DESIGN AND VERIEICATION™

DV LN

CONFERENCE AND EXHIBITION

Reducing simulation life cycle time of Fault
Simulations using Artificial Intelligence and
Machine Learning techniques on Big dataset

Darshan Sarode, Pratham Khande and Priyanka
Gharat

Silicon Interfaces, Mumbai, India accellera

SYSTEMS INITIATIVE

Machine learning in Functional Safety of Design

“Measure twice, cut once”

* Time taken for Simulation of large count of fault
list.

 There is need to automate this as much as
possible.

* Machine learning can be used to a great extent
for automation in this regard.

dCCelerd) 2023/06/22

What is Fault Simulation?

-Functional verification validates designs based on stimulus integrity.

-Fault Simulation analyses potential stimulus failure due
to defects/environmental factors.

It develops a fault free design (minimum faults) at the initial stage of pre-
manufacturing of an SOC

dCCelerd) 2023/06/22

Benefits of Fault Simulation

Comprehensive Efficient Fault Accurate Fault
Fault Analysis Injection Propagation

Advanced Compliance
Debugging with Safety
Capabilities Standards

Functional verification With Al ML

Taking much time in functional verification of SoC

Simulation of large no.
faults Takes a large amount
of time

Injection of Faults
within large design

RTL

» <
» <

Simulation of faults list
generated

from Al sampled

Takes less time with same
result fault coverage

2023/06/22

Architecture of Fault Simulation

PCle Design
files &

Testbench

Standard
Fault File

Fault
Manager
script

Stimulus
(VCD/eVCD)

accellera) 20230622

SYSTEMS INTIATIVE

Fault
Manager

Testability

Concurrent
Fault Fault
Definition Simulation

File

A
Coverage
Report

Fault Manager compares

Design with Good Machine DB
using FSDB on distributed and
concurrent simulation engines.

Generated faults are fed back
as SF for comparison at Fgen,
Coats, and Fsim, ensuring

accurate fault simulation.

rrrrrrrrrrrrrrrrrrrrrrrrrrr

Fault Simulation Flow

Syntax :
cs -full64 -
usa=portfaults<options>

I RTL/
Stimulus Netlist

simv.daidir m

GENERAIE RUN FAULT
FAULTS SIMULATION

yntax :
c_fcc -full64 -daidir <daidir> -sff c_fcm -tcl_script pcie.tcl
sff_file> \ -campaign <campaign> -
dut_path <path>

GENERAITE
REPORT

Syntax :

c_fdb_report -campaign
<campaign> -report
<coverage_file>

2023/06/22

Evidence (PCle GOOD MACHINE HDL)

initial
begin

end

initial
begin

end

initial
begin

end

initial
begin

end

dccenerd) 2023/06/22

SYSTEMS INTIATIVE

tl.phy.cdr.s2p.rcep.reset=1'bl;
tl.phy.cdr.s2p.rcep.PCIe Rx Valid intr
#5 tl.phy.cdr.s2p.rcep.reset = 1'b0;
tl.phy.cdr.s2p.rcep.PCIe Rx Valid intr

fork

#5 data send lane0(3190783391)f
#5 data send lanel(3190807455);
#5 data send lane2(3190765471);
#5 data send lane3(3190807199);

join

#10 tl.phy.cdr.
#10 tl.phy.cdr.
#5 tl.phy.cdr.
#10 tl.phy.cdr.

rcep.reset=1;
rcep.reset=0;
rcep.PCIe Wr Enable=1'b1;
rcep.PCIe Rd Enable=1'b1;

$fsdbDumpfile("vcs.fsdb");
$fsdbDumpvars();

1'b0;

1'b1;

$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
Bfs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.
$fs strobe(phy.

cdr.
cdr.
cdr.
cdr.
cdr.

de
de.
de
de.
de
de.
de
de.
de
de.
us.
us.
us.
us
us.
us.
us.
us
us.

ba.ba out lane®);
ba.ba out lanel)
ba.ba out 1ane2)
ba.ba out lane3);
ba.align done);

.ba out lane0);

ba out lanel);

.ba out lane2);

ba out lane3);

.align done);

dec out lane0d);

.dec out lanel);

dec out lane2);

.dec out lane3);

dec done);
dec done);
dec out lane0);
dec out lanel);

.dec ~out lane2);

dec out lane3);
packet out ~laneo);
packet out lanel);

.packet out lane2);

packet out lane3);

.pkt collect);
.pkt collect);
.packet out lane@);
.packet out lanel);
.packet out lane2);
.packet out lane3);

Fault Status

dacceliera 2023/06/22

SYSTEMS INTIATIVE

GM & FM values are not
matching where FM has

detected x/z values for known

values in GM(0/1)

Fault status 1
| o l NC ‘
‘ ND | ‘ DD | If Fault injected value and GM

value is same than it is referred as
Not controlled fault

!

Indicates the fault was detected the
specified max no. of times. GM &
FM values are not matching

Indicates the faulty machine was
never different from the good
machine at the locations and

times

Different Fault status listed at Fsim Stage

Al ML FLOW

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6
[Model | [oyper-) | Model | ' Model | | Model | [Model |
Building q | param « Tramlng q Monltorlng . Prediction | q | Validation |

. Tuning |

. Model building: Creatlng a mathematlcal representatlon for data analysis.

* Hyper-parameter tuning: Optimizing parameter values to enhance model
performance.

* Model training: Teaching a model to make predictions using labeled data.

* Model monitoring: Tracking model performance and detecting anomalies in

real-time.

 Model prediction: Generating forecasts or estimations using a trained
model.

 Model validation: Assessing the accuracy and reliability of a model's
oredictions.

dCCelerd) 2023/06/22

SYSTEMS INTIATIVE

Model Building

e This code builds a neural network
model using the Keras framework.

« The model has an input layer with a
number of parameters equal to the
length of x_train.keys().

« It is followed by four dense layers with
256 units each, using the RelLU

activation function.

« The final layer is a dense layer with 1
unit and sigmoid activation for binary
classification.

« The model is compiled with the Adam
optimizer, binary cross-entropy loss,

and accuracy as the metric.

dCCelerd) 2023/06/22

f———————— MODEL BUILDING
num_params = len(x_train.keys())
model = tf.keras.Sequential(|
tf.keras.layers.InputLayer([num_params], name="Input Layer"),
tf.keras.layers.Dense(256, activation="'relu', name="dense 01"),
tf.keras.layers.Dense(256, activation='relu', name="dense 02"),
tf.keras.layers.Dense(256, activation='relu', name="dense 03"),
tf.keras.layers.Dense(256, activation='relu', name="dense 04"),
tf.keras.layers.Dense(1l ,activation="sigmoid', name="Output Layer")])
learning rate = 0.001
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
loss function to minimize
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
list of metrics to monitor
metrics=["acc’,])

Code for Model Building

Layer (type) Output Shape Param #
“dense_o1 (Demse) (Nome, 256) 142336
dense_©2 (Dense) (None, 256) 65792
dense_03 (Dense) (None, 256) 65792
dense_04 (Dense) (None, 256) 65792
Output Layer (Dense) (None, 1) 257
Trainable params: 339,969
Non-trainable params: ©

Output of Model Building

SYSTEMS INTIATIVE

. # Define the hyperparameters to tune and the search space
H ype rpa ral I lete r Tu n I n g param_grid = {'num_params': [len(x_train.keys())],
'lr': [e0.001, ©.01, ©.1],
"batch _size': [4, 8, 16],
'epochs’': [50, 100, 200]}
Create the GridSearchCv object

¢ The COde deflnes d g”d Of model = tf.keras.wrappers.scikit_learn.KerasClassifier
hyperparameters to tune’ grid search = GridSear(‘?ﬁ(li\l/(zgzzzrflgizrt‘iazgzti}, verbosese)
including the number of R e g,
parameters, learning rate, 2 Fit the cridseanchoy!object o thel tradhing dats
batch size, and number of S print the results of the grid search
rint("Best: %f using %s" % (grid result.best score ,
epOChS ’ - ° gr‘id_r‘esult.best_par‘ams_))
+ It uses GridSearchCV to search tds - eid result.cy results ["std taot score-]
for the best combination of o L LT vy
hyperparameters, evaluates print("%f (%f) with: %r" % (mean, stdev, param))
them wusing cross-validation, Code for Hyperparameter Tuning
and prints the results, including
the best score and parameters. oyl SN, Rl
2/2 [==============================] - 0s l10ms/step
Best: 1.000000 using {'batch size': 4, 'epochs': 50, 'lr': 0.001,

Output of Model Training

dCCelerd) 2023/06/22

SYSTEMS INTIATIVE

Model Training

- MODEL TRAINING
learning rate = grid result.best params ['1r']
batch size = grid result.best params ['batch size']

* The _COde traln_s the model on the epochs = grid result.best_params_['epochs’]
training data using parameters such model = create model(num_params, learning rate)
as batch size, epochS, and a history = model.fit(x_train, y_train,

validation Spllt. batch_size=batch size,
epochs=epochs,
« It prints the training progress and validation_split=0.1,
' =5
evaluates the model's performance verbose=1)
. Code to train model on training data and tuned Hyperparameter
based on accuracy and loss metrics.
Epoch 1/50
41/41 [==============================] - 15 9ms/step - loss: ©.6528 - acc: 0.8634 - val loss: 0.4898 - val acc: 0.9444
Epoch 2/50
41/41 [==============================] - 0s 5ms/step - loss: ©.2500 - acc: 0.9689 - val loss: ©0.0018 - val acc: 1.0000
Epoch 3/50
41/41 [==============================] - 0s 5ms/step - loss: 0.0026 - acc: 1.0000 - val loss: 5.8710e-11 - val acc: 1.0000
Epoch 4/50
41/41 [==============================] - @S 6ms/step - loss: 2.2432e-04 - acc: 1.0000 - val loss: 3.9635e-11 - val acc: 1.0000
Epoch 5/50
41/41 [==============================] - @S 6ms/step - loss: 1.3192e-05 - acc: 1.0000 - val loss: 4.0439e-11 - val acc: 1.0000

Output of Model Training

dacceliera 2023/06/22

SYSTEMS INTIATIVE

MOdel MonitOring e MONITOR

Plot training & validation loss values
fig = plt.figure(figsize=(12,7))
plt.plot(history.history['loss'])

 The code generates a plot to plt.plot(history.history['val loss'])
visualize the training and validation prE.title(Model Josst)
plt.ylabel('Loss")
loss values of a model over plt.xlabel (" Epoch’)
plt.legend(['Train', 'validate'], loc="upper left')
epOChS' plt.show()
e |t creates a figure, p|ots the Code to Monitor the model for any convergence or divergence
training and validation loss curves o

obtained from the history object,
and labels the axes accordingly.

« The plot helps to understand the
model's performance during
training, highlighting any
convergence or divergence of the o
loss values.

08

04

0 20 40 60 80 100
Epoch

Output Plot — Model Loss

dCCelerd) 2023/06/22

SYSTEMS INTIATIVE

Model Prediction

* The code predicts the classes for the test

data using the trained model. R PREDICT
- . . . test = del. dict test
+ It utilizes the predict function to obtain the | Pz >~ 7ot Preliet o
predicted probabilities p test. q = p.astype(int).transpose()
. rint("Predicted Class:\t", s
 The predicted classes q and the actual o ('\nActuals:\t\t " tgst,to Frame().T
classes from the test set are printed, .to_string(header=None, index=False))
prOVIdlng a Compa”SOn between the Code for model prediction using predict function

predicted and actual values.

(1] 01 (0] 1] (0] o]0 roJroJroJ ol 1oy oJ 1y 1y o0J1J 1] 0J 0] 0 1] 1] [1]I[1][O
11001001 (0] [1][1][1]0O0]([1]1[O][O]([1]([O]]

00100110110001111010001O01

Output Plot — Model Loss

dCCelerd) 2023/06/22

SYSTEMS INTIATIVE

Model Validation

#model validation
sns.heatmap(tf.math.confusion matrix(y test, q),
cmap="Blues"”,

- The code creates a heatmap using annot=True)
seaborn (sns) to visualize the confusion Code for model Validation using Heat Map
matrix between the true labels (y_test)
and the predicted labels (q).

« The confusion matrix is computed using
TensorFlow's tf.math.confusion_matrix
function. The heatmap uses a blue
color scheme (cmap="Blues") and
displays the values of the matrix as
annotations (annot=True).

0 1
Output Plot — Heat Map

dCCelerd) 2023/06/22

SYSTEMS INTIATIVE

Results
Without Al Testbench With Al Testbench

Fault Coverage Summary # Fault Coverage Summary

#

Prime Total # Prime Total

R e e L Hommm e e e e e m e e e e e e e e e e e e e mm e

Total Faults: 7936 10376 # Total Faults: 7936 10376

#

Dropped Detected DD 2408 30.34% 3311 31.91% # Dropped Detected DD 3552 44.76% 4751 45.79%

Dropped Potential PD 0 0.00% 0 0.00% # Dropped Potential PD 0 0.00% 0 0.00%

Not Detected ND 5528 69.66% 7065 68.09% # Not Detected ND 4384 55.24% 5625 54.21%

#

Untestable Unused uu 1208 1208 # Untestable Unused uu 1208 1208

#

Detected DG 2408 30.34% 3311 31.91% # Detected DG 3552 44.76% 4751 45.79%

Untestable uG 1208 15.22% 1268 11.64% # Untestable UG 1208 15.22% 1208 11.64%
Fsim Report without Al Testbench Fsim Report with Al Testbench

« After applying the Al Testbench, we observed a significant improvement in the fault
detection results.

« QOut of a total of 10,376 faults, the previous approach detected only 30.34% dropped,
while the Al Testbench achieved a higher rate of 44.76%.

« Additionally, previous approach had 69 66% faults that were not detected, whereas

dCCelerd) 2023/06/22

SYSTEMS INTIATIVE

Conclusion

daceelnera

« The Fault Manager at the Fsim stage used data from an ML model to
generate results which were then tested on a 20% sample of test
data.

« We observed around 26% drop in Not Detected Faults in the design.
The PCle example identified more detectable faults and improved
fault categorization.

« These results are promising and suggest further exploration with a
larger dataset to fix bugs/faults earlier in the manufacturing process.

« This would reduce Fault Simulation time and aid in testing larger

2023/06/22

Questions Please ?

daceelera 2023/06/22

SSSSSSSSSSSSSSS (E

