
Addressing Shared IP Instances in a Multi-
CPU System Using Fabric Switch 

Priyanka Gharat (priyanka@siliconinterfaces.com), VLSI Engineer
Avnita Pal (avnita@siliconinterfaces.com), VLSI Engineer
Sastry Puranapanda (sastry@siliconinterfaces.com), VLSI 

Engineer



Abstract
• The objective of this presentation is to utilize the capabilities of PSS-

based DSL language features, such as byte addressability, resource
sharing-locking, multiple component instances, and true parallel 
scenarios. 

• The purpose is to address problems related to data integrity and 
bottlenecks in multi-core processors that communicate with multiple 
devices. 

• This is achieved by implementing a learning heterogeneous switch 
fabric with address storage and translation. With this feature, cores
can communicate with any endpoint device on one of the switch 
ports while leaving other ports free for communication, thus enabling 
parallel traversal operations. 

• The result is a method that maintains parallelism while ensuring data 
integrity through resource sharing/locking.



Challenges
• In modern System-on-Chip (SoC) 

design, data flow between various 
devices within the SoC occurs through 
the bus interface. 

• The bi-directional channels enable 
data to flow between the memory and 
multiple instances of the same device 
or different devices. 

• The ability to concurrently exchange 
data between multiple devices while 
maintaining data integrity is a crucial 
challenge in SoC design.



• To address this challenge, the Portable Stimulus Standard (PSS) 
introduces the powerful feature of component instances, which enables 
the creation of copies of IPs that can be reconfigured based on the 
selected component.

• These component instances can have exclusive or shared access to the 
bus interface, allowing for concurrent data exchange. The resources are 
mapped to agents in the UVM target test-bench, enabling effective testing 
of the SoC design.

• In this paper, the solution is implemented using component instance 
array, address region/space, byte addressability and discuss how they 
facilitate efficient data exchange and address challenges in SoC design.



What Is Fabric Switch?
• A multi-core CPU SOC requires access to various IPs (Communications, 

Networking, Audio/Video, and Memory) through a common Bus Interface. 
When the Bus and Channels intersect, they form a matrix-like structure
known as a fabric or mesh. 

• The Fabric Switch is like a crossbar exchange wherein data may flow from 
any one upstream input port to any one downstream output port. 

• The idea is that we have a matrix connectivity from upstream to 
downstream. The ports are bi-directional so upstream/downstream and 
input/output are only notional. 

• The upstream may be connected to multi-Core and downstream ports may 
be connected to several different or even same sets of devices.



Data flow is managed through parallel channels to maintain data integrity. CPU signals 
to share data between resource pools when transferring data from memory to a
device. Figure 2 illustrates the sharing/locking process.

Channel resource may be locked or Device ID matched for data intended for different 
devices. Endpoint device claims address space location for secure data storage. 
Common BUS IF used for multiple IPs via data flow object.



Implementation Using Fabric Switch
• Concurrent data exchange between 

multiple devices while ensuring data 
integrity is a crucial challenge in SoC
design, as it can lead to bottlenecks, 
data corruption, and loss.

• When multiple CPUs attempt to write 
or read through the same shared bus, 
there is a risk of address and data 
corruption.

• This paper aims to utilize PSS/DSL 
language features and specifically 
enhance SPI with Master Slave
communication for a multi-Core 
environment addressing multi-
Devices.



Pictorial Representation of Created Scenario
• Implementation has been written for 

multi-Cores with multiple SPI slaves. 
Each SPI master has been configured 
as regions and an address space,
byte addressability, and memory has 
been allocated using PSS version 2.0 
DSL language construct have unique 
traits and claimed using traits. 

• The component tree has been used to 
resolve the address space and create 
scenarios such as write data/read data 
performed parallel and considering 
fabric switch the pipelining delay.



Evidence for Implementation 
• The following source code shows the 

transfer of data to different slave from 
master using address space, region, 
and byte addressability which are the 
construct of PSS version 2.0. 

• This data is part of resources are 
being addressed from the pool 
created at the top-level component 
and the different multiple instances of 
master and slave get bind from those 
pool where they are being shared and 
locked during a particular transfer. 



• By leveraging the powerful features provided 
by PSS/DSL, a complex task has been 
successfully implemented with ease. One of 
the major challenges encountered when 
dealing with multiple CPUs in an SOC or 
sub-system is the utilization of multiple 
channels to access the same IP. 

• To address this, we have implementation, 
we have created multiple instances of a 
component and allocated them to several 
cores. For instance, core_c[0] communicates 
with slave1 (printer), core_c[1] 
communicates with slave2 (printer), and 
core_c[2] communicates with slave3 
(mouse).



• Concurrently, 
different packets of 
data are sent to the 
printers, while the 
Switch Ports lock 
resources from a 
resource pool to gain 
exclusive access to 
the bus interface and 
initiate the data 
transfer. At the same 
time, core_c[2] also 
locks a resource and 
facilitates the 
exchange of data 
flow. 



Conclusion
• In conclusion, this research paper explains the feasibility of using 

specification PSS v2.0 for simultaneous upstream/downstream of byte-
addressable data to multiple shared/locked devices in multi-CPU SOC 
environments. 

• Additionally, the paper demonstrates that significant speed-ups can be 
achieved if the implementation is done in a concurrent and/or 
distributed environment. 

• This research presents a promising approach to improving the 
performance of multi-CPU SOC systems and can be useful for future 
developments in this field.



Questions Please ?

THANK YOU


