

Addressing Shared IP Instances in a Multi-CPU

System Using Fabric Switch A Comprehensive

Solution

Priyanka Gharat, VLSI Design Engineer, Silicon Interfaces, Mumbai, India (priyanka@siliconinterfaces.com)

Avnita Pal, VLSI Design Engineer, Silicon Interfaces, Mumbai, India (avnita@siliconinterfaces.com)

Sastry Puranapanda, Design Engineer, Silicon Interfaces, Mumbai, India (sastry@siliconinterfaces.com)

Abstract— The objective of this paper is to utilize the capabilities of PSS-based DSL language features, such as byte

addressability, resource sharing/locking, multiple component instances, and true parallel scenarios. The purpose is to address

problems related to data integrity and bottlenecks in multi-core processors that communicate with multiple devices. This is

achieved by implementing a learning heterogeneous switch fabric with address storage and translation. With this feature, cores

can communicate with any endpoint device on one of the switch ports while leaving other ports free for communication, thus

enabling parallel traversal operations. The result is a method that maintains parallelism while ensuring data integrity through

resource sharing/locking.

Keywords—Switch Fabric, bottleneck, multi-core, sharing, locking, component

I. INTRODUCTION

In modern System-on-Chip (SoC) design, data flow between various devices within the SoC occurs through the bus

interface. The bi-directional channels enable data to flow between the memory and multiple instances of the same device or

different devices. The ability to concurrently exchange data between multiple devices while maintaining data integrity is a

crucial challenge in SoC design. To address this challenge, the Portable Stimulus Standard (PSS) introduces the powerful

feature of component instances, which enables the creation of copies of IPs that can be reconfigured based on the selected

component. These component instances can have exclusive or shared access to the bus interface, allowing for concurrent

data exchange. The resources are mapped to agents in the UVM target test-bench, enabling effective testing of the SoC

design. In this paper, the solution is implemented using component instance array, address region/space, byte addressability

and discuss how they facilitate efficient data exchange and address challenges in SoC design.

Figure. 1. Data flow between and multiple instances of same device or different data flow to different devices

2

II. WHAT IS FABRIC SWITCH?

A multi-core CPU SOC requires access to various IPs (Communications, Networking, Audio/Video, and

Memory)through a common Bus Interface. When the Bus and Channels intersect, they form a matrix-like structure

known as a fabric or mesh. The Fabric Switch is like a crossbar exchange wherein data may flow from any one

upstream input port to any one downstream output port. The idea is that we have a matrix connectivity from

upstream to downstream. The ports are bi-directional so upstream/downstream and input/output are only

notional. The upstream may be connected to multi-Core and downstream ports may be connected to several

different or even same sets of devices.

III. RESOURCE SHARING/LOCKING

 PSS can be used to describe complex scenarios for SPI communication at the block level, which can be

reused at the SoC level. With PSS, instances of SPI IP components can be defined through a component instances

array, and a pool of resources can be defined and using traits a specific device is being claimed via the bus interface.

Each SPI IP component's atomic action can either lock or share a resource to access the bus interface for data flow

exchange

Fig. 2.a. Exclusive lock of a resource by different SPI component

instances to write different data to different slaves.

Fig. 2.b. Sharing of resource by different SPI component instances

to write same data to different slaves (slave1 and slave2) and lock of

resource by SPI component to write different data to slave3.

. To address this challenge, data flow is being handled through parallel channels, as depicted in Figure 2, without
compromising data integrity. When the CPU wants to transfer the same data from memory to a device, it first signals
to share the data between the two resource pools for the device, as shown in Figures 2. However, if the data is intended

for a different device, the channel resource may be locked or Device ID may be matched by parametrized traits, and
the endpoint device can claim the address space location to ensure that the data is secured for that specific device.
Notably, a common BUS IF is used for several IPs through a data flow object.

IV. IMPLEMENTATION USING FABRIC SWITCH

The ability to concurrently exchange data between multiple devices while maintaining data integrity is a crucial challenge

in SoC design. Without any limitations, there is a possibility of bottlenecks, data corruption, and loss.

If multi-CPU tries to write or read through the same share bus, in that case there is a potential for address and data loss.

The primary goal of this paper is to leverage the features of PSS/DSL language and as an example, address the

limitations of PCIe in a multi-Core environment caused by the Root Complex design.

To address this issue, a switch with multi cores on the upstream and end point devices on downstream can

be embedded in the fabric, creating a Switch Fabric. This implementation is carried out with Portable Stimulus

Standard (PSS) powerful features of component instances, which enables the creation of copies of IPs that can be

3

reconfigured based on the selected component. These component instances can have locked or shared access to the bus

interface, allowing for concurrent data exchange. This is achieved through a common Bus I/F and Fabric Switch, with the

presence of carrier sense logic. The resources are mapped to agents in the UVM target test-bench.

In this architecture CPU Switches connect to Fabric Switches with bidirectional port End Point Devices. These switches

are intelligent devices that have a table of Device IDs and ports, enabling them to perform address translation and Network

Address Translation (NAT) to send/receive packets through a single channel. The address learning for End Point Devices

occurs during the Enumeration process, and Configuration Space Registers with Base Addresses are saved in Memory.

This technical approach is designed to manage data transmission in a multi-CPU system.

Figure. 3. Multi CPU SoC environment; the Switch 1..8 are notional ports of the Fabric Switch, shown as SWITCH in this figure

 Implementation has been written for multi-Cores on with multiple SPI slaves. Each SPI master has been

configured as regions and an address space and byte addressability, and memory has been allocated using PSS version

2.0 DSL language construct and have unique traits and claimed using traits. The component tree has been used to

resolve the address space and along with that the scenarios such as write data and read data from memory performed

parallel and then considering fabric switch the pipelining delay. This is achieved by enhancing the Root Complex
and resolving the PCIe bottleneck resulting from addressing multiple instances of End Point Devices in a Multi-CPU

Multi-Core system. The solution involves connecting the Multi-CPU Multi-Core CPU to a Switch and connecting

the Switches to the End Point Devices.

Below is the pictorial representation of the scenario being created.

4

 Figure. 4. Data set transferred in resources packet from the memory to bottom hierarchy through fabric switch

Using the rich constructs available within PSS/DSL, a relatively complex task has been easily implemented. The

challenge of using multiple channels to access the same IP can be very complex when there are multiple CPUs present

in the SOC or sub-system. The work done so far is applying the concept using PSS construct on SPI protocol as the

endpoint side for the scenarios of multi slave generated using multi instance of component and several cores, say

core_c[0] has communicated with slave1 (printer), core_c[1] with slave2 (printer), and core_c[2] with slave3 (mouse).

Different packet data has been sent to the printers concurrently, the Switch Ports have locked resources from the pool

to have exclusive access to the bus interface and initiate the data transfer. Meanwhile, core_c[2] has also locked a

resource and performs data flow exchange. The received packets are rightly addressed and have the expected data and

thereby proving data integrity even though communication is in parallel.

 The below source code shows the transfer of data to different slave from master using address space, region, and byte

addressability which are the construct of PSS version 2.0. This data is part of resources are being addressed from the pool

created at the top-level component and the different multiple instances of master and slave get bind from those pool where

they are being shared and locked during a particular transfer.

5

Note: Current (Apr 2023) generation of EDA tools for PSS/DSL did not support PSS2.0 fully, so wherever necessary global

variable is used to demonstrate trait passing as parameters

6

V. CONCLUSION

In conclusion, this research paper explains the feasibility of using specification PSSv2.0 for simultaneous

upstream/downstream of byte-addressable data to multiple shared/locked devices in multi-CPU SOC environments.

Additionally, the paper demonstrates that significant speed-ups can be achieved if the implementation is done in a concurrent

and/or distributed environment. This research presents a promising approach to improving the performance of multi-CPU

SOC systems and can be useful for future developments in this field.

REFERENCES

[1] G Portable Test and Stimulus 1.0a Language Reference Manual Accelerate Systems Initiative USA June 2018

[2] J. https://accellera.org/images/resources/videos/Accellera- PSS-Tutorial-2020.pdfPortable Stimulus: What’s Coming in 1.1 and What it Means For

You by Portable Stimulus Working Group (Tom Fitzpatrick, Mentor, a Siemens Business • Prabhat Gupta, AMD • Matan Vax, Cadence Design

Systems • Karthick Gururaj, Vayavya Labs • Hillel Miller, Synopsys).

[3] I.S https://accellera.org/images/downloads/standards/Portable_Test_Stimulus_Standard_v20.pdf

	I. Introduction
	II. What is fabric switch?
	III. Resource Sharing/Locking
	IV. Implementation Using Fabric Switch
	V. Conclusion
	References

