DESIGN AND VCRLQ;\W

DV LN

CONFERENCE AND EXHIBITION

Addressing Shared IP Instances in a Multi-
CPU System Using Fabric Switch
Priyanka Gharat (priyanka@siliconinterfaces.com), VLS| Engineer
Avnita Pal (avnita@siliconinterfaces.com), VLS| Engineer
Sastry Puranapanda (sastry@siliconinterfaces.com), VLSI

Engineer accellera
Silicon lntel;ﬁlc'e.s":

are and visi design center’ SYSTEMS INITIATIVE

Abstract

* The objective of this presentation is to utilize the capabilities of PSS-
based DSL language features, such as byte addressability, resource

sharing-locking, multiple component instances, and true parallel
scenarios.

* The purpose Is to address problems related to data integrity and

bottlenecks in multi-core processors that communicate with multiple
devices.

 This is achieved by implementing a learning heterogeneous switch
fabric with address storage and translation. With this feature, cores
can communicate with any endpoint device on one of the switch

ports while leaving other ports free for communication, thus enabling
parallel traversal operations.

* The result is a method that maintains parallelism while ensuring data
integrity through resource sharing/locking.

2023/06/22

SPSTENG MTarsE

Challenges

* In modern System-on-Chip (SoC)
design, data flow between various

devices within the SoC occurs through

the bus interface.

* The bi-directional channels enable
data to flow between the memory and
multiple instances of the same device
or different devices.

* The ability to concurrently exchange
data between multiple devices while
maintaining data integrity is a crucial
challenge in SoC design.

2023/06/22

AAAAA

SPSTENI MT arNE

« To address this challenge, the Portable Stimulus Standard (PSS)
introduces the powerful feature of component instances, which enables
the creation of copies of IPs that can be reconfigured based on the
selected component.

 These component instances can have exclusive or shared access to the
bus interface, allowing for concurrent data exchange. The resources are
mapped to agents in the UVM target test-bench, enabling effective testing
of the SoC design.

* In this paper, the solution is implemented using component instance
array, address region/space, byte addressability and discuss how they
facilitate efficient data exchange and address challenges in SoC design.

2023/06/22

SPSTENG MTarsE

What Is Fabric Switch?

« A multi-core CPU SOC requires access to various IPs (Communications,
Networking, Audio/Video, and Memory) through a common Bus Interface.
When the Bus and Channels intersect, they form a matrix-like structure
known as a fabric or mesh.

* The Fabric Switch is like a crossbar exchange wherein data may flow from
any one upstream input port to any one downstream output port.

* The idea is that we have a matrix connectivity from upstream to
downstream. The ports are bi-directional so upstream/downstream and
input/output are only notional.

* The upstream may be connected to multi-Core and downstream ports may
be connected to several different or even same sets of devices.

2023/06/22

SPSTENG MTarsE

Data flow is managed through parallel channels to maintain data integrity. CPU signals
to share data between resource pools when transferring data from memory to a
device. Figure 2 illustrates the sharing/locking process.

Channel resource may be locked or Device ID matched for data intended for different
devices. Endpoint device claims address space location for secure data storage.
Common BUS IF used for multiple IPs via data flow object.

resource res{...} resource res{...}
pool [3] res res_p; pool [3] res res_p;
bind res_p*; bind res_p*;
res[0] - Dataflow res(0] T Dataflow
ID1 ID1
[res[1] ———‘—PI : Slave 1 Ma;rt?a?id " l res[1] — share res[O[RS AT Ma;rt::]i -
[res(2]] | SPI | (Printer) \TAIN by [res[2] } SPI GUUEUR 16 slave 1 by
Master - ocking resQ L » Master i
IDO IDO '
— Dataflow l --share res[1] Dataflow

""" Slave 2 from

(Printer) Master id 0
to slave 2 by
haring res

Slave 2 from
(Printer) Master id 0

to slave 2 by
ocking res1

Dataflow
from
Master id 0
to slave 3 by
haring res

Dataflow
from
Master id O
to slave 3 by
ocking res

Slave 3
(Mouse)

Slave 3
(Mouse)

2023/06/22

FETENS MT arse

Implementation Using Fabric Switch

« Concurrent data exchange between
multiple devices while ensuring data
integrity is a crucial challenge in SoC
design, as it can lead to bottlenecks,
data corruption, and loss.

* When multiple CPUs attempt to write L
or read through the same shared bus, ™ ™ & P T
there is a risk of address and data | . [3 —— R
corruption. ‘

» This paper aims to utilize PSS/DSL Switch’ / Switch \ Switch7 8-
language features and specifically Bus IF

enhance SPI with Master Slave poier

PCIE Root
Complex Hub.

communication for a multi-Core s
environment addressing multi-
Devices.

2023/06/22

Switch 1

SPSTENI MT arNE

Pictorial Representation of Created Scenario

* Implementation has been written for
multi-Cores with multiple SPI slaves. ety st
Each SPI master has been configured
as regions and an address space,
byte addressability, and memory has
been allocated using PSS version 2.0
DSL language construct have unique
traits and claimed using traits.

(e £ (g

* The CompOnent tree haS been used tO spi_master_c[0] spi_master_c[1] spi_master_c[2]

resolve the address space and create Sn o
scenarios such as write data/read data ,‘ j \ \ o

p e rfo r'm e d p a ra I I e I a n d CO n S i d e ri n g spi_s[::?]ve_c{ l spi_sil13]ve_c spi_s[:?]ve_c spi_sil1a]ve_c spi_s[g:]ve_c spi_s[I1a]ve_c spi_si:?]ve_c
fabric switch the pipelining delay.

2023/06/22

spi_master_c[n]

SYSTENG MT ANNE

Evidence for Implementation

The following source code shows the
transfer of data to different slave from
master using address space, region,
and byte addressability which are the
construct of PSS version 2.0.

This data is part of resources are
being addressed from the pool
created at the top-level component
and the different multiple instances of
master and slave get bind from those
pool where they are being shared and
locked during a particular transfer.

2023/06/22

SPSTENI MT AT

[package pkg{

resource core_r {rand bit [3:8] data;}

resource spi_dataset_r{

rand bit [31:8] data;

b
b
//Struct definition for Trait which is the device ID.
struct TRAIT{rand int device_ID;};

enum cache_attr_e {PCI, PCIe, AXI, WB};
enum security_level_e {level®, levell, level2, level3};

struct mem_traits_s:TRAIT {
rand cache_attr_e ctype;
rand security level e sec_level;

b

struct addr_region_base s {
bit[64] size;
b

//Since Tools still are not supporting PSS 2.0 we
are using global address region.
//struct addr_region_s <struct TRAIT = null_trait_s>

struct addr_region_s:addr_region_base_s

{

mem_traits_s trait;

b

struct transparent_addr_region_s:addr_region_s
{

bit[64] addr;
}-

struct fb trait s {}

//struct transparent_addr_region_s <struct TRAIT = null_trait_s>

« By leveraging the powerful features provided
by PSS/DSL, a complex task has been
successfully implemented with ease. One of
the major challenges encountered when
dealing with multiple CPUs in an SOC or
sub-system is the utilization of multiple
channels to access the same |P.

« To address this, we have implementation,
we have created multiple instances of a
component and allocated them to several
cores. For instance, core c[0] communicates
with slave1 (printer), core c[1]
communicates with slave2 (printer), and
core_c[2] communicates with slave3
(mouse).

2023/06/22

component fabric_switch_c<struct TRAIT =null_trait_sss>{
import pkg::spi_dataset_r;
pool[5] spi_dataset_r dataset_p;
bind dataset_px;
rand TRAIT trait_s;

//Component Instantiated under fabric component
spi_master_c spi_master[3];
core_c core[3];
action root_a{
activity {
schedule{
core[B8].write_a with {dataset_p.resource_id=0;
dataset_p.data =4'b1611};
spi_master[8].read_a with {dataset_p.resource_id=0;
dataset_p.data= core[0].write_a.dataset_p.data};
b
parallel{
core[1].write_a with {dataset_p.resource_id=1;};
spi_master[1].read_a with {dataset_p.resource_id=1;};

b
b
b
//===========================
//7SP1_MASTER
//===========================

component spi_master_c <struct TRAIT = npull_trait_s>
:addr_space_base_c{
import pkg::x;
/*Action to perform the write operation
on the SPI slave where resources are locked */
action write_a {
output m_data_buff_b wr_prod_o;
ranjd bit [7:8]urite_data;

SPSTENI MT arNE

« C tl TR R R
Oncu rren y, assert(req.randonize() with{ //Component definitions of address spaces
wr_data = {{write_data}}; component addr_space_base_c{}

1 ctrl_reg[7] = {{wr_prod_o.ctrl_reg.spie}};
dlﬁerent paCketS Of 1) //component contigquous_addr_space_c

finish_iten(req); <struct TRAIT = null_trait_s>:addr_space_base _c
data are Sent to the 900 component contiguous_addr_space_c:addr_space_base_c{
. . b ’ //Funtftion ?oid add_rggion(addr_region_s(TRMT) r);
prlntersy Whlle the action write_res_share_a:write_a{ function vold add_reglon():
. share core_r core_s; //functionvoid add_nonallocatable_region(addr_region_s<> r);

SWItCh PortS IOCk b function void add_nonallocatable_region()

action write_res_lock_a:write_a{ - :
resou rces from a //1ock core_r core_l,core_10,core_11; y: SRSl SpESSIEN RS e

b

. //Action to perform the read operation on the SPI SLAVE //component transparent_addr_space c

action read_a { <struct TRAIT = null_trait_s>:contiguous_space_c<TRAIT>

resource pool to gain|
lock core_r core_1; transparent_addr_space_c:contiguous_addr_space_c{
xclusive access to input data_bure b rd_cons.

e I t 1nput data_buff_b ra_cons_1; /*It is illegal to pass a non-transparent region to the

b add_region() function.=/

1 H
the bus interface and |
e component pss_top{}

component spi_slave_c<struct TRAIT = null_trait_s>

tadd b {
transfer. At the same |ivoa extend component pss._top <
' //Action T ive the data duri it tai .
time, core c[2] also acti‘l,fgx_i’.rjﬁiiafi {1" T T A transparent addr space ¢ sys_memi
OCK core_r core_1;3
h H .

locks a resource and input m data burf s wr_cons 1; tranaparent. addr spote. o Tocal memi
faCilitateS the)D transparent addr reqion s v0;
exchange of data

flow.

initiate the data I

2023/06/22

SISTENI MT AT

Conclusion

* In conclusion, this research paper explains the feasibility of using
specification PSS v2.0 for simultaneous upstream/downstream of byte-
addressable data to multiple shared/locked devices in multi-CPU SOC

environments.

« Additionally, the paper demonstrates that significant speed-ups can be
achieved if the implementation is done in a concurrent and/or
distributed environment.

* This research presents a promising approach to improving the
performance of multi-CPU SOC systems and can be useful for future

developments in this field.

N/ /2023
' 2023/06/22 DV 1_1 N
_

SPSTENG MTarse

THANK YOU

00
g

Questions Please ?

)
2023/06/22
SYSTENG MT ANNE

