
Temporal Decoupling –
Are “Fast” and “Correct” Mutually Exclusive?

Dr. Jakob Engblom, Intel Stockholm, Sweden

jakob.engblom@intel.com

© Accellera Systems Initiative 1

mailto:Jakob.engblom@intel.com

TEMPORAL DECOUPLING

© Accellera Systems Initiative 2

Temporal Decoupling
Board

Chipset

Board

SoC

Core Core PCIe

Eth
OS

SW

RTC

PIC

RAM FLASH

CPU

Core Core UART

EthOS

SW

RTC

PIC

RAM

Disk

UART

USB

SATA

ROM

Board

SoC

Core IO

Eth
OS

SW

RTC

PIC

RAM FLASH

UART

network

Simulation progress, temporal decoupling

Core

Core Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Simulation progress, cycle-by-cycle interleave

Core Core Core Core Core Core Core Core Core Core Core Core Core Core

Necessary Technique

Less overhead

• Less time spent in simulator kernel

• More time spent in models

• Fewer trips through sim kernel code

• A fast Virtual Platform (VP) has to get
to much less than 10 host instructions
per target instruction

More locality

• Data

• Code

• Better effect from Just-in-Time (JIT)
compilers and Virtualization
Technology (VT) acceleration

© Accellera Systems Initiative 4

Experiments on Wind River Simics®

• All experiments performed using Simics

• Instruction Set Simulator (ISS) modes:

– Interpreter

– Just-in-time (JIT) compiler
• Like all other fast simulators in the world

– Direct execution (VMP)
• Uses Intel® Virtualization Technology for Intel® 64 and IA-32 architectures (Intel® VT-x) to run

IA code directly on the host

© Accellera Systems Initiative 5

FAST?

© Accellera Systems Initiative 6

Example: Boot

© Accellera Systems Initiative 7

251023122187
1906

16591457

977

676

410

180

118

53

23

8

1

98
112118117108108105104

908676
61

40

8

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Time quantum length in target processor cycles

Relative Performance vs Time Slice Length – Ubuntu* 16 Linux Boot

VMP JIT

Notes:

• Target system: 4 x IA Core i7-9xx, 2000 MHz, 16 GB RAM

• Booting Ubuntu* Linux 16.04

• Virtual boot time to graphical desktop is 24s, out of which 12s are low load

*Other names and brands may be claimed as the property of others.

283127232520
2182

1740
1249

680

400

212

89

46

23

9
8

1

444449440435437430407390349
272

192

123

64

8

1

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Time quantum length in target processor cycles

Relative Performance vs Time Slice Length - User-Level Compute Program

VMP JIT

Example: Compute Program

© Accellera Systems Initiative 8

Notes:

• Target system: 4xIA Core i7-9xx, 2000 MHz, 16 GB RAM

• Running Ubuntu* 16.04, and on top of that a threaded compute

program that uses all target cores at basically 100%

• Runs for 19s of target time

*Other names and brands may be claimed as the property of others.

Example/Old: Compute Program (2008)

© Accellera Systems Initiative 9

0

20

40

60

80

100

120
1

0

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

1
0

0
0

0
0

0

R
e

la
ti

ve
 S

p
e

e
d

Temporal Decoupling time slice length (instructions)

Compute-Intense program on an 8-core NXP QorIQ P4080*

Note:

• Only JIT, as this is cross-target

• Graph starts at 10, not 1

• Peak at 100k instructions

*Other names and brands may be claimed as the property of others.

Observations

• VMP benefits from longer time slices – up to 1M instructions

– Still less than 1/1000 of a second for a typical 2-4GHz processor core

• JIT plateaus around 10k instructions

– Standard observation going back to mid-2000s

• Good default is 100k instructions, might increase from there

© Accellera Systems Initiative 10

CORRECT?

© Accellera Systems Initiative 11

Temporal Decoupling = Information Latency

Processor

P1

Processor

P2

Device

D1

0 Q

Simulator execution in real time

0 Q

0 Q

Device

D3

0 Q

Memory

Processor

P1

Q 2Q

Processor

P2

Q 2Q

Plain memory access

Device access

“Variant 1” in the

paper, with devices

running in their own

time quanta

Memory

Temporal Decoupling = Information Latency

Processor

P1
Processor

P2
Device

D1

0 Q

Simulator execution in real time

0 Q

Device

D3

Processor

P1

Q 2Q

Processor

P2
0 Q

Q 2Q

Plain memory access

Device access

Device

D2

“Variant 2” in the paper,

with devices running

inside the time quanta

of the processors

accessing them

The Classic Bathtub

© Accellera Systems Initiative 14

0

5 000 000 000

10 000 000 000

15 000 000 000

20 000 000 000

25 000 000 000

30 000 000 000

35 000 000 000

40 000 000 000

45 000 000 000

50 000 000 000

0

100

200

300

400

500

600

700
1

0

5
0

1
0

0

5
0

0

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

5
0

0
0

0
0

1
0

0
0

0
0

0

1
5

0
0

0
0

0

N
u

m
b

e
r

o
f

ta
rg

e
t

in
st

ru
ci

o
tn

s

H
o

st
 e

xe
cu

ti
o

n
 t

im
e

 (
s)

Time quantum length (cycles)

Freescale MPC8572* Linux boot, effect of time quantum length

host execution time total instructions executed

Board

SoC

Core Core

OS

SW

OS

*Other names and brands may be claimed as the property of others.

Race Conditions - Micro

• Microbenchmark
– Each thread loops, load-modify-

write as quick as possible on a
shared variable

• Longer time quantum =
– Fewer races seen

– But: Races still happen

• Not really representative of real
software

© Accellera Systems Initiative 15

10000
5000

1000
100

10

1

10

100

1000

10000

100000

1000000

2 3 4 5 6 7 8 T
im

e
 q

u
a

n
tu

m
 l

e
n

g
th

fr
e

q
u

e
n

cy
 o

f
ra

ce
s

tr
ig

g
e

ri
n

g

Number of threads in microbenchmark

Frequency of race conditions triggering, microbenchmark

Board

SoC

Core Core

OS

SW

Core Core Core Core Core Core

Wind River Simics*

Race Conditions - Macro

• Varying time quantum length
proven way to find errors

– Order of events

– Interleave of software operations

• Scriptable & deterministic

– Example:
http://blogs.windriver.com/tools/20
12/12/debugging-simics-on-
simics.html

– Some 30 tests to replicate error

© Accellera Systems Initiative 16

8-core Intel® Architecture Host

Fedora Linux 16*

CC

(Inner) Simics

Power Architecture* Target

Test Software

8-core Intel Architecture Target

Fedora 16

Shell command
repeating runs of

SimicsC
o

n
tr

o
l,

ch
ec

kp
o

in
t,

an

d
 b

u
g

d
et

ec
ti

o
n

 s
cr

ip
t

  

C

*Other names and brands may be claimed as the property of others.

http://blogs.windriver.com/tools/2012/12/debugging-simics-on-simics.html

Ping-Pong Protocol, no Time-Out

© Accellera Systems Initiative 17

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

0.1 1 5 10 50 100 500 1000 5000

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

V
ir

tu
a

l
ti

m
e

 (
s)

Network latency (µs)

H
o

st
 t

im
e

 (
s)

tftp total transfer time vs network latency

host time (s)

virtual time (s)

Board

SoC

Core

OS

SW

Tftp server

Network

VP is running at 60x
real-time speedVP is running at 1x

real-time speed

Ping!

Process

Ping-Pong Protocols with Time-Out

© Accellera Systems Initiative 18

Processor A

Processor B

Run… Wait…

Pong!



On hardware, this is expected path

Ping!

Processor A

Processor B

Run… Wait…

Pong!

If the time slice is longer than the time-out

Time out!

Process

 

Pong seen by processor A

Ping-Pong Protocols with Time-Out (2)

• Reduce the time quantum…

• … or insert stalls to avoid reducing the time quantum

© Accellera Systems Initiative 19

Ping!

Processor A

Processor B

Run… Wait

Pong!

Make the ping operation take a long time so that processor B sees it and replies
before the check for the reply & the time-out starts

Process

Stall for one time quantum Stall…

Wait seems really short

Ping!

Processor A

Processor B

Run… Wait…

Pong!

Process



Pong seen by processor A

Wait

Example: Fairness Test

© Accellera Systems Initiative 20

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

70 (no delay) 130 670 6100 60100

Minimum length of loop (cycles)

Thread unbalance, for time slice 200k cycles

Run 1 Run 2

Run 3 Run 4

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

70 (no delay) 130 670 6100 60100

Minimum length of loop (cycles)

Thread unbalance, for time slice 100 cycles

Run 1 Run 2

Run 3 Run 4

4 x threads: Loop:
Take lock
Inc counter
Release lock
Wait N

With a long time quantum and
short wait, we can see that one

thread dominates the lock

Board

SoC

Core Core

OS

SW

Core Core

With a short time quantum,
there is much less unfairness –
especially once wait is longer

than time quantum

SUMMARY

© Accellera Systems Initiative 21

(simics slide collection) 22

Most of the Time, Speed is Key

Wind River Simics®

Server model

Processor
socket 1

96GB RAM

Disk

Processor
socket 2

PCH

96GB RAM

Core Core Core Core

10G Eth Network

Server model

Processor
socket 1

96GB RAM

Disk

Processor
socket 2

PCH

96GB RAM

Core Core Core Core

10G Eth

Linux* Distro

User land

Linux* Distro

Database program

User land
Application server (payload)

SpecJEnterprise* driver utility

Java* Virtual Machine (JVM)

Server UEFI Server UEFI

*Other names and brands may be claimed as the property of others.

We need 100s of billions
of instructions to be run

for most real setups

When do we Need to Dial Down?

• Results (timing) skew when accessing shared resources:

– Time quantum < shortest relevant observable delay

– Example: Cache studies: time slice lower than last-level cache penalty is ”OK”

• Software time-out:

– Unit reports time-out unless a reply is seen within a short time

– … unless we can solve it some other way (stall)

• Software expecting close timing between closely-coupled cores

© Accellera Systems Initiative 23

Questions?

© Accellera Systems Initiative 24

