
Automatic Generation of Implementation Layer for
Embedded System using PSS and SystemRDL

Nikita Gulliya

Sudhir Bisht

Typical Chip Design

• Hardware of the SoC is designed by HW team
• But used by

• Verification/Emulation team
• Firmware team
• Validation team
• Software team

• How does the software interact with the IPs?
• Through the Hardware Software Interface (HSI)

• Hardware is at the core and software API is around it
• Device drivers (part of the HSI) are tedious to create

• They are written in C and Assembly

Introduction to a Typical SoC

A
P

B
 T

ar
ge

t Sensors

A
P

B
 T

ar
ge

t Sensors

CPU AXI /AHB Interconnect Fabric A
P

B

B
ri

d
ge

A
P

B
 b

u
s

P
ro

gr
am

m
ab

le

Ta
rg

et

P
ro

gr
am

m
ab

le

Ta
rg

et

P
ro

gr
am

m
ab

le

Ta
rg

et

P
ro

gr
am

m
ab

le

Ta
rg

et

P
ro

gr
am

m
ab

le

Ta
rg

et

C/C++
Program

Assembly
Slave w/
Memory

Memory

interrupts

Challenges Development Teams face with
Sequences

•Sequence is not clear
or well documented
•A sequence works on
one platform and not
on other
•No way to create the
same debug
environment on
multiple platforms

Has this ever
happened to you?

•In-exact definition
•Inconsistent
interpretation
•Incorrect
implementation

Inconsistent definition
of Sequences

•Industry Standards –
IP-XACT, SystemRDL,
RALF, PSS
•Custom formats –
CSV, Excel, XML
•IDesignSpec formats
– IDS-NG, IDSWord,
IDSExcel

Sequences contain
Register data that can

be in any format:

•Architects/designers
plan them
•Design engineers
encode Verilog
functionality
•Verification engineers
write them in UVM or
PSS

Sequences are
everywhere

Challenges Faced

• SOC design companies
• Increasing demands of design complexity and design

performance
• Combining automation with flexibility to accommodate changes

in sub-systems across applications
• Driving down the cost of design for a better ROI
• Shrinking market windows
• Boosting productivity of design teams to meet shorter market

windows
• Requirement for HW/SW co-simulation to catch the bugs from

the early design stage.
• There is a lack of common set of sequences which can be

shared across the teams.

An Ideal Solution
• PSS and SystemRDL will help design teams to generate unified

test and programming sequences in UVM and Firmware from
the specification.

• The register information can be in standard format like
PSS/SystemRDL.

• Users can define the test sequences in PSS (or Excel, Python
GUI (IDS-NG)), and then generate the unified test sequences
from verification to validation.

• The tests generated are UVM sequences for simulation and
firmware sequences for HW/SW co-simulation and post silicon
validation:

• start-up sequence, read-write operation shutdown sequence, low
power mode sequence etc.

Sequences
• Sequences are a “set of steps” that involve writing/reading specific bit fields of the
registers in the IP/SoC.

• These sequences can be simple, or complex involving conditional expressions,
array of registers, loops, etc.

• PSS users can write a single sequence specification and a compiler has been
written to generate the UVM sequences for verification, System Verilog sequences
for validation, C code for firmware & Device driver development and various output
formats for Automatic Test Equipment.

• Sequences can achieve a certain functionality such as:
• Digital Programming Sequences
• Analog and Mixed Signal Sequences

• Power UP
• Low Power mode

• Functional Sequences
• Test Sequences
• Types

• Simple
• Hierarchical

Portable Stimulus Standard

• The Portable Test and Stimulus Standard defines a specification
for creating a single representation of stimulus and test scenarios
• With this standard, users can specify a set of behaviors once,
from which multiple implementations may be derived.
• A model consists of two types of class definitions:

• elements of behavior, called actions;
• passive entities used by actions, such as resources, states, and data

flow items, collectively called objects.

• The behaviors associated with an action are specified as
activities.
• All of these elements may also be encapsulated and extended
in a package to allow for additional reuse and customization.

Portable Sequences and Golden Specification

• Sequences can be captured in PSS, python, spreadsheet

format, or GUI(NG) and generate multiple output formats for a

variety of domains:

• UVM sequences for verification

• SystemVerilog sequences for validation

• C code for firmware and device driver development

• Specialized formats for automated test equipment (ATE)

• Hooks to the latest Portable Stimulus Standard (PSS)

• Documentation outputs such as HTML and flowchart

Machine Power Controller
• The power controller is a discrete output device that regulates the system with
guidance from the temperature controller.
• Here are some common registers and fields that may be used in a machine power
controller:
1. Power Control Register: This register contains several fields that control the
power supply, including:

 a. Power Supply Enable: This field controls whether the power supply is turned on or off.
 b. Voltage Control: This field adjusts the voltage level of the power supply.
 c. Current Limit: This field sets the maximum current that the power supply can deliver.

2. Status Register: This register contains fields that indicate the current status of the
power supply, including:

 a. Power Supply Status: This field indicates whether the power supply is currently turned on or
off.
 b. Overvoltage Status: This field indicates whether the input voltage is above the allowed range.
 c. Overcurrent Status: This field indicates whether the output current is above the allowed range.

Machine Power Controller contd..

3. Interrupt/Req Register: This register contains fields that control interrupt

behavior, including:
 a. Interrupt Enable: This field controls whether the system generates interrupts when certain

events occur, such as overvoltage or overcurrent conditions.

 b. Interrupt Status: This field indicates whether an interrupt has been generated.

4. Fault/ack Register: This register contains fields that indicate the occurrence of

faults, including:
 a. Overvoltage Fault: This field indicates whether the input voltage has exceeded the maximum

allowed level.

 b. Overcurrent Fault: This field indicates whether the output current has exceeded the maximum

allowed level.

 c. Temperature Fault: This field indicates whether the power supply has overheated.

PSS Register Model
• Block/register group will be defined as component and registers are defined as package and struct

containing information of fields inside the register for a power controller.

package elevator_regs_pkg {

 import addr_reg_pkg::*;

 struct UNITCONTROLLER_reg_s : packed_s<> {

 bit[1] UPWARD_CONTROLLING_UNIT;

 bit[1] rsvd_0;

 bit[1] DOWNWARD_CONTROLLIG_UNIT;

 bit[1] rsvd_1;

 bit[1] OPEN_FLOOR;

 bit[1] rsvd_2;

 bit[1] CURRENT_FLOOR;

 bit[25] rsvd_3;

 };

struct REQUESTRESOLVER_reg_s : packed_s<> {

 bit[1] ENTRY_PUSH_BUTTON;

 bit[1] EXIT_PUSH_BUTTON;

 bit[6] rsvd_0;

 bit[1] EMERGENCY_BUTTON;

 bit[1] UP_PUSH_BUTTON1;

 bit[2] rsvd_1;

 bit[1] UP_PUSH_BUTTON2;

 bit[2] rsvd_2;

 bit[1] DOWN_PUSH_BUTTON1;

 bit[8] rsvd_3;

 bit[1] DOWN_PUSH_BUTTON2;

 bit[7] rsvd_4;

 };

.

. .

SystemRDL instead of intrinsic PSS
• SystemRDL is a language

for the design and delivery
of intellectual property (IP)
products used in designs.

• Its semantics supports the
entire life-cycle of registers
from specification, model
generation, and design
verification to maintenance
and documentation.

• Registers are not just limited
to traditional configuration
registers, but can also refer
to register arrays and
memories.

addrmap power_top {

addrmap elevator {

 reg UNIT_CONTROLLER {

 regwidth = 32;

 field {

 hw = r;

 sw = rw;

 } UPWARD_CONTROLLING_UNIT[0:0] = 1'h0;

 field {

 hw = r;

 sw = rw;

 } DOWNWARD_CONTROLLIG_UNIT[2:2] = 1'h0;

 field {

 hw = r;

 sw = rw;

 } OPEN_FLOOR[4:4] = 1'h1;

 field {

 hw = r;

 sw = rw;

 } CURRENT_FLOOR[6:6] = 1'h0;

 };

Advantages of SystemRDL

• Defining register specification in SystemRDL has an advantage over

PSS in case special registers such as interrupt and counters are used.

• SystemRDL allows to define parameters within the specification,

which can help to create more flexible and reusable designs.

• SystemRDL also includes a Perl preprocessor, which allows including

Perl code within specification.

• This can be used to automate certain tasks, such as generating a list of

registers or automatically calculating values based on other parameters.

Connecting the Register Model
• In PSS, component keyword stands for the block which was defined above in the register

specification which contains the sequence specification.

• extend keyword contains the sequences it imports and instantiates the register specification, it

further contains multiple action for each register which may contain an activity.

• A number of actions and their relative scheduling constraints is used to specify the verification

intent for a given model and finally exec blocks, which contains pre_solve and post_solve exec block.

• Statements in pre_solve blocks can read the values of non-random attribute fields and their non-

random children.

• Statements in post_solve blocks are evaluated after the solver has resolved values for random

attribute fields and are used to set the values for non-random attribute fields based on randomly-

selected values.

• Exec blocks also contains body exec block, it contains the actual functionality of the sequence in

terms of loops such as while, conditions such as if-else etc

Connecting the Register Model cntd..
component elevator_controller {

extend elevator_controller {

 import elevator_regs_pkg::*;

 UNITCONTROLLER_reg_s regs;

 action display_floor {

 rand int floor_no ;

 UNITCONTROLLER_reg_s uc_reg;

 exec post_solve {

uc_reg.CURRENT_FLOOR=1;

 }

 exec body {

 message("You are now on floor");

 }

 }

 action request_floor {

 const int max_floor=10;

 rand int desti_floor ;

 UNITCONTROLLER_reg_s uc_reg;

 exec body {

uc_reg.UNITCONTROLLER.write().OPEN_FLOOR==desti_floor;

 if (

uc_reg.UNIT_CONTROLLER.read().OPEN_FLOOR <1 ||

uc_reg.UNIT_CONTROLLER.read().OPEN_FLOOR > max_floor) {

 message(" invalid floor no

.Please try again");

 }

 }

 }

. . . .

Specification in IDS-NG Format

Portable Sequences Features
• Looping

̶ For loop

̶ while condition

• Condition

̶ If - else condition

• Wait statement

• Switch command

• External function call

• Structs to define packets and
descriptors (UVM and header)

• Optimized read/write

• Consolidated read/write

• Commenting commands

• Powerful referencing of macro sequences and IP’s from any
level

• IP’s in different input formats (like IP-XACT, System-RDL,
RALF, IDSWord, IDSExcel)

• Fork Join

• Assertions

• Concatenation

• Handling interfaces

• Copyright Headers

• Multiple Structures

• Guard Banding

• Randomization and Constraints

• Conditional wait

Results

• PSS compiler and GUI generator has been developed for

generation of various outputs from above golden custom

sequence specification such as:
• SystemVerilog/MATLAB output for Validation

• UVM output for Verification

• C output for Firmware

• CSV output for ATE

• HTML/Flowchart for documentation

C Output
#include <stdio.h>

int display_floor() {

 int floor_no = 1 ;

 FIELD_WRITE(elevator_UNIT_CONTROLLER_ADDRESS,

floor_no <<

ELEVATOR_UNIT_CONTROLLER_CURRENT_FLOOR_OFFSET,

ELEVATOR_UNIT_CONTROLLER_CURRENT_FLOOR_MASK,ELEVATOR_U

NIT_CONTROLLER_CURRENT_FLOOR_OFFSET);

 // Call firmware print method

 printf("You are now on floor",);

 return 0;

}

int request_floor() {

 static const int max_floor = 10 ;

 int UNIT_CONTROLLER_OPEN_FLOOR;

 int desti_floor = 0 ;

 // Call firmware print method

 printf("Which floor would you like to go to",);

FIELD_WRITE(elevator_UNIT_CONTROLLER_ADDRESS, desti_floor <<

ELEVATOR_UNIT_CONTROLLER_OPEN_FLOOR_OFFSET,

ELEVATOR_UNIT_CONTROLLER_OPEN_FLOOR_MASK,ELEVATOR_UNIT_CONTROLLE

R_OPEN_FLOOR_OFFSET);

 UNIT_CONTROLLER_OPEN_FLOOR =

FIELD_READ(elevator_UNIT_CONTROLLER_ADDRESS,ELEVATOR_UNIT_CONTRO

LLER_OPEN_FLOOR_MASK,

ELEVATOR_UNIT_CONTROLLER_OPEN_FLOOR_OFFSET);

 if(UNIT_CONTROLLER_OPEN_FLOOR < 1 ||

UNIT_CONTROLLER_OPEN_FLOOR > max_floor){

 // Call firmware print method

 printf("invalid floor no .Please try again",);

 }

 return 0;

}

.

UVM Output
class uvm_move_elevator_seq extends

uvm_reg_sequence#(uvm_sequence#(uvm_reg_item));

 `uvm_object_utils(uvm_move_elevator_seq)

 uvm_status_e status;

 power_top_block rm ;

 function new(string name =

"uvm_move_elevator_seq") ;

 super.new(name);

 endfunction

 int Current_floor = 10 ;

 int lvar;

 task body;

uvm_reg_data_t UNIT_CONTROLLER_OPEN_FLOOR ;

 uvm_reg_data_t UNIT_CONTROLLER_CURRENT_FLOOR ;

 uvm_reg_data_t UNIT_CONTROLLER ;

 if(!$cast(rm, model)) begin

 `uvm_error("RegModel :

power_top_block","cannot cast an object of type

uvm_reg_sequence to rm");

 end

 if (rm == null) begin

 `uvm_error("power_top_block", "No register

model specified to run sequence on, you should specify

regmodel by using property 'uvm.regmodel' in the

sequence")

 return;

 end

 rm..read(status, UNIT_CONTROLLER_OPEN_FLOOR,

.parent(this));

 rm..read(status, UNIT_CONTROLLER_CURRENT_FLOOR,

.parent(this));

.

Thank You

Questions

	Slide 1: Automatic Generation of Implementation Layer for Embedded System using PSS and SystemRDL
	Slide 2: Typical Chip Design
	Slide 3: Introduction to a Typical SoC
	Slide 4: Challenges Development Teams face with Sequences
	Slide 5: Challenges Faced
	Slide 6: An Ideal Solution
	Slide 7: Sequences
	Slide 8: Portable Stimulus Standard
	Slide 9: Portable Sequences and Golden Specification
	Slide 10: Machine Power Controller
	Slide 11: Machine Power Controller contd..
	Slide 12: PSS Register Model
	Slide 13: SystemRDL instead of intrinsic PSS
	Slide 14: Advantages of SystemRDL
	Slide 15: Connecting the Register Model
	Slide 16: Connecting the Register Model cntd..
	Slide 17: Specification in IDS-NG Format
	Slide 18: Portable Sequences Features
	Slide 19: Results
	Slide 20: C Output
	Slide 21: UVM Output
	Slide 22: Thank You
	Slide 23: Questions

