## DESIGN AND VERIFICATION

CONFERENCE AND EXHIBITION

#### UNITED STATES

## Test Parameter Tuning with Blackbox Optimization: A Simple Yet Effective Way to Improve Coverage

Qijing Huang<sup>\*</sup>, Hamid Shojaei, Fred Zyda, Azade Nazi, Shobha Vasudevan, Sat Chatterjee, Richard Ho {hamids, zyda, azade, shovasu, schatter, riho}@google.com jennyhuang@nvidia.com



\* work done while at Google

## Outline

01

05

02

04

03

**Cloud TPU** Empowering EDA with Google Cloud AI

> **Google EDA Cloud** Fast Design of Large, Complex Chips

> > **ML-based EDA** Using ML to Accelerate Design Flows

**SRP** Smart Regression approach

Experiments

Different setups and results





## Cloud TPU Empowering EDA with Google Cloud AI



Cloud TPU v2 180 teraflops 64 GB High Bandwidth Memory (HBM)



**Cloud TPU v2 Pod** 11.5 petaflops 4 TB HBM 2-D toroidal mesh network



Cloud TPU v3 420 teraflops 128 GB HBM



Cloud TPU v3 Pod 100+ petaflops 32 TB HBM 2-D toroidal mesh network

ResNet-50 Training Cost Comparison







#### Moving EDA to Cloud 2019 & before 2020 2021 **DV workflow on Cloud** All EDA Workflows on Cloud Dedicated corp cluster for EDA jobs **Daily Cloud Job Submissions** EDA workflows on Cloud with GCP **Custom Scheduler** Google Kubernetes Engine Job Management Cloud Storage Filestore Persistent Disk Storage & DB 👗 Cloud Spanner Compute **Compute Engine Elasticity Scalability Reliability** Quick expansion of compute capacity Solution designed with horizontal scaling, Eliminated single failure zone with cloud across geos as roadmap changes. 170% total daily jobs growth from YoY. capacity allocated across the globe. Onboard remote team in < 2 day.





Cloud capacity across GCP regions

## Google Cloud: Fast Design of Large, Complex Chips

## Using AI/ML to Accelerate Design Flows

#### Goal

Develop scalable, and generalizable machine learning driven framework with rapid evaluation and turn-around time to shorten the chip design process.

#### Infrastructure on GCP

**Google Cloud:** scalable infrastructure with large compute power that works in domains with large number of design parameters. **Machine Learning:** leveraging various ML algorithms, readily available in Google Cloud to efficiently navigate large search space and apply unique optimizations at various stages of chip design.

#### **Results**

Shorten the chip design process and reduce time-to-market, expand product areas for ML accelerators, and improve the efficiency.

#### Two pronged strategy

ML by available tools in Google Cloud

- Immediate impact and savings
- ML solutions based on new research
- -- Longer timeline and upfront investment





**Design More Efficient Accelerator** 

Cloud ML Engines

#### Existing solutions on gcloud

- Bayesian networks
- Vizier
- Reinforcement Learning
- Dedicated research solutions
  - Distribution optimization
  - Graph neural networks
  - Language models







## **ASIC Project Time Spent in Verification**



Source: Wilson Research Group/Mentor





# Where ASIC verification engineers spend their time?



Source: Wilson Research Group/Mentor





## **Industrial Verification Flow - CRV**









## **Example RISCV-DV Test Parameters**

#### Binary Parameters:

| disable_compressed_instr=0        | enable_illegal_csr_instruction=1 | fix_sp=0            |
|-----------------------------------|----------------------------------|---------------------|
| enable_access_invalid_csr_level=1 | enable_misaligned_instr=0        | no_branch_jump=1    |
| enable_dummy_csr_write=0          | enable_unaligned_load_store=0    | no_csr_instr=0      |
| no_data_page=0                    | set_mstatus_tw=1                 | no_directed_instr=0 |
| no_dret=0                         | no_ebreak=0                      | randomize_csr=0     |

#### Integer Parameters:

| instr cnt=7000         | num of sub program=8 | hint instr ratio=15 |
|------------------------|----------------------|---------------------|
| illegal_instr_ratio=50 | stream_freq_0=5      | stream_freq_1=40    |
| stream_freq_10=35      | stream_freq_2=0      | stream_freq_3=20    |
| stream_freq_4=10       | stream_freq_5=50     | stream_freq_6=0     |
| stream_freq_7=10       | stream_freq_8=20     | stream_freq_9=25    |

\* SV/UVM based instruction generator for RISC-V processor verification: <u>https://github.com/google/riscv-dv</u>





## **Example Parameterized RISCV-DV Tests**

**Exception handling** 

MMU stress tests





#### **Smart Regression Planner - SRP**







#### **GP-Bandit In a Nutshell**

- A black-box optimization algorithm
  - Treats the test-parameter to coverage function as a unknown black box
- A Bayesian optimization method
  - A statistical model to approximate the black-box function
  - An acquisition function to sample that next point
    - Upper confidence bound (UCB)







#### • A binary parameter

- E.g. no\_break
- If enabled (1)
  - 80% coverage
- If disabled (0)
  20% coverage







#### • A binary parameter

- E.g. no\_break
- If enabled (1)
  - 80% coverage
- If disabled (0)
  20% coverage





- A binary parameter
  - E.g. no\_break
- If enabled (1)
  - 80% coverage
- If disabled (0)
  20% coverage













## **Evaluation**

## Approaches:

- 1. Baseline
- 2. Random
- 3. GP-Bandit

a.Multi-Objective b.Transfer Learning

#### Designs:

- 1. RISCV
- 2. **IBEX**
- 3. TPU





#### Higher Point-in-time Coverage Achieved



- Nightly runs across 100 nights
- SRP achieves highest coverage on all three designs





### **Higher Aggregated Coverage Achieved**



- SRP also benefits aggregated coverage
- SRP achieves highest aggregated coverage on all three designs





#### SRP + Multi-objective Optimization (MO): Reduced Runtime



- SRP+MO maintains high mean coverage
- SRP+MO leads to 1.2x speedup in test runtime





#### SRP + Transfer Learning: Faster Convergence

— Initial Training ----- without Transfer Learning with Transfer Learning



• SRP+Transfer Learning converges around 20 nights earlier





#### Conclusion

• In SRP, we formulated a verification problem capable of significant practical impact, at the abstraction level of test parameters. We showed that algorithms like GP-Bandit that use coverage feedback can further improve the coverage with faster ramp up and less variance.





## Questions?

#### Email: hamids@google.com



