
Reducing simulation life cycle time of Fault
Simulations using Artificial Intelligence and
Machine Learning techniques on Big dataset

Darshan Sarode, Pratham Khande and Priyanka
Gharat

Silicon Interfaces, Mumbai, IndiaSilicon Interfaces®

Machine learning in Functional Safety of Design
“Measure twice, cut once”

• Time taken for Simulation of large count of fault
list.

• There is need to automate this as much as
possible.

• Machine learning can be used to a great extent
for automation in this regard.

What is Fault Simulation?
Uncovering design weaknesses and strengthening
functional verification for error-free systems

§Functional verification validates designs based on stimulus integrity.

§Fault Simulation analyses potential stimulus failure due
to defects/environmental factors.

§It develops a fault free design (minimum faults) at the initial stage of pre-
manufacturing of an SOC

Benefits of Fault Simulation

Comprehensive
Fault Analysis

Efficient Fault
Injection

Accurate Fault
Propagation

Advanced
Debugging
Capabilities

Compliance
with Safety
Standards

Functional verification With AI ML

Injection of Faults
within large design

Simulation of large no.
faults Takes a large amount
of time

Simulation of faults list
generated
from AI sampled
Takes less time with same
result fault coverage

RTL

Taking much time in functional verification of SoC

Architecture of Fault Simulation

PCIe Design
files &

Testbench

Standard
Fault File

Fault
Manager

script

Stimulus
(VCD/eVCD)

Compile

Design
DB

Fault
Definition

File

Testability

Concurrent
Fault

Simulation

Fault Simulator

Fault
Manager

Coverage
Report

Fault Manager compares
Design with Good Machine DB
using FSDB on distributed and
concurrent simulation engines.

Generated faults are fed back
as SF for comparison at Fgen,
Coats, and Fsim, ensuring
accurate fault simulation.

Fault Simulation Flow

Evidence (PCIe GOOD MACHINE HDL)

Fault Status

Different Fault status listed at Fsim Stage

AI ML FLOW

• Model building: Creating a mathematical representation for data analysis.
• Hyper-parameter tuning: Optimizing parameter values to enhance model

performance.
• Model training: Teaching a model to make predictions using labeled data.
• Model monitoring: Tracking model performance and detecting anomalies in

real-time.
• Model prediction: Generating forecasts or estimations using a trained

model.
• Model validation: Assessing the accuracy and reliability of a model's

predictions.

Model Building
• This code builds a neural network
model using the Keras framework.

• The model has an input layer with a
number of parameters equal to the
length of x_train.keys().

• It is followed by four dense layers with
256 units each, using the ReLU
activation function.

• The final layer is a dense layer with 1
unit and sigmoid activation for binary
classification.

• The model is compiled with the Adam
optimizer, binary cross-entropy loss,
and accuracy as the metric.

Output of Model Building

Code for Model Building

Hyperparameter Tuning
• The code defines a grid of

hyperparameters to tune,
including the number of
parameters, learning rate,
batch size, and number of
epochs.

• It uses GridSearchCV to search
for the best combination of
hyperparameters, evaluates
them using cross-validation,
and prints the results, including
the best score and parameters.

Output of Model Training

Code for Hyperparameter Tuning

Model Training
• The code trains the model on the

training data using parameters such
as batch size, epochs, and a
validation split.

• It prints the training progress and
evaluates the model's performance
based on accuracy and loss metrics. Code to train model on training data and tuned Hyperparameter

Output of Model Training

Model Monitoring
• The code generates a plot to

visualize the training and validation
loss values of a model over
epochs.

• It creates a figure, plots the
training and validation loss curves
obtained from the history object,
and labels the axes accordingly.

• The plot helps to understand the
model's performance during
training, highlighting any
convergence or divergence of the
loss values.

Code to Monitor the model for any convergence or divergence

Output Plot – Model Loss

Model Prediction
• The code predicts the classes for the test

data using the trained model.
• It utilizes the predict function to obtain the

predicted probabilities p_test.
• The predicted classes q and the actual

classes from the test set are printed,
providing a comparison between the
predicted and actual values.

Code for model prediction using predict function

Output Plot – Model Loss

Model Validation
• The code creates a heatmap using

seaborn (sns) to visualize the confusion
matrix between the true labels (y_test)
and the predicted labels (q).

• The confusion matrix is computed using
TensorFlow's tf.math.confusion_matrix
function. The heatmap uses a blue
color scheme (cmap="Blues") and
displays the values of the matrix as
annotations (annot=True).

Code for model Validation using Heat Map

Output Plot – Heat Map

Results
Without AI Testbench With AI Testbench

• After applying the AI Testbench, we observed a significant improvement in the fault
detection results.

• Out of a total of 10,376 faults, the previous approach detected only 30.34% dropped,
while the AI Testbench achieved a higher rate of 44.76%.

• Additionally, previous approach had 69.66% faults that were not detected, whereas
AI Testbench lowered it 55.24%, indicating improved fault detection performance.

Fsim Report without AI Testbench Fsim Report with AI Testbench

Conclusion

• The Fault Manager at the Fsim stage used data from an ML model to
generate results which were then tested on a 20% sample of test
data.

• We observed around 26% drop in Not Detected Faults in the design.
The PCIe example identified more detectable faults and improved
fault categorization.

• These results are promising and suggest further exploration with a
larger dataset to fix bugs/faults earlier in the manufacturing process.

• This would reduce Fault Simulation time and aid in testing larger

Questions Please ?

