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Cloud TPU
Empowering EDA with Google Cloud AI
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Google Cloud: Fast Design of Large, Complex Chips
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Elasticity

Quick expansion of compute capacity 
across geos as roadmap changes. 
Onboard remote team in < 2 day.

Scalability

Solution designed with horizontal scaling, 
170% total daily jobs growth from YoY.

Reliability

Eliminated single failure zone with cloud 
capacity allocated across the globe. 

Custom Scheduler

Moving EDA to Cloud 

Job Management

Storage & DB

Compute

EDA workflows on Cloud with GCP

Cloud capacity across GCP regions



Infrastructure on GCP
Google Cloud: scalable infrastructure with large compute power that 
works in domains with large number of design parameters.
Machine Learning: leveraging various ML algorithms, readily 
available in Google Cloud to efficiently navigate large search space 
and apply unique optimizations at various stages of chip design.

Goal
Develop scalable, and generalizable machine learning driven 
framework with rapid evaluation and turn-around time to shorten the 
chip design process.

Using AI/ML to Accelerate Design Flows

Two pronged strategy
ML by available tools in Google Cloud
-  Immediate impact and savings

ML solutions based on new research
-- Longer timeline and upfront investment

Results
Shorten the chip design process and reduce time-to-market, expand 
product areas for ML accelerators, and improve the efficiency.

Cloud ML Engines Design More Efficient Accelerator
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Verification
static, dynamic

Existing solutions on gcloud

● Bayesian networks
● Vizier 
● Reinforcement Learning

Dedicated research solutions

● Distribution optimization 
● Graph neural networks
● Language models 



ASIC Project Time Spent in Verification
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Source: Wilson Research Group/Mentor 

44.0%

56.0%



Where ASIC verification engineers spend their 
time? 
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Source: Wilson Research Group/Mentor 

21.0%

3.0%

13.0%

19.0%

44.0%



Industrial Verification Flow - CRV
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● Constrained random verification (CRV) 
applies constrained random stimulus 
to the simulator.

● The goal of CRV is to identify bugs by 
improving the coverage.



Challenges
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● Heuristic-driven
● Without rigorous exploration
● Inefficient and suboptimal 

?



Example RISCV-DV Test Parameters
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• Binary Parameters: 

• Integer Parameters: 

Binary Parameters: 

Ordinal Parameters: 

* SV/UVM based instruction generator for RISC-V processor verification:    https://github.com/google/riscv-dv

disable_compressed_instr=0 enable_illegal_csr_instruction=1 fix_sp=0
enable_access_invalid_csr_level=1 enable_misaligned_instr=0 no_branch_jump=1
enable_dummy_csr_write=0 enable_unaligned_load_store=0 no_csr_instr=0
no_data_page=0 set_mstatus_tw=1 no_directed_instr=0
no_dret=0 no_ebreak=0 randomize_csr=0

instr_cnt=7000 num_of_sub_program=8 hint_instr_ratio=15
illegal_instr_ratio=50 stream_freq_0=5 stream_freq_1=40
stream_freq_10=35 stream_freq_2=0 stream_freq_3=20
stream_freq_4=10 stream_freq_5=50 stream_freq_6=0
stream_freq_7=10 stream_freq_8=20 stream_freq_9=25

https://github.com/google/riscv-dv


Example Parameterized RISCV-DV Tests
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Exception handling MMU stress tests

test: riscv_mmu_stress_test
iterations: 10
gen_test: riscv_instr_base_test
gen_opts: >
  +instr_cnt=10000
  +num_of_sub_program=5
  +directed_instr_0=
   riscv_load_store_rand_instr_stream,40
  +directed_instr_1=
   riscv_load_store_hazard_instr_stream,40
  +directed_instr_2=
   riscv_multi_page_load_store_instr_stream,40
  +directed_instr_3=
   riscv_load_store_rand_addr_instr_stream,40
rtl_test: core_ibex_base_test

test: riscv_single_interrupt_test
iterations: 15
gen_test: riscv_rand_instr_test
gen_opts: >
  +instr_cnt=10000
  +require_signature_addr=1
  +enable_interrupt=1
  +randomize_csr=1
  +illegal_instr_ratio=20
rtl_test: core_ibex_debug_intr_basic_test
sim_opts: >
  +require_signature_addr=1
  +enable_irq_single_seq=1
compare_opts:
  compare_final_value_only: 1



Smart Regression Planner - SRP
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Our Approaches:
● Random Search
● GP-Bandit



GP-Bandit In a Nutshell

● A black-box optimization algorithm
○ Treats the test-parameter to coverage function as a unknown black box 

● A Bayesian optimization method
○ A statistical model to approximate the black-box function 
○ An acquisition function to sample that next point

■ Upper confidence bound (UCB)
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GP-Bandit Example for a Binary Test Parameter

● A binary parameter
○ E.g. no_break

● If enabled (1)
○ 80% coverage

● If disabled (0)
○ 20% coverage
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Iteration 0



GP-Bandit Example for a Binary Test Parameter

● A binary parameter
○ E.g. no_break

● If enabled (1)
○ 80% coverage

● If disabled (0)
○ 20% coverage
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Iteration 1



GP-Bandit Example for a Binary Test Parameter

● A binary parameter
○ E.g. no_break

● If enabled (1)
○ 80% coverage

● If disabled (0)
○ 20% coverage 
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Iteration 2



GP-Bandit Example for a Binary Test Parameter

● A binary parameter
○ E.g. no_break

● If enabled (1)
○ 80% coverage

● If disabled (0)
○ 20% coverage
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Iteration 10



Evaluation

18

Designs:

1. RISCV
2. IBEX
3. TPU 

Approaches:

1. Baseline
2. Random 
3. GP-Bandit

a.Multi-Objective
b.Transfer Learning



Higher Point-in-time Coverage Achieved 

● Nightly runs across 100 nights
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● SRP achieves highest coverage on all three designs



Higher Aggregated Coverage Achieved 
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● SRP also benefits aggregated coverage 

● SRP achieves highest aggregated coverage on all three designs



SRP + Multi-objective Optimization (MO): Reduced Runtime 
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● SRP+MO maintains high mean coverage 

● SRP+MO leads to 1.2x speedup in test runtime 



SRP + Transfer Learning: Faster Convergence
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● SRP+Transfer Learning converges around 20 nights earlier 



Conclusion

• In SRP, we formulated a verification problem capable of significant 
practical impact, at the abstraction level of test parameters. We 
showed that algorithms like GP-Bandit that use coverage feedback 
can further improve the coverage with faster ramp up and less 
variance. 
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Questions?

Email: hamids@google.com 


