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TEMPORAL DECOUPLING
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Necessary Technique

Less overhead

• Less time spent in simulator kernel

• More time spent in models 

• Fewer trips through sim kernel code

• A fast Virtual Platform (VP) has to get 
to much less than 10 host instructions 
per target instruction

More locality

• Data 

• Code

• Better effect from Just-in-Time (JIT) 
compilers and Virtualization 
Technology (VT) acceleration 
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Experiments on Wind River Simics®

• All experiments performed using Simics

• Instruction Set Simulator (ISS) modes: 

– Interpreter

– Just-in-time (JIT) compiler
• Like all other fast simulators in the world

– Direct execution (VMP)
• Uses Intel® Virtualization Technology for Intel® 64 and IA-32 architectures (Intel® VT-x) to run 

IA code directly on the host
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FAST?
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Example: Boot
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Relative Performance vs Time Slice Length – Ubuntu* 16 Linux Boot

VMP JIT

Notes: 

• Target system: 4 x IA Core i7-9xx, 2000 MHz, 16 GB RAM

• Booting Ubuntu* Linux 16.04

• Virtual boot time to graphical desktop is 24s, out of which 12s are low load

*Other names and brands may be claimed as the property of others.
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Example: Compute Program
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Notes:

• Target system: 4xIA Core i7-9xx, 2000 MHz, 16 GB RAM

• Running Ubuntu* 16.04, and on top of that a threaded compute 

program that uses all target cores at basically 100%

• Runs for 19s of target time

*Other names and brands may be claimed as the property of others.



Example/Old: Compute Program (2008)
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Compute-Intense program on an 8-core NXP QorIQ P4080*

Note: 

• Only JIT, as this is cross-target

• Graph starts at 10, not 1

• Peak at 100k instructions

*Other names and brands may be claimed as the property of others.



Observations

• VMP benefits from longer time slices – up to 1M instructions

– Still less than 1/1000 of a second for a typical 2-4GHz processor core

• JIT plateaus around 10k instructions

– Standard observation going back to mid-2000s

• Good default is 100k instructions, might increase from there
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CORRECT?
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Temporal Decoupling = Information Latency

Processor 

P1

Processor 

P2

Device

D1

0 Q

Simulator execution in real time

0 Q

0 Q

Device

D3

0 Q

Memory

Processor 

P1

Q 2Q

Processor 

P2

Q 2Q

Plain memory access

Device access

“Variant 1” in the 

paper, with devices 

running in their own 

time quanta



Memory

Temporal Decoupling = Information Latency

Processor 

P1
Processor 

P2
Device

D1

0 Q

Simulator execution in real time

0 Q

Device

D3

Processor 

P1

Q 2Q

Processor 

P2
0 Q

Q 2Q

Plain memory access

Device access

Device

D2

“Variant 2” in the paper, 

with devices running 

inside the time quanta 

of the processors 

accessing them



The Classic Bathtub
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Race Conditions - Micro

• Microbenchmark
– Each thread loops, load-modify-

write as quick as possible on a 
shared variable

• Longer time quantum =
– Fewer races seen

– But: Races still happen

• Not really representative of real 
software
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Wind River Simics*

Race Conditions - Macro

• Varying time quantum length 
proven way to find errors 

– Order of events

– Interleave of software operations

• Scriptable & deterministic

– Example: 
http://blogs.windriver.com/tools/20
12/12/debugging-simics-on-
simics.html

– Some 30 tests to replicate error
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http://blogs.windriver.com/tools/2012/12/debugging-simics-on-simics.html


Ping-Pong Protocol, no Time-Out
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Ping!

Process

Ping-Pong Protocols with Time-Out
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Pong seen by processor A

Ping-Pong Protocols with Time-Out (2)

• Reduce the time quantum… 

• … or insert stalls to avoid reducing the time quantum
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Ping!
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Example: Fairness Test
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Release lock
Wait N

With a long time quantum and 
short wait, we can see that one 
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SUMMARY
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Most of the Time, Speed is Key

Wind River Simics®

Server model

Processor 
socket 1

96GB RAM

Disk

Processor 
socket 2

PCH

96GB RAM

Core Core Core Core

10G Eth Network

Server model

Processor 
socket 1

96GB RAM

Disk

Processor 
socket 2

PCH

96GB RAM

Core Core Core Core

10G Eth

Linux* Distro

User land

Linux* Distro

Database program

User land
Application server (payload) 

SpecJEnterprise* driver utility 

Java* Virtual Machine (JVM)

Server UEFI Server UEFI

*Other names and brands may be claimed as the property of others.

We need 100s of billions 
of instructions to be run 

for most real setups



When do we Need to Dial Down?

• Results (timing) skew when accessing shared resources:

– Time quantum < shortest relevant observable delay

– Example: Cache studies: time slice lower than last-level cache penalty is ”OK”

• Software time-out:

– Unit reports time-out unless a reply is seen within a short time 

– … unless we can solve it some other way (stall)

• Software expecting close timing between closely-coupled cores
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Questions?
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