
Generic High-Level Synthesis Flow
from MATLAB/Simulink Model

Petri Solanti, Siemens EDA, Munich, Germany
Shusaku Yamamoto, Siemens EDA, Tokyo, Japan

Outline
• Introduction
• Integrated MATLAB/Simulink-HLS flow
• Fundamentals of model translation
• Analyzing block-level architecture
• Translating MATLAB model to HLS C++
• Translating Simulink model to HLS C++
• Verification and validation
• Quantization of translated HLS model
• Conclusions

Introduction
• MATLAB and Simulink are the most popular Electronics-

System-Level (ESL) tools for algorithm design
• Design teams are seeking for automated path from ESL to RTL
• Large abstraction level difference between MATLAB and RTL

requires intermediate description to enable seamless tool flows
• C++/SystemC-based High-Level synthesis provides solid tool

flow and design methodology
• Automatic RTL code generation
• Automated verification and validation flows

Integrated MATLAB/Simulink-to-HLS flow

Single C/C++ source – no recoding

Floating-point
MATLAB/Simulink
Validation Model

Manual modificationFloating-point
MATLAB/Simulink

Algorithm Exploration

MathWorks Environment

C/C++ Environment

Quantization Fixed-point C/C++
HLS Model

Floating-point C/C++
HLS Model

Translation
to C/C++

Automatic RTL generation

Test vectors, Coverage data

Automatic mex
wrapper generation
with type conversion

RTL Verification
To RTL Synthesis

Coverage
dataHigh-Level

Verification

C-Level Verification

C Design
Checking

C-Code Coverage in MATLAB Testbench

Fundamentals of model translation
• Starting point is floating-point ESL model

• Minimum amount of code
• No disturbing fixed-point effects
• C++ type definitions in a separate include file

• Clear DUT communication interfaces
• Data and control interfaces
• Workspace variables used in the hierarchy must be converted to top-

level ports
• Initial block hierarchy

• Concurrent clocked processes
• Data interfaces
• Local storage memories

Analyzing block-level architecture
• Starting with MATLAB function

hierarchy or Simulink block diagram
• Interface analysis

• Data flows through the external I/O and
internal connections

• Configurable parameters (coefficients,
configuration parameters, etc.)

• Independent clocked processes
• Enables block-level concurrency
• Alleviates block-level verification

• Re-usability of functions and blocks

Translating MATLAB scalar code to C++
• C++ class (recommended) or function implementation
• Mainly syntax conversion from MATLAB to C

• Variable declarations and initialization
• Array indexing
• Loop syntax

• Replacing MATLAB toolbox functions with HLS functions
• Lots of equivalent HLS functions, like ac_math and ac_dsp libraries
• Manual implementation of missing functions

• Functional verification using floating-point or wide fixed-point
data types

Translating MATLAB scalar code to C++
function out=iir_filter(inData,inGain,denGain,numGain)

persistent SReg;

if (isempty(SReg))
SReg = zeros(1,2);

end

tmpFBAccu = 0.0;
tmpFFAccu = 0.0;
tmpFBDiff = 0.0;
tmpInGainOut = inData * inGain;

for i=2:-1:1
tmpFBGainOut = SReg(i) * denGain(i);
tmpFBAccu = tmpFBAccu + tmpFBGainOut;
tmpFFGainOut = SReg(i) * numGain(i+1);
tmpFFAccu = tmpFFAccu + tmpFFGainOut;
tmpFBDiff = tmpInGainOut - tmpFBAccu;

end
SReg(2) = SReg(1);
SReg(1) = tmpFBDiff;
outData = tmpFBDiff + tmpFFAccu;

end

class iir_class { private: in_t Sreg[2];
public: iir_class() {for (int i=0; i<2; i++){Sreg[i]=0.0;}
void iir_filter(ac_channel<in_t> &dataIn_ch, coeff_t inGain,

coeff_t denGain[2], coeff_t numGain[3],
ac_channel<out_t> &dataOut_ch)

{
in_t inData, tmpInGainOut;
out_rs_t outData;
accu_t tmpFBAccu = 0.0;
accu_t tmpFFAccu = 0.0;
accu_t tmpFBDiff = 0.0;
accu_t tmpFBGainOut, tmpFFGainOut;

if (dataIn_ch.available(1)) {
inData = dataIn_ch.read();
tmpInGainOut = inData * inGain;
IIR: for (int i=1; i>=0; i--) {

tmpFBGainOut = SReg[i] * denGain[i];
tmpFBAccu += tmpFBGainOut;
tmpFFGainOut = SReg[i] * numGain[i+1];
tmpFFAccu += tmpFFGainOut;
tmpFBDiff = tmpInGainOut - tmpFBAccu;
SReg[i] = (i==0) ? tmpFBDiff : SReg[i-1]; }

outData = tmpFBDiff + tmpFFAccu;
dataOut_ch.write(outData); }

} // End void iir_filter

Translating MATLAB Matrix model to C++
• MATLAB allows multiple vector and matrix operations in a

single statements à must be split into individual statements
• C++ function implementation allows only one call in a statement

• Catapult matrix library contains C++ class equivalents to most
MATLAB operator-based matrix and vector operations

• Open source available soon in https://hlslibs.org/
• Intermediate data storage array sizes can be analyzed in

MATLAB
• Variable declarations in C++ required

https://hlslibs.org/

Translating MATLAB Matrix model to C++

% PP=SS*NN*NN'*SS’;
SSNN = SS * NN;
SSNN_NNtick = SSNN * NN’;
PP = SSNN_NNtick * SS';

private:
vector_x_matrix_multiply_class<Tin,Tin,Taccu,Tin,MTX_ROWS,

MTX_ROWS,MTX_COLS,MTX_COLS,false,false> Mult_10Cx10R8C;
vector_x_matrix_multiply_class<Tin,Tin,Taccu,Tin,MTX_COLS,

MTX_ROWS,MTX_COLS,MTX_ROWS,false,true> Mult_8Cx10R8C_T;
vector_dot_product_class<Tin,Tin,Taccu,Tout,MTX_ROWS,false,

true> dotProd_10x10;

…
// Implement Matlab statement PP=SS*NN*NN'*SS’;
Mult_10Cx10R8C.Product(SS, NN, SSNN);
Mult_8Cx10R8C_T.Product(SSNN, NN, SSNN_NNT);
dotProd_10x10.Product(SSNN_NNT, SS, PP);

MATLAB C++

Translating Simulink design hierarchy
• Simulink block diagram consists of different modules

• User defined subsystems
• Library models

• User defined subsystems can be treated as hierarchical blocks
• Define independent clocked process
• Subsystem hierarchy defines HLS block hierarchy

• Simulink library components
• Different complexities from simple mathematical function to complex

mathematical processes
• Simple functions can be mapped to HLS library functions
• Complex processes may need an independent clocked process

Translating Simulink leaf-block to C++
• Simulink leaf-block contains usually primitive-level library

components
• Arithmetic operations
• Delays (registers) or storage components (memories)
• Simple DSP functions, e.g., filtes
• Data flow connections between the operations

• Mapping Simulink components to operations
• Starting from inputs moving towards output
• Delay blocks mapped to static variables (registers)
• Delay lines mapped from last to first

Translating Simulink leaf-block to C++

if (dataIn_ch.available(1)) {
inData = dataIn_ch.read();
tmpInGainOut = inData * inGain;
IIR: for (int i=1; i>=0; i--) {

tmpFBGainOut = SReg[i] * denGain[i];
tmpFBAccu += tmpFBGainOut;
tmpFFGainOut = SReg[i] * numGain[i+1];
tmpFFAccu += tmpFFGainOut;
tmpFBDiff = tmpInGainOut - tmpFBAccu;
SReg[i] = (i==0) ? tmpFBDiff : SReg[i-1];

}
outData = tmpFBDiff + tmpFFAccu;
dataOut_ch.write(outData);

}

Validation and Verification flow
• Automatic mex wrapper generation from HLS tool

• Creates a mex function for MATLAB and S-Function block for Simulink
• Instantiating C++ DUT into MATLAB/Simulink testbench
• Functional verification using floating-point or wide fixed-point types
• Coverage analysis:

• Instrumenting DUT
• Simulate design
• Analyze coverage data

Quantization of translated model
• Analyze required bit widths using a fixed-point

analysis tool
• Value Range Analysis built in ac_fixed type class
• MathWorks Fixed-point Designer

• Modify C++ type definitions
• Run simulation with original MATLAB testbench
• Analyze results

18-bit IIR coefficients

21-bit IIR coefficients

Conclusions
• HLS-based MATLAB-to-RTL design process is a good

alternative to direct synthesis
• C++ or SystemC as intermediate language moves HW specific design

from MATLAB level to C++ à algorithm designers can use full power of
MATLAB

• HW related modifications are made to C++ model only
• Open source HLS libraries make manual translation easy
• HLS tools provide a thorough verification methodology from

HLS to RTL level
• Functional and coverage analysis on C++ level with MATLAB

testbench complete verification and validation flow from
MATLAB to RTL

Thank you!

