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Abstract—Increasingly, design teams are seeking an automated path from Electronics System-Level (ESL) design 

environments to hardware description at the Register-Transfer Level (RTL). Automated RTL generation can be 

implemented as a direct ESL-to-RTL synthesis or by using High-Level Synthesis (HLS) tools. Most HLS tools use C++ 

or SystemC as a modeling language, which is closer to the higher-level languages used in ESL environments than VHDL 

or Verilog. A model translation process is still needed, the effort of manual translation is reasonable, and the translation 

process can be automated to some extent. Using C++ or SystemC as an intermediate language in the process provides 

unexpected benefits to the overall design flow. This paper introduces a generic MATLAB to RTL design flow that can 

be used with most common HLS tools, and it is target technology agnostic. 
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I.  INTRODUCTION 

When MATLAB and Simulink became the de-facto standard in algorithm development, many research teams 

started to look at possibilities of generating RTL directly from MATLAB code, especially for FPGA design [1][2]. 

Many of those solutions were targeted to certain applications [3] or technologies [4]. The approach is promising 

but it has a huge abstraction level chasm between the expressively powerful and dynamic MATLAB against the 

static and bit-level Verilog or VHDL. These generators require a modeling style that limits the freedom of algorithm 

developers to use the full power of the MATLAB language. 

High-Level Synthesis [5] opened new possibilities to model and develop HW at a much higher abstraction level 

using C++ or SystemC as modelling language. The MATLAB-HLS-RTL flow introduces a new intermediate 

language, but it allows each language to be used in its optimal abstraction level. This reduces the verification 

complexity and bridges the abstraction level chasm between MATLAB and RTL. Algorithm developers can use 

MATLAB as they are used to, which maintains their productivity. The abstraction level difference between 

MATLAB and C++ is small and HLS enables architecture exploration without changing the source code. HLS-to-

RTL synthesis is a reliable technology today. 

Model translation from MATLAB to C++ or SystemC has been available for a long time [6]. Yet, the code 

generation has been targeted and optimized for simulation and embedded software, which is not necessarily optimal 

for supporting HLS. Editing the generated C++ code manually breaks the validation flow. HLS tools need different 

coding styles, which limits a fully automated flow to a specific HLS tool. Translating the dynamic MATLAB 

features and operator-based complex operations to HLS optimized C++ requires a certain level of synthesis. 

Therefore, the manual translation of MATLAB or Simulink model to HLS C++ code is still one of the best 

translation methods.  

 

II. LIMITATIONS OF THE EXISTING DESIGN PROCESSES 

There are several problems to be solved before an abstract MATLAB algorithm model is converted to an 

efficient HW implementation. The main issue is the structural difference of abstract, sequential simulation code 

with operator-based vector and matrix operations in MATLAB and HW architecture with parallel processing and 

distributed memory architectures. A widely used method is to write the MATLAB code in a very low level – almost 
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RTL – that makes the translation easy but slows down the simulation dramatically and limits the freedom of 

algorithm developer. Replacing the MATLAB vector and matrix operations with C++ linear algebra library 

functions [7] is not possible, because their coding style is optimized for software execution and is not synthesizable 

with HLS tools.  

Another problem is the required block-level architecture in HW. MATLAB code may have function hierarchy 

or system object-based class hierarchy, but it doesn’t define parallelism nor HW block hierarchy. Most MATLAB 

designs use multiple toolbox functions or complex operations like matrix multiplication that may have to be handled 

as individual modules in the HW. MATLAB language doesn’t have any communication channel like ac_channel 

[8] that is needed to define the communication between two concurrent clocked modules in HW. In Simulink the 

design can be partitioned graphically using subsystems communicating with each other through channels. This 

model hierarchy can be translated directly into HW architecture. 

Reusability of the translated models and tool dependency are also significant problems. If the models are just 

translated and not optimized for parameterization nor for feature configurability, reusing the models from previous 

projects may be difficult. An earlier version of the methodology introduced in this paper [9] had a reusability 

problem too. Automatically generated models are typically not reusable. 

 

III. DESIGN METHODOLOGY 

MATLAB and Simulink models can describe any algorithm, and they can be built in very different ways. 

MATLAB model can be anything between a single MATLAB script and hierarchical object-oriented design. 

Simulink models can also be constructed by using only library primitives, which is not a very efficient methodology 

for large designs, or by using custom MATLAB functions or System Objects and parameterizable subsystems. That 

makes automated design translation very difficult and requires different methods in the manual translation process 

too. The following five methods cover almost all possible model combinations. 

Several translation projects have proven that MATLAB and Simulink models should be maintained with 

floating-point numbers. Using a fixed-point representation increases the number of lines of code and adds fixed-

point specific functions, making it more difficult to translate and especially difficult to validate. In floating-point 

model a deviation of 10-15 between MATLAB and C++ models is normal background noise caused by order of 

operation differences. A meaningful difference is 10-3 to 10-6 depending on the design and fixed-point word length 

used. 

A. Analyzing block-level architecture 

First, the MATLAB design must be analyzed for computational resource needs and data transfers between the 

functions. Based on this information, the HW architecture can be sketched.  

The computational resource needs of a code segment or function can be analyzed by using MATLAB’s profiler, 

manual estimation, or simply by measuring the simulation time in relation to the total simulation time. This estimate 

is not accurate, but it gives an indication of which parts of the simulation model may need increased parallelism, 

and possibly multiple parallel instances of a certain block.  

Data transfer rate is an even more important metric. In the HW the data must be stored in a memory or streamed 

through the signal path. If a module interface has a large data set like a high-resolution image, it needs twice as 

much RAM to implement a ping-pong memory interface. Optimizing the data sizes by defining the module structure 

in a MATLAB model saves time and effort later in the translation. 

Model analysis in Simulink is easier, because the design is already modular, and Simulink has several helpful 

features to analyze the design. In many cases the HW block-level architecture can be extracted from the Simulink 

subsystem hierarchy, as demonstrated in Figure 1. In a deep hierarchy all workspace parameters that should be 

configurable in the HW implementation must be brought up to the top-level interface. 
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Figure 1. Extracting block hierarchy from Simulink 

B. Translating MATLAB scalar code to HLS C++ 

Translation of a MATLAB scalar model is mainly a syntax conversion from MATLAB to C++. Some details 

must be added manually, like variable declarations that are needed in MATLAB only in special cases or declaration 

and initialization of static variables. Loop syntax and array indexing are typical sources of errors. In MATLAB 

array indexing begins with 1 and in C++ with 0. These types of coding errors can be found with linting tools. 

Data type definitions should be made in a separate type definition file. This enables using a floating-point type 

in the conversion phase.  When the functionality is validated, the C++ model can be quantized, and data types 

changed to fixed-point.  

Arbitrary length fixed-point data types are needed in HLS. Two fixed-point data types are available as open 

source under Apache 2.0 license: Algorithmic C fixed-point library (ac_fixed.h) [10] and SystemC fixed-point data 

types [11]. SystemC data types are slower to simulate and clumsier to use than ac_fixed-types, but functionally 

both data types are almost identical. 

 

Figure 2. MATLAB scalar code translated to C++ 

C. Translating MATLAB matrix or vector model to HLS C++ 

Operator-based matrix and vector operations are more complicated. In MATLAB a statement A = X * Y’ is just 

one line MATLAB code, but the matrix multiplier implementation in C++ is a large function. Many helpful function 

libraries can be found in hlslibs.org [12], e.g., ac_math and ac_dsp and matrix library that has C++ function 

equivalents to most MATLAB operator-based matrix and vector operations. 
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In MATLAB the user can write multiple matrix and vector operations in a single statement. Because the C++ 

implementations are functions, there can be only one function call in each statement. Longer statements must be 

split into multiple single operation statements. As a free add-on, MATLAB indicates the size of the intermediate 

array variables as a side effect. Translation of a simple MATLAB matrix operation is shown in Figure 3. 

 

Figure 3. Translation of MATLAB matrix code to C++ using matrix library from hlslibs.org 

D. Translating Simulink design hierarchy to HLS C++ 

The properly assembled Simulink model has a useful design hierarchy that can be transferred into the HLS 

model as is. Most HLS tools do not accept any functional operations in the block hierarchy level, so the design 

must be “cleaned up”. Hierarchy definitions can differ between the HLS tools, so the hierarchy should be kept as 

simple as possible to enable different hierarchy implementations.  

Depending on the design hierarchy coding style of the HLS tool, the module architecture can be implemented 

as function or class hierarchy in C++, or an SC_MODULE hierarchy in SystemC. Functionality of the modules can 

be written in a C++ function that can be called from the hierarchical block. This method improves the reusability 

of the functional models. Figure 1. demonstrates how a block hierarchy of the DUT can be extracted from the 

Simulink model. 

Translation of a functional model depends on the model implementation in Simulink. If the Simulink model 

uses MATLAB function blocks or System Objects, MATLAB’s model translation can be used. Library component 

based schematic implementations in Simulink need a different approach. 

E. Translating Simulink leaf-level block diagram to HLS C++ 

The leaf-level block diagram using primitive library elements, also called a Simulink schematic, is more difficult 

to translate. Figure 4. demonstrates a typical Simulink schematic implementation.  

 

Figure 4. Simulink block diagram with primitive library elements 

This example is not difficult to translate to C++. The model has five multiplication operations, four additions 

and two registers. It can be written as a for-loop that simplifies the structure, or it can be flattened. The translation 

begins from the second register, and the output of both multipliers is stored into a local variable. When the 

multiplications are computed, the register gets the value of the first register. 
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Now the multiplications connected to the first register can be calculated and summed up with the results of the 

previous stage. The result of the input multiplication can be added to the sum of the feedback path and assigned to 

the first register. The output is the sum of the first register input and the sum of the feed forward path. An example 

implementation with a for-loop is shown in figure 5. 

 

Figure 5. Translating Simulink schematic with primitive elements to C++ 

Simulink library blocks can be more complicated to translate. They can be filters, FFTs, matrix operations, 

memories, or other complex mathematical functions. Open-source HLS function libraries can be used to implement 

Simulink library blocks in the same way as toolbox functions in MATLAB. 

 

IV. VALIDATION AND VERIFICATION FLOW 

Multi-language design flows must have a seamless verification and validation process to ensure the design 

integrity throughout the process. Using C++ as intermediate language in the design flow increases the number of 

verification steps, but it provides a comprehensive toolbox that makes the verification easier. 

This design flow has three different validation and verification steps:  

1. Functional validation of the hand-written C++ code against the original MATLAB model with 

MATLAB testbench. 

2. Coverage analysis of the C++ model in MATLAB’s test framework 

3. Verification of the synthesized RTL code against the C++ model using MATLAB stimulus 

Validation of the hand-written C++ model is the most critical phase. It is implemented by using the MATLAB 

mex external C API. The C++ model is wrapped into a mex wrapper, compiled to a shared object, and instantiated 

into the MATLAB testbench, parallel to the original MATLAB reference model. Functionality of the C++ model 

should be within +/-10-15 of the MATLAB reference model. The same testbench can be used later with the fixed-

point HLS model with minor changes to the scoreboard. 

Coverage Analysis [13] for the C++ model provides information about the test quality. C-level code coverage 

tools instrument the DUT with probes that store line, decision, and expression coverage information during the 

simulation and stores the information into a coverage database. The instrumented C++ model can be wrapped into 

a mex wrapper, instantiated into MATLAB testbench, and simulated in MATLAB. The coverage information gives 

feedback that helps the test engineer to improve the MATLAB test setup to cover all corner cases. The same test 

scenarios can be reused later in UVM environment as stimulus. 

C-level verification reduces the verification time dramatically, with up to 1000 times faster execution. This 

allows running more functional tests, resulting in better design quality. A comprehensive study by University of 

Oulu [14] reports that their C-level simulations ran 191 times faster than equivalent RTL simulations in a UVM 

environment. 

 



 

6 

 

Verification of the generated RTL code is a standard procedure in most HLS tools. The most common 

verification method is RTL co-simulation, which simulates both the generated RTL code and the HLS C++ code 

in parallel and compares their output. If the results are equal, the synthesis was correct, and the hardware works as 

specified. In addition to the RTL co-simulation, there are formal methods available. The same RTL co-simulation 

setup can be reused in a UVM environment. 

 

V. QUANTIZATION OF TRANSLATED HLS MODEL 

Validation of the translated model is done with floating-point or very wide fixed-point data types to keep the 

focus of the validation on the functionality, without introducing quantization effects. When the model functionality 

is completely validated against the original MATLAB or Simulink model, it can be optimized for HLS. The 

optimization has two major parts: structural optimization covering module and loop optimizations and fixed-point 

optimization a.k.a quantization. 

During the quantization process, all variables in the HLS model are analyzed and declared to optimal length 

fixed-point or integer data types that are synthesized to RTL bit vectors of the same length as the C++ variables. 

Quantization process has been a subject of many studies and there are very comprehensive Signal-to-Noise-Ratio 

(SNR) -based methodologies [15] that analyze the effects of quantization noise in the system context, but usually 

the effort is far too high compared to the benefit. A simpler methodology [16] may require more simulation cycles, 

but the results are comparable to the SNR-based quantization results. 

Value Range Analysis (VRA) -based quantization methodology [17] is simple and semi-automated 

methodology to find an optimal fixed-point data type for each variable in the design. VRA is simulation-based 

methodology that analyzes the propagation of the limited accuracy of input values through the step sizes of the 

internal variables and recommends word lengths that can represent the minimum step size. In this methodology, 

the input signals must be “pseudo quantized” having a limited number of possible values. VRA requires an 

instrumented data type, e.g., ac_fixed<>, that collects and stores maximum and minimum values, signedness, 

minimum non-zero absolute value, and minimum non-zero absolute difference between two consecutive samples 

during the simulation. These values are used to calculate the required number of integer and fractional bits: 

int_bits = ceil(log2(maxval)) + signed; 

frac_bits1 = -floor(log2(minval)); 

frac_bits2 = -floor(log2(mindiff)); 

The number of integer bits contains the sign bit, and it can be used as it is. The minimum absolute value is not 

necessarily the smallest value the variable must be able to represent. For example, a sine wave has a relatively large 

step size around zero, but a small step size around the pinnacle. To get a better estimate of the required number of 

fractional bits, both the minimum absolute difference and the minimum non-zero absolute value are needed and the 

bigger of the two fractional bit numbers should be used. A type declaration of ac_fixed using these numbers looks 

like 

typedef ac_fixed<(int_bits+frac_bits2), int_bits, signed> fixed_t; 

With SystemC fixed-point data types, the signedness defines, if sc_sfixed<> or sc_ufixed<> type must be used. 

Otherwise, the type declaration is the same. 

 

VI. CONCLUSIONS 

HLS-based MATLAB-to-RTL design process is a good alternative to direct synthesis. Using C++ or SystemC 

as an intermediate language between MATLAB and RTL moves the HW specific design from MATLAB-level to 
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C++ level, giving algorithm developers freedom to use the full power of MATLAB language. Model translation 

from MATLAB to C++ takes place in the same abstraction level making the validation and debugging of the 

translated model easy. A strong validation methodology that reuses the MATLAB testbench, combined with 

coverage analysis, ensures the functional correctness of the HLS model. 

HW related modifications are made to the C++ model only. The C++ model is quantized and optimized for 

High-Level Synthesis without any modifications to the MATLAB model. The validation environment developed 

during the model translation phase provides a powerful regression environment that can be used to ensure the model 

correctness after every modification. HLS tools are well connected to RTL verification. Therefore, verification is 

mainly focused on the MATLAB-C++ level. 

Translating MATLAB or Simulink model to an efficient RTL model is not fully automated yet. The manual 

conversion process is fast and easy when the HLS optimized library elements are available. The open-source library 

development enables translating more complex MATLAB models in a short time.  

The design methodology described in this paper has been used in many different types of projects. It has proven 

to be flexible, easy to deploy, and efficient methodology for all kinds of HW designs. Manual language translation 

requires some knowledge about the coding style requirements of the HLS tool used, but the differences are very 

small. 
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