL

#pragma hls design top
class dpdDemo c{

dpdDemo

Train
Coeffs

Apply
Predist

B TS e

|
dpdin
dpdOut

// Object(s)
applyPredistortion c¢ applyPred;

trainingTop ¢ dpdTrain;

// Interconnect(s)

ac_channel<IO N TYPE> dpdOutConnect;

ac_channel<DPD COEFF STRUCT> coeffConnect;
"src/dpdDemo.h" 628 lines --92%--

Synchronization handled Clocked process
automatically

€§' """" ac_channel
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C Design Checker

Static & Formal analysis to find issues early

e Quickly and easily find coding bugs and errors in HLS source — HLS Design
before synthesis or simulation

 Some C++ language behavior can be too ambiguous for
describing hardware

* Leads to mismatches between C++ and RTLsim
* |nefficient to debug in dynamic RTL simulation

e Collection of Quality of Results (QofR) checks,
static lint checks, and formal property checking

e e.g. Out of bounds array reads and writes (ABR, ABW)
and uninitialized memory reads (UMR)

acce//era

C Design Checker
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C Design Checker

|15 Oy Iy Iy vy o9 (N’ Goto line...

e Results on DPD from running “Sim Mismatch” e S
o 7 91 Violations - 2 (0 fatal, 2 error, @ warning, 0 info)
and “QofR” modes e
. . 94 UMR - Uninitialized Memory Read - 2
e Reports analyzed within the Catapult GUI o ey s
h . . ; 97 | 237 DELAY LINE AP:for(int i=Q; i>0; i--){
* Violations are cross-linked to design source 98 > 238 shiftRegli] = shiftRegli-1];

99 = b eator [ ]
5 a 0 5 100 240 shiftReq[0] = palnput;
* Template Waiver File is automatically generated 1= o

. 83 . 1 . 3 'f 1' ) ’ ; . f
e Can be edited and reused for future runs o4 g atiane. = 8 (otal, R ISCmE, ARG, © )
Q . Q . ERROR
* Can also specify waivers directly in source 56 |WarNzNG o
CNS - Constant condition of if/switch - 3
S Conctramt ted as ’ i B FHELLav: kitneys]

onstral S Suppor edas assume pragmas 90 | 155 // Using Forward decomposition to calculate |
91 > 156 if(is _pos def){
92 | 157 // Calc reciprocals before other processin
gi | 158 Tout recip L array[MDIMI;

Clean HLS design source results in less debug of post-HLS RTL
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Properties in HLS

Deploy properties to catch issues early

#include <ac_assert.h>

e Catapult HLS supports immediate assertions & vl Rl i
uintéG)a}u(uint8 a, uint8 b, opcode_ t
opcode

cover properties sy

switch (opcode) {
case ADD:

* HLS C++ and SystemC | ADD S

break;

* Properties are propagated from HLS source to RTL CR e S i) T ac heSstive. radults

r = a-b;
break;

e Assertionsin generated RTL case DIV:
assert (b!'=0); // no divide-by-zero

* SVA, PSL, or OVL z = a/b;

}

// Cover all of the possible opcodes
cover ( (opcode==ADD) ) ;
cover ( (opcode==SUB) ) ;
cover ( (opcode==DIV)) ;

return r;
}

Applying common RTL debug and verification techniques to HLS design source

SYSTEMS INITIATIVE



Metric Driven Dynamic HLV

Design - hdl_top.dpdDemo_crun_sc_pl_INST.dpdDemo_crun_sc_inst
lhdl_top.dpdDemo_crun_sc_pl_lNST.dpdDemo_crun_sc_inst

Supported in a wide range of tb environments

e C++, OSCl, MATLAB®, Python, SV/UVM, etc. TR
o | apdDemo:crun_sc_pl_INST :(dpdDemo_crun_sc_pl)

Using known and trusted verification

. kl dpdin_data_i_rsc_bus :(ccs_if)
tec h n Iq ues l dpdin_data_i_rsc_drv_bfm :(ccs_driver_bfm)
* Supporting wide range of verification requirements il dpdin_data_i_rsc_mon_bfm :(ccs_monitor_bfm)

ll dpdin_data_r_rsc_bus :(ccs_if)

DUT at a higher level of abstraction

* Fewer lines of code
e Simulations run faster GO gle

Re-use for predictable and efficient ;‘r?sz:/l"l_gf :2:;;)”?103E'e?:rgesrzon“n”igg
post-HLS RTL signoff 2ty BT s

Hot Chips 2021

https://hc33.hotchips.org/
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C Coverage

RTL-like coverage for HLS Design Source

* Bring RTL coverage into HLS world soversge Summany Byfnstinee (784723 v
e C++ and SystemCdesign source (=]
* Match coverage concepts from RTL
. = Total 75.3% 66.66% 93.44% 78.47%
e Statement, branch, expression T ——— . . ik 100%
* Functional coverage including covergroups, T _ - s o
coverpoints, bins and crosses
e HLS-aware code coverage e s Gt (B w
* Function |n||n|ng (& |[= | E H
* Loop unrolling
e Array access coverage __
= AapplyPredistortion_c::apply... 14 10 4 80%
MyCCoverGroup_inst 14 10 4 80%

SYSTEMS INITIATIVE



Verification Coverage Closure
Achieve coverage closure on HLS design source

* Unified Coverage Database (UCDB)

* Coverage analysis, report generation, exclusion development

Test merging & ranking, test plan integration and tracking

Design hierarchy ICoverage% lStatement% |Branch% IExpression% (<]
& lig \dpdDemo_c::run#0 :(\dpdDemo_c::run#0 ) N | 7547% I ©344% N | 7530% [ |
® kg ...>&ac_channel<lO_N_TYPE>&,ac_channel<lO_N_TYPE>&)) [ | 51.80% [N ] 86.60% 0 | I 100.00%

& g ...nel<IO_N_TYPE>&,ac_channel<DPD_COEFF_STRUCT>&)) [ ] 81.93% I °555% B 87-23% Iy |
kg ....ac_channel<IO_N_TYPE>&,ac_channel<lO_N_TYPE>&)) [ 100.00% [N 100.00% [N 100.00% [N 100.00%
® g ..._INV_TYPE>&,ac_channel<MATRIX_FOR_INV_TYPE>&)) I °513% [ 100.00% ] 8541% [ 100.00%
i@ ... TRIX_TYPE>&,ac_channel<MATRIX_FOR_INV_TYPE>&)) [N ] 83.33% [ 100.00% [N 100.00%
® g ...CTOR_TYPE>&,ac_channel<DPD_COEFF_STRUCT>&)) [ ] 77.77% I 100.00% | 100.00% [ | 33.33%
& g ...H_MATRIX_TYPE>&,ac_channel<Z_VECTOR_TYPE>&)) [ | B °3384% I ] 2% |
k@ \dpdDemo_c::dpdDemo_c#0 :(\dpdDemo_c::dpdDemo_c#0 ) I 100.00% [ 100.00%
k@ \trainingTop_c::trainingTop_c#0 :(\trainingTop_c::trainingTop_c#0) [N 100.00% [N 100.00%
kg ...CalcCoeffs_c#0 :(\trainingCalcCoeffs_c::trainingCalcCoeffs_c#0 ) [N 100.00% [N 100.00%
..... matnxlnversmn _c#0 :(\matrixInversion_c::matrixinversion_c#0) [N 100.00% [N 100.00%

halimi: AHN Nahalinme acabhalinee 4N NV hWalatvam I IalaNalaliVs
Covergroups

SB@@ Filter Covergroup Items| |'| Filter(by Coverage%)|
Name |T01a| Bins |Missing Bins |% Hit |Coverage |Status |Goa| | ®
& W AapplyPredistortion_c::applyPredistortion_c#0 /MyCCoverGroup 1 4 71.42% 80.00% DN ]  100% Q ues t a
-~ @ cp_inputStruct_syncTraining 7 0 100.00% 100.00% | 100% L. A
cp_inputStruct_syncUpdate 2 0 100.00% 100.00% 100%
(@ cp_inputStruct_io_type data 0 _real 5 2 60.00% 60.00% T ] 100% Ve r If IC at 1on Man ag eme nt
cp_inputStruct_io_type_data_0_imag 5 2 60.00% 60.00% [ 100%
& MyCCoverGroup_inst 14 4 71.42% 80.00% NN | 100%
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Catapult High-Level Synthesis & Verification

Comprehensive flow providing needed productivity gains

N\

Design Gap
E a Verification Gap

HLV using known and trusted approaches 25

for functional verification of HLS source. 7L

DPD HLS sims > 300x speedup over RTL 22
Efficiencies gained by designing and verifying
via HLL. Productivity gains via faster and
predictable post-HLS RTL verification signoff Timj
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Prove

Prove intent is met

Kurt Takara
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Simulate RTL until you’re done*
The verification methodology you have heard of

System design and HW/SW interaction

Unanticipated HW/SW interface bottlenecks
Datapath and dataflow inconsistencies
Power management functions

Functional errors

Incorrect implementation of specified algorithms or architecture
Unintended functional interactions
Initialization issues

Issues not found in simulation

Asynchronous crossing issues
Trojan attacks and hidden functionality
Implementation issues

I

Construction errors

Register specification and construction/connection errors
Interconnect issues
Clocking, testing

Simulation-based Verification

Coding errors

Syntax, style, semantics, structural issues
Cut-and-paste creation errors
Simple mistakes

*What “done” means Is an entirely different topic

accellera DVB(::@,{‘
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Using intent-focused insight flushes issues before simulation
Reduce bug density with a non-simulation verification methodology

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review netlist for new issues

Prove | £e= Protect

Meets intent| s Retains intent
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Static code analysis finds mistakes without testing
Code analyses find RTL issues early, ensure highest quality code into verification

Syntactic

accellera

SYSTEMS INITIATIVE

Is the code

properly
constructed
?

Semantic

Do the
elements
make
contextual
sense?

Is the code
properly
named,
commented
and laid out

to meet
requirements?

Structural

Are all
items
defined
where
needed?

Are the
states and
sequences

well-
formed?

Do the
pieces form
a coherent
whole?

Sequential
Specific

Will the design
behave
consistently?

Advanced Linting
Initialization/

X-Checking



Linting analyzes RTL statically, finding issues quickly without simulation
Find & fix syntactic, semantic, stylistic and structural issues early during design

Static analysis
* Fast, requires no inputapart from RTL

RTL I——> Lint

Semanticissues — do the elements make sense in context?
* Unsynthesizable code, simulation/synthesis mismatch risks,

improper assignments, etc. Bkl
yaX
outputs /\J D_“
> _C connected |_
4 o)
e Structural issues —do the elements form a coherent whole? N\
g . input
* Width mismatches, unreachable or dead FSM states, latch A7 —Djr_>

inference, dead code, inconsistent clock/reset styles °°’“’jj)'j;‘°"a' s d/'

D>
as data \T

Stylisticissues —do the elements meet coding style requirements?

* Adequate commenting, naming conventions, unused objects,
maintainability
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Advanced Linting identifies issues based on deep formal design knowledge
Code analyses find RTL issues early, ensure highest quality code into verification

Statically-detectable design issue Formally-detectable design issue
case (gstate) case (gstate)
3’b001: if (en) dstate = 3'b010; 3’b001: if (en) dstate = 3'b010;
else dstate = 3'b001; else dstate = 3'b001;
3’b010: dstate = 3'b100; 3'"b010: dstate = 3'b100;
3'"b100: if (rtn) dstate = 3'b100; 3'"b100: if (rtn) dstate = 3’b001;
else dstate = 3'b100; else dstate = 3'b100;
default: dstate = 3'b001; default: dstate = 3’b001;
endcase endcase
* Both next states of if-else are the same * Formal analysis will exhaustively

determine if rtn can ever be 1
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Initialization and X-Checking examines the design to find unintendedissues
Exhaustive initialization/X analysis determines if uninitialized states cause device failure

* Verify if X values propagateto initialized registers and other control logic
* FSM'’s, outputs, clocks, resets ...
e (Can be customized with SVA properties
e All X sources are considered
* Find and fix X source bugs, report all uninitialized registers
e X accurate analysis(no optimism)

. Fl _II_> F | ‘X’ Results
Ay Cinit XY ofma — ‘X’ sources

Analysis

v' ‘X’ initialization
v' ‘X’ propagation

7 propagton
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Initialization and X-Checking examines the design to find unintendedissues
Exhaustive initialization/X analysis determines if uninitialized states cause device failure

* Verify if X values propagateto initialized registers and other control logic
* FSM'’s, outputs, clocks, resets ...
e (Can be customized with SVA properties
e All X sources are considered
* Find and fix X source bugs, report all uninitialized registers
e X accurate analysis(no optimism)

* Flow RTL Ié Formal é v oy s:)(ul:ce:su“s
> Analysis

v' ‘X’ initialization
v' ‘X’ propagation

 Example
clk

rstn 1141l
= - LN >

SYSTEMS INITIATIVE



Initialization and X-Checking examines the design to find unintendedissues
Exhaustive initialization/X analysis determines if uninitialized states cause device failure

* Verify if X values propagateto initialized registers and other control logic
* FSM'’s, outputs, clocks, resets ...
e (Can be customized with SVA properties
e All X sources are considered
* Find and fix X source bugs, report all uninitialized registers
e X accurate analysis(no optimism)

* Flow RTL Ié Formal é v oy s:)(ul:ce:su“s
> Analysis

v' ‘X’ initialization
v' ‘X’ propagation

 Example
clk

rstn 1— || — X —-- >X
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Initialization and X-Checking examines the design to find unintendedissues
Exhaustive initialization/X analysis determines if uninitialized states cause device failure

* Verify if X values propagateto initialized registers and other control logic
* FSM'’s, outputs, clocks, resets ...
e (Can be customized with SVA properties
e All X sources are considered
* Find and fix X source bugs, report all uninitialized registers
e X accurate analysis(no optimism)

* Flow RTL Ié Formal é v oy s:)(ul:ce:su“s
> Analysis

v' ‘X’ initialization
v' ‘X’ propagation

 Example
clk

rstn 117 || 0 — S
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Initialization and X-Checking examines the design to find unintendedissues
Exhaustive initialization/X analysis determines if uninitialized states cause device failure

* Verify if X values propagateto initialized registers and other control logic
* FSM'’s, outputs, clocks, resets ...
e (Can be customized with SVA properties
e All X sources are considered
* Find and fix X source bugs, report all uninitialized registers
e X accurate analysis(no optimism)

* Flow RTL Ié Formal é v oy s:)(ul:ce:su“s
> Analysis

v' ‘X’ initialization
v' ‘X’ propagation

 Example
clk

rstn 117 || 0 —
S— N D
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Initialization and X-Checking examines the design to find unintendedissues
Exhaustive initialization/X analysis determines if uninitialized states cause device failure

* Verify if X values propagateto initialized registers and other control logic
* FSM'’s, outputs, clocks, resets ...
e (Can be customized with SVA properties
e All X sources are considered
* Find and fix X source bugs, report all uninitialized registers
e X accurate analysis(no optimism)

* Flow RTL Ié Formal é v oy s:)(ul:ce:su“s
> Analysis

v' ‘X’ initialization
v' ‘X’ propagation

 Example
clk

rstn 1 || - IRy e
D
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Using intent-focused insight flushes issues before simulation
Reduce bug density with a non-simulation verification methodology

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Prove | £e= Protect

Meets intent| s Retains intent
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What is a clock domain crossing (CDC)?
A CDC is the transit of a signal or group of signals from one clock domain to another

— Clock Domain A — | Clock Domain B

a=-§-i-
ﬁw&ﬁ

Synchromzunon (DC Protocol (DC Reconvergence

Error
Error @ Error

1. The design has missing or incorrect synchronlzers

2. The design does not adhere to the required CDC protocols to ensure
correct data transfer

3. The design does not account for non-deterministic delays through
synchronizers
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What is a clock domain crossing (CDC)?
A CDC is the transit of a signal or group of signals from one clock domain to another

— Clock Domain A — | Clock Domain B |

=@
wwﬁeﬂ

CDC Protocol (DC Reconvergence

Error Error @

1. Complete structural anaIyS|s to find all synchronlzers
1. The design does not adhere to the required CDC protocols to ensure
correct data transfer

2. The design does not account for non-deterministic delays through
synchronizers
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What is a clock domain crossing (CDC)?
A CDC is the transit of a signal or group of signals from one clock domain to another

— Clock Domain A — | Clock Domain B |

==-§-

Error @

1. Complete structural analysis to find all synchronizers

2. Automated assertion-based verification to ensure correct implementation of CDC protocols

1. The design does not account for non-deterministic delays through
synchronizers
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What is a clock domain crossing (CDC)?
A CDC is the transit of a signal or group of signals from one clock domain to another

— Clock Domain A — | Clock Domain B |

1. Complete structural analysis to find all synchronizers

2. Automated assertion-based verification to ensure correct implementation of CDC protocols

3. Accurate simulation of metastability effects in synchronizers
to predict true silicon behavior
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Why does a crossing protocol matter?
Adding or checking for a synchronizer across every CDC isn’t enough

* Synchronization between clock domains requires a transfer protocol
* To ensure thatdatais predictablytransferred between domains

e Simplest example: Stability check on inputto 2-DFF synchronizer
* Signal must be held stable long enough in the transmitting clock domain

—— Tx Domain e Rx Domain 1
 These protocols must be verified o .
> > >
* When protocol is violated (
s Data can be |OSt Tx Clk Rx Clk MTBF 1 hour —» MTBF 100,000 years

e Simulation may not show a failure
 Siliconimplementation will eventually fail!

Rx Data

Tx Data

Tx Control

Rx Clk
Data-Mux (DMUX) Synchronizer
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How much of the protocol can be verified without simulation?
As many crossings as possible are verified without a testbench

RTL II II RTL and II
l Testbench
cDC CDC

( ) AN
v v
CDC Non-proven CDC
Static Analysis Protocol Formal | Protocol >| Simulation
Assertions Analysis Assertions

~ | ~
v Eade_c citog_scisuenchwci Sbi

* Formally prove CDC protocols are
implemented correctly Proven ~——
— fully automatic Assertions Covered

* Simulate CDC protocol — AR
assertions jointly with ~_
the design and testbench Review Assertion Coverage Reporting

Violations
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What is a reset domain crossing (RDC)?
An RDC is the transit of a signal or group of signals from one reset domain to another

. : 551 Not an issue: if rst2 is
Issue: if rstl is asserted
. . already asserted when
while rst2 is not asserted .
rstl is asserted
clkl
Reset Condition Clock condition Result
rstl and rst2 are asynchronous clkl and clk2 are same domain violation
rstl and rst2 are asynchronous clk1 and clk2 are different domains caution— CDC verification needed
rstl and rst2 follow ordering constraints NA evaluation
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Using intent-focused insight flushes issues before simulation
Reduce bug density with a non-simulation verification methodology

Analyze code for issues

Find RTL mistakes
Review initialization Check async operations

Verify CDCs
Verify RDCs Review construction

Verify interconnects
Verify registers Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Prove | £e= Protect

Meets intent| s Retains intent
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Review design constructionintegrity with interconnect verification
Verify the correctness of connectivity in the design

* Check that design connection implementation matchesthe specification
* Endless applications: pin muxes, power rails, clock trees, etc.
* Both functional and structural connectivity checked
* Checks include: connect, conditional, constants, delays, etc.
e ASIC and FPGA designs from block to SoC level verification R ——

l, Arbiter

* Flow

— Ié Formal Connectivity Results

. v . .
(-) Analysis COnnectfon pass/fail
v' Connection coverage

e Example e

spec properties
type src dest cond > connl: iA.0l == outl > Formal
conn iA.ol outl condl: sel |->iA.02 == out2 Analysis

cond iA.02 out? sel
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Ensuring register implementation correctness and construction is vita
Consistency between spec and implementation aids working systems downstream

* Verify memory mapped register implementation matches the specification
e |IP-XACT, UVM, and other custom specs
* Front doorand back door
e Common interfaces supported, can be customized

D2

MemMap Reg Results

* Flow ————= R1
—I v’ Initialization d ;
RTL ‘ > Formal — v' Addr/data decode/route : -
,} Analysis v" Policies (RW,RC,...) . 2 ﬁ
v’ Volatility : >
v ° |
e Example y -7
. >
properties o
ch'pec et Formal R1i: Srose(rstn) |-> R1 == A2
reg policy addr init 9 9 Riw: wr & Al |=> R1 == Di é addr|  dati dato
RI RW Al 0 Analysis R1ir: rd & Al |=> Do == R1 8us Interf
: R1n: rw & IA1 |=> R1 == R1 15 HIEEHace
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Using intent-focused insight flushes issues before simulation
Reduce bug density with a non-simulation verification methodology

Analyze code for issues

Find RTL mistakes
Review initialization

SYSTEMS INITIATIVE

Check async operations

Verify CDCs
Verify RDCs

Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Prove | £e= Protect

Meets intent| s Retains intent



Operational assertions enable verification of conformance to specification
A timing diagram can be transcribed to assertions for formal verification

5  transfer==1 complete ==1
* Capture your design functionality as a set of operations
e Start state, i.e. a starting condition A\
* Trigger condition — event that triggers the operations t  Transferl=1 t complete

* Expected output behavior state { wait ) ( Finish )
* End state transfer -<I>

* Use standard languages to write operational assertions complete |
e TiDAL : OneSpin SystemVerilog library
* Allow timing diagram style assertions sequence ; nxt(t,4); endsequence

* Generate proof or CEX for operational assertions frodeTty\brinster:

: . e L (t ##0 state == wait and A
* Enable Operational Assertion Based Verification t #40 transfer — 2’d1l Cause
|
* Ensure verification completeness
. ) implies
* Automatically detect gaps between operations - ¥H0 state = finish and y
L ##0 complete;
endproperty

transfer a: assert property(transfer);
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Verification against specificationscan find unanticipated functionality
Processor verification confirms implementation against ISA

1 Automated [ Core RTL ]

Design Analysis

Implementation Info

3 Automated
Verification File Generation

Automated Design Analysis a
GUI (Visualize/ Extend) e
Automated Assertion Generation e
Debug a Proof (Assertions/ Completeness) a

Assertions/ Completeness

Custom Extensions

Provide Core Specific
Information

Retune
Core Checker

Signoff

2
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Processor trojan verification shifts from verifying what is to what isn’t
Extending a GapFree analysisto processor verification finds what shouldn’t be there

* Benefits = —
* Detects errors and inconsistencies in the specification | —
* Prove 100% equivalence between specification and L

— RTL Specification

implementation
* Demonstrates absence of bugs/Trojans/ambiguities ‘ ‘
a GapFreeVerification™

* Successes

* Paper “Complete Formal Verification of RISC-V Processor IPs ‘

for Trojan-Free Trusted ICs” presented at GOMACTech 2019 ==
identified bugs reported on GitHub (Discovered CEASE

instruction — a “trojan kill switch” to those without

knOWIedge) Trusted RTL

endpropecty
transfer_a: assert propesty(transfer);

Trusted
Executable
Specification
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Using intent-focused insight flushes issues before simulation
Reduce bug density with a non-simulation verification methodology

Analyze code for issues

Find RTL mistakes
Review initialization

SYSTEMS INITIATIVE

Check async operations

Verify CDCs
Verify RDCs

Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Prove | £e= Protect

Meets intent| s Retains intent



Verifying the implementation matches the original intent s critical
Example: Synthesis (or other implementation stages) can compromise a clean RTL design

Figure 1 Schematic for RTL Figure 2 Schematic with Probable Glitch Condition
| 1
\_\\\.
l ) . l I N N
| data —O L1
t_ — ‘ 1 |
1 [ —
L
— T \_D
o B H>

Synthesis

(N, W 0,
e .7! = E
F> 1> >

* Synthesis can break corrective circuitry or add surprise paths

* MUX used at RTL for CDC crossing

* Synthesis tool may implement combinational logic which produces glitch
o X+IX or X&IX

tal +
%} w| D

111

[m_clk

e Potential chip failure issue if glitch is caught by the receiving flip-flop
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Equivalence checking flows for FPGAs finds implementation-caused issues

Check for combinational and sequential equivalence from Golden RTL through final

* FPGA Specifics

* Fixed interconnect grid, LUTs, shift registers, block RAMs, configurable DSP
blocks, etc.

* Many timing, fan-out, capacity restrictions

* Synthesis maximizes utilization by register duplication, retiming, and other
sequential optimizations

¢’——_ ’ ‘.~~\
N
o \

Look Up Table Look Up Table

(LUT) (LUT)

MIME AN

FPGA synthesis tools balance logic between
LUTs to improve QoR

OneSpin 360 EC-FPGA

Golden Netlist +
RTL Library

Setup
Compile and Code Check

Map
Inputs, Outputs, State Relations

Compare
Sequential and Combinational

Report
Error Trace Generation

Debug
Waveforms and Design
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Using intent-focused insight flushes issues before simulation
Reduce bug density with a non-simulation verification methodology

Analyze code for issues

Find RTL mistakes
Review initialization

SYSTEMS INITIATIVE

Check async operations

Verify CDCs
Verify RDCs

Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues

Prove | £e= Protect

Meets intent| s Retains intent



Revisiting the verification methodology you have heard of
Static and Formal capabilities enable cleaner RTL into simulation-based verification

Simulation-based Verification

System design and HW/SW interaction

Unanticipated HW/SW interface bottlenecks
Datapath and dataflow inconsistencies
Power management functions

Functional errors

Unintended functional interactions

*What “done” means Is an entirely different topic
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Protect

Protect intent throughout development lifecycle

Amir Attarha

=
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Veloce emulation and prototyping

A complete and integrated verification and validation platform

Fault Detelrg"l'zn'suc PAVE360

Coverage Enterprise
Assertions Server

Virtual and ICE Solutions by Vertical
Market

Visualizer

Virtual Network

HYCON

SW Apps

Veloce Strato+ Veloce Primo

Veloce proFPGA

SW Workloads
Enabled by Apps
Using Vertical
Market Solutions

HW Platform
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Scalable Veloce Architecture for HW-Accelerated Verification

Custom Crystal
device

Siemens’ chip/sys/SW is purpose-built for emulation

* Design scalability (12 BG, in Production Use)

* Fast compile (5 min/chip, patented VirtualWires)
* Co-model bandwidth (64 channels/StratoM)
* Full-visibility for complete debug (1M signals / 5min)

SIEMENS

Core Compiler
(Synthesis, Partition, P & R)

System

Hardware
Veloce Strato OS Use Modes

(ICE, TBX, Virtual)

Debug
(Waveform, Replay Technology, Live Stream)

Hardware System with backplane and co-
model channel architecture

Comprehensive OS+Apps
SW Framework
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Veloce Accelerates Progress Cycle

C il Fast Design Download
omplie irrespective of design size

* First-pass compile success (2 minutes)
= Fast and Reliable compile

« Fast design download

Incremental Force

ECO Compile Run
Debug + Repeatable

= Very fast 100% visibility * Optimized Throughput
« Offline Monitors
* Very fast / high-bandwidth
interface channel to Veloce

« Livestream waveforms

at emulation speed

» Check point save and restore - Independent co-model

» Back d Repl
acklp and repiay channel for each AVB

+ Deterministic ICE

1M cycle ready in 5 minutes
irrespective of design size
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Veloce Strato: Architected to scale

Low latency, high bandwidth channel

Independent co-model channel for each AVB

 Concurrent execution of TB, Comm, DUT

Directly impacts on these use models
 Virtual environments
* Time to visibility and debug
* Simulation acceleration and coverage closure
* Monitors/trackers for data collection
* Power trend analysis and measurements -
e Dataanalytics

Co-Model Host

Runtime Host

Veloce Strato+M |

StratoM Link
StratoM Link

No performance-throughput degradation
with capacity scaling
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Clock frequency vs. throughput: An important HAV system
attribute

Emulator clock is easy to report, but everyone knows that the real measure of
verification throughput is wall-clock time to execute customer workloads

. SeNIESHUo Veloce Strato
p— s~
8 min 3 min

Veloce Strato’s superior system architecture delivers more SW-driven workload
performance even when the competition reports faster clock speed!

el ) Veloce Strato
Off-The-Shelf FPGA-based Emulator

12 Hrs 3 Hrs
30 min 2 min

Compile Time
Debug (1M Cycles)

SYSTEMS INITIATIVE



Ensuring optimized and productive debug with Veloce Strato

Fast 100% visibility built-in Advanced debug Flows
* Always available for every compile * Checkpoint Save & Restore
* No model performance impact * Backup Replay etc.

* No capacity impact
- No probes Protocol analyzer
* Virtual and ICE

- : > * All major protocols
AutoUpload for long simulation time captures

* 1 Million cycle upload in 5 mins ] :
Triggers (no recompile needed)
* Unlimited trace depth for full debug

* Scalable, independent of design size

Virtual FSDB support (Verdi)

LiveStream with marching waves
* Leverage multiple co-model channels

1 million cycles with full visibility takes 5 minutes irrespective of design size
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Design and verification milestones

IP, Blocks, Sub-System SoC Integration Boot-0S i i ili ina-
Verification 9 SW Verification Silicon Bring-up

—_—

High

0 -
(i _ -

m—.. T P
3 /

2 SoCRTL
= Available /
< :
= ~O
=
2 Stable SoC RTL
cd i
g 7 >0
> / SoC RTL Ready
: Gate Level Available
Software ~ ly
- -— ]

e
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Veloce providing a complete and integrated solution
‘right tool for the right task’

IP, Blocks, Sub-System SoC Integration Boot-0S i i ili ina-
Verification 9 SW Verification Silicon Bring-up

High £ ' 5 ’
Hybrid Virtual Platform: Veloce HYCON

I ' RTL debug /visibility, broad use

RTL Emulation: Velce Strato &Strato+ models, capacity scaling are key

Virtual models, SW workloads, : | _ )
integration to HAV, speed and =muation Enterprise o G Speed, SW workdoads,
’ Offload Veloce Primo compatibility with emulation

integration are key ; and capacity scaling are key
Power Flow Emulation: | !
Veloce Strato & Strato+
Gate-level Emulation: | Gate level flow and
| Veloce Strato & Strato+ | capacity scaling are ke

Verification Activity

Visibility, workloads, capacity : i
scaling and integration to power & Desktop FPGA Prototyping:
Performance analysis are ke Veloce ProFPGA

Ease of bring-p, Virtual /ICE
and speed are ke
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Satisfying SW workload and benchmark requirements
with Hardware-Assisted Verification (HAV)

Software, Workload-based requirements
* Long software sequences take extensive verification cycles to complete
* From boot-sequences to benchmarks

Power and performance analysis

* Accurate power/performance analysisduring workload and benchmark cycles
requires:

* Visibility to power activity

* Accurate analysis

r—
* Comprehensive debugtools
(
Size and complexity of SoCs and Systems
* Billion-gate designs and rapidly growing
* Latest AMD 3™ Gen EPYC as an example of SOC size and complexity L
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Enabling analysis & insights based on real workloads and benchmarks

Conf. SW Platform
Reference N
m c" Platform Creation

TLM

arm
FAST MODELS

Emulation identifies power peaks running
real workload benchmarks

Configurable

e

R BT A

Benchmarks running on e B LIl Y
RTL Design
SEX ‘ ."." TR s
e =
3DMark  GFXBench Geekbench AnTuTu 2
GFXBench 4.0, Car Chase, Kishonti GFXBench 3.1, Manhattan, Kishonti A PSR

Software/Hardware Debug
Jre— 7____]_ T ———— - ~d . 2 ——y
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Veloce Apps offering

Broad portfolio of Apps to address specific verification needs

Power App Early power profiling, analysis, metric tracking and UPF verification
Coverage App Accelerate code and functional coverage closure

-
adntalalilie Assertion App Efficient debug of design violations using SVA

A——

Enterprise Prr—
B il DFT App Accelerate validation of zero-delay patterns prior to tape out
Deterministic
ICE
Fault App Accelerate functional safety and I1SO 26262 certification
ALTRN
Iso 26262 De-ICE App Repeatable debug for non-deterministic ICE environments
N2
ES App Efficient job scheduling and management of Veloce HW
Codelink App Deterministic and non-intrusive offline SW-HW co-debug
HYCON App Configurable hybrid, high-speed, ready-to-use SoC reference platform
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Veloce Codelink App

RTL Driver/Firmware development and debug

Visualizer - 2020.1

File Edit View Codelink CPU Source Code Tools Window Codelink Help
BLYBBRLE» E3® 2OA Mmem -~ FO -« AwEdge ~ =0 1ps -
. . . . . . Codelink Print! AAX
* Built-inPCT Monitor, Reg/Mem V lizat [\
utit-In race ivionitor, ne e ISualization Coac o
Str_1_Loc. DHRYSTONE PROGRAM, 1'ST STRING =
should be: DHRYSTONE PROGRAM, 1'ST STRING
° S W C d t Str_2_Loc. DHRYSTONE PROGRAM, 2ND STRING =
o Ve ra ge a a Codelink CPU Source Code S Dtbenchsv-tbench +ax  Codelink Registers TRAX
/"cpu0 \/ cpul \ o R module'thenchi (o] ey ey
Fiabadddn)aaagqaann 6 reg CLK; armcortex_a9mprtl_r3_s!
e o . . — — — = 3 R Name | Value |State |o=
Enables efficient sharing of emulation resources PR * ' W ek wp s . e :
- 6,700 6,800 6,900 7,000 7.100 7.200 7.300 kL 10 initial bagin sp 0x002FBBEC s
R 8450 7 37‘ 12 forever #5 CL LR 0x00000AES Li
eplay 1126450ns 7373 33 ond FP 0x00000AES F
= R H - 66 polt -] | 24 RO 0x00000004 G
* Multiple soft debug offl Y — |-
uitipie sortware engineers aepug otriine in 67 | MRe paompcdcl i L 013000000 g
¢ n =1;
59 TSTNE tmp #1<<29 18 #100 NRESET = R3 0x00000001 G
70 BNE poll 19 #10008 NRESET R4 0x00000000 G
p a r‘a e 71 MCR p14,0,ch,c0.c5,0 20 end RS 0x00400000 a
72 } 21
73 else 2 R6 0x00004000 G
74 volatile unsigned char* tube_addr = (unsigned char*)TUBE_ADDR; 3 /7 oy R7 0x0000100E G
. 75 *wbe_addr = (unsigned char)ch ;; ‘°P::;7él x) R8 0x00002002 G
° F | b | E | t 76 | #end = Sxlax). R9 0x00100008 G
reeing up valuapie cmulatorresource 77| Sena i Rlo 510000000 g
78 return ch, 28 R11 0x0000000E G
53 23: codelink_cpu_cort R12 OXFFFFFFFD G
. - n f—— R13 0xD02FBBEC G
HW/SW Correlation f HEd e :
-~ ' 33 wire [31:0] MEMAD R15 0x0 AES G
} 34 31:0] MEMAD ~
o o i _ x| U [ e CPSR 0460000013 g
85 Overrides sys_exit to print "D (EOT) to the Tube to end the simulation */ <] 36| wire [63:0] MEMDA =
. . 86 Bvoid _sys_exit(int retumn_code) { ~l| 32 o
2l (€ late bet tsin HW and SW t : . jehady B
O r re a e e We e n eve n S I n a n exe C u I n wer_indicative_init.s CORTEXA9_power_indicative.c CORTEXA9_power_indicative_retargetc 3 ¢ 2 :::;: :m;“; :: Curent User FKQ  Supevisor Monitor Abont IRQ  Undefined >
Design  Codelink CPU Source Code am s T
@ Wave0 - Current FaAX
® P f File Edit View Options Tools Wind
ower/performance e Vi o 0w oo , ,
nea COO0 QRQKAKN EJdRXFS O tao S Diff0O1ps ~ FreqNAMHz ~ ¥ Rk PVOLALNY
+ SignalName Values C1 31000000 32000000 33000000 34000000 35000000 36000000

* Waveforms and protocol analyzer
Deterministicand Non-intrusive Debug

'Co‘ueinkMemmy Transcript Waer~Curv;n( =

tbench.sv - thench

SW Code Coverage and SW Performance Profiling

DESIGN AND VERIFICATION™

CON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE




Veloce Power App: Real scenario and workload-based power

analysis

- Power profiling at 100s of KHz

- Power analysis/ optimization

No compile and
visibility restriction

Veloce
platform

Veloce activity plot

Design hotspot

|

Billions of cycles

Profile real workloads on full SoC
|dentify hotspots, peaks, di/dt
Metric based power Tracking (CGE/FFE)

SYSTEMS INITIATIVE

RTL/ Gate

Early power trend analysis, estimation and sign-off power

- Sign-off power numbers

Average power

P U s gl

PowerArtist Peak power
Veloce API —— T

PowerPro

Millions of cycles

10x faster
TTP

Analyze using Veloce API for real scenarios
(FSDB/SAIF)

Identify/optimize SoC/ IP for power

Gate-level sign off

(PrimePower, PowerArtist,
PowerPro, ...)

FiIe-based{
N PrlmePovyer (PTEX)
(Veloce API integration)

Workin
Progress

Thousands of cycles

Sign off power analysis using RTL or Gate
switching activity at full SoC




summary

Harry Foster
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Three Pillars of a Design+Intent Methodology

@ Produce @ @ Protect

Produce correct intent by Prove intent is met Protect intent throughout
construction development lifecycle




Three Pillars of a Design+Intent Methodology

@ Produce

Produce correct intent by
construction




Catapult High-Level Synthesis & Verification

Comprehensive flow providing needed productivity gains

HLL AND HLS > 10X REDUCTION IN HLV RESULTED IN TWO ORDERS OF EFFICIENCIES GAINED BY DESIGNING
CODE RESULTING IN A REDUCTION MAGNITUDE SPEEDUP IN AND VERIFYING VIA HLL.
OF BUG DENSITY SIMULATION PRODUCTIVITY GAINS VIA FASTER

AND PREDICTABLE POST-HLS RTL
VERIFICATION SIGNOFF
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Three Pillars of a Design+Intent Methodology

Prove intent is met




Using intent-focused insight flushes issues before simulation

Reduce bug density with a non-simulation verification methodology

Analyze code for issues

Find RTL mistakes
Review initialization ~ Check async operations

Verify CDCs
Verify RDCs

Confirm vs specification

Check against specs
Look for trojans Verify implementation

Review downstream netlist
for new issues
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Three Pillars of a Design+Intent Methodology

@ Protect

Protect intent throughout
development lifecycle
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Protect Intent Throughout the Development Lifecycle
Emulation is critical in the age of SoC verification and validation

1P, BI(\)’c;I:?éig:tlz;iystem SoC Integration Boot-0S SW Verification Silicon Bring-up __
—
o ~ S e AT
4 vl
High | virtual Platform ™= - /
Hardware IP-block level /

RTL ~

= SoC RTL |
= Available ;
s €y
c
= Stable SoC RTL
5 i
2 / ; \
= !
> a
/ SoC RTL Ready i |
Software P Gate Level Available, |
Tapeout a

Silicon Available

Low
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The Best Verification Strategy
You’ve Never Heard Of

Q& A



Disclaimer

© Siemens 2022

Subject to changes and errors. The information given in this document only contains
general descriptions and/or performance features which may not always specifically
reflect those described, or which may undergo modification in the course of further
development of the products. The requested performance features are binding only when
they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or other rights of
Siemens AG, its affiliated companies or other companies whose use by third parties for

their own purposes could violate the rights of the respective owner.
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