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Abstract— This paper presents an application of AI/ML algorithms to reduce fault simulation cycles from standard fault 

simulation techniques where each node is switched with Stuck@0/Stuck@1 by generation, testability and simulation to reduce 

simulation cycles. AI/ML techniques are used to partition sample datasets into training/test datasets, build/compile a ML model, 

and perform model fitting using standard AI packages, optimization techniques, and activation/loss functions for error reduction 

to predict outputs. The hypothesis is based on the predicted match results run through different sized datasets and hyper-

parameters, resulting in a ML model with 20% of the predicted test data results, similar to error simulation. 
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I.  INTRODUCTION 

The objective of this paper is to improve fault simulation by utilizing intelligent and learning algorithms, which will lead 

to better testing quality and fault coverage, as well as shorter simulation cycles. While incorporating the standard fault 

simulation methods that are widely used in the industry, the paper aims to enhance the effectiveness of these techniques with 

the help of intelligent algorithms. 

During the fault generation phase, the SFF fault list is created through fault simulation, which covers various nodes of 

the design like PORTS, FLOP, WIRE, VARI, and ARRAY. The generated fault list is then analyzed through machine 

learning to classify the faults as potentially detected or not detected. Stuck-At faults are utilized in different parts of the 

circuitry, such as input/output terminals, module connections, nets, arrays, and continuous assignments. To detect faults, the 

good machine is compared to the faulty machine using divergence and convergence techniques in concurrent, serial, and 

parallel modes. The fault coverage is increased by applying strobes to the generated fault list, including transient faults that 

occur once and then disappear. Intelligent algorithms and machine learning techniques are used to enhance fault detection 

by analyzing the fault status of the generated fault list. This allows the identification of nodes that can be dropped and 

detected, as well as divergence between good and faulty machines. Machine learning also shortens simulation cycles, 

increasing efficiency. To summarize, the application of AI/ML techniques in the fault simulation process improves the 

accuracy and efficiency of fault detection. This can identify faults that may be missed by traditional methods, and simulation 

cycles can be reduced to achieve better results in less time.  

II. FAULT SIMULATION 

Fault simulation is a powerful technique that offers numerous benefits to the device development process. It can be utilized 

at different stages of the device lifecycle, providing valuable insights and helping to ensure high-quality devices. One of 

its most significant advantages is its ability to identify systematic errors in the verification environment. By detecting such 

errors, developers can make more informed decisions and improve the overall effectiveness of the device development and 

verification process. In addition to development, fault simulation is also essential in manufacturing. It enables the 

assessment of the necessary coverage needed to produce SoCs, ASICs, or IPs of high quality. By using this technique, 

manufacturers can identify potential issues early on, ensuring that their products meet the highest standards. Furthermore, 

fault simulation can evaluate how well a mechanism handles random failures during the operational phase. With the use of 

an EDA tool, common error sources can be replicated and analyzed, allowing for a reliable and efficient method of detecting 
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potential issues. This is particularly important as it helps ensure that devices can effectively handle a range of potential 

failures, making them more resilient and reliable. 

 

Figure II(a). CDR block of PCIe bus. 

In this paper, we have used PCIe bus. The fault has been injected at the port level (i.e. input and output locations) with 

all the different vector lists. Below is a snippet of the DUT design in which the faults have been injected, 

Below is the fault coverage report generated for a Faulty/Safe machine at the Fsim stage. 

 

Figure II(b). Coverage Report generated for Faulty/Safe Machine 

III. MACHINE LEARNING APPLICATION ON BIG DATA DATASET 

Using a Dataset for PCIe bus in the current paper it can also be tried on more complex designs, AI/ML Model has been 

developed with 4 hidden neural network hidden layers using statistical and probabilistic functions from pandas and ML 

libraries, like TensorFlow function Keras and studying the effect of hyperparameters, optimizers, and activation functions. 

For this data set, we have activation function “relu” and optimizer selected “Adam” with the learning rate of 0.001 further 

the loss function is “MSE” on train data, this model is fitted to train data, and the model is applied to test data for actual 

versus predicted values which are plotted on heat maps showing almost 95% accuracy.  

In the first pass, we are importing standard and routine python libraries mentioned below to carry out for mathematical, 

statistical, graph plotting, and machine learning  

 %tensorflow_version 2.x 

from matplotlib import pyplot as plt 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import tensorflow as tf 

 

Along with the libraries, the file including the test vector data in csv format of the PCIe is passed as all the operation of 

sampling the 100% data to 20% data is being carried out on it. 

filename = '/content/PCIe_ML_Output.csv' 
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csv_data = pd.read_csv(filename) 

A. The dataset was split into 80:20 for train data and test data (this may be in other ratios) 

 

Further, the data in the test vector is sampled in 80% as train data and 20% as test data ratio. 

 
Figure III(a). Code to extract 20% data randomly. 

 

B. A regression ML model was built using TensorFlow ML libraries 

 
Figure III(b). Code to build a ML model using TensorFlow ML Libraries. 

 

         
                        Figure III(c). Dense Layer Result.                                                                   Figure III(d). Plot Model 
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C. The model was fitted to the training data 

In step three the generated model is being mapped/fitted with/to training data using transpose functions 

 

Figure III(e). Code to Predict using transpose functions. 

IV. PRELIMINARY RESULT 

Using Python, NumPy, pandas, TensorFlow, Etc, and Colab from Google® the above stochastic behaviours were 

implemented by using a Data Set from Simulation Outputs for PCIe Bus. 

A. At the first pass, we fit the model on train data over several epoch runs.  

 

Figure IV(a). Code to train model on training data. 

Using the model.fit function the train data ie. 80% sampled data is being mapped over train data. In this basically, the data 

is being evaluated on basis of the accuracy, val_loss and val_acc. 

 
Figure IV(b). Epoch Results. 

 

From the Epoch results, it is seen that with help of sampled 20% Train data that both loss and validation loss functions are 

generally reduced. 

 

B. Data is being plotted against loss and epoch 

To monitor the Train data against the loss of information A graph is plotted to get clarity in graphical format. 

 

 
Figure IV(c). Code to monitor data using matplotlib library. 
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Figure IV(d). Model loss. 

C. Further data is being evaluated and listed in form of loss and accuracy on test data. 

 

#--------EVALUATE 

loss, acc = model.evaluate(x_test, y_test, verbose=1) 

print('Loss:', loss, 'Accuracy:', acc) 

 

2/2 [==============================] - 0s 8ms/step - loss: 8.6777e-10 - acc: 1.0000 

Loss: 8.677686902380799e-10 Accuracy: 1.0 

 

We observed loss is very low Loss and accuracy is 100%. 

 

D. Finally, The predicted data is being compared with actual data. 

 
Figure IV(e). Code to Predict using transpose functions. 

 
[[1][1][0][1][0][0][0][0][0][0][0][1][0][0][1][1][0][1][1][0][0][0][1][1][1][1][0

][1][0][0][0][1][0][1][1][1][0][1][0][0][0][1][1][1][0][1][0][0][1][0]]  

Actuals: 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1 

1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 

Below it seems that the predicted data and actual data are quite similar. Which is being further validated with the 

heatmap. 

This model has given high matched results; further study will yield better results. 

sns.heatmap(tf.math.confusion_matrix(y_test,q),cmap="Blues", annot=True) 

 

 
Figure IV(f).  Heat Map graph generated from the Colab Tool 
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Further, the 20% sample data is being generated from the tensor flow AI ML platform using below statement, 

train_data = csv_data.sample(frac=0.8) 

 

Below is the sampled data. 

 
Table 1. 20% Sampled Data. 

 

And the same vector list (input) is being injected as a fault in PCIe design of Fault Simulation. This 20% sampled input 

vectors are simulated using the fault campaign manager which resulted in more count of DD i.e., Dropped Detected faults. 

Below is the fault simulation coverage report generated for 20% of sampled input data. 

 

 
Figure IV(g).  Coverage Report from the 20% Generated Data. 

V. CONCLUSION 

The results generated by the Fault Manager in the Fsim phase from data provided via the ML model were tested on 20% 

of the test data from a test file after applying the test vectors of the AI ML engine, which can lead to predicted results 

similar to the fault simulation. The PCIe bus example used here resulted in more detectable faults (2→3) being identified 

from the 20% of test vector data. In addition, an error that was labelled as ND (not detected) is now detected as DD (dropped 

detected), which is a better categorization. These results are encouraging and warrant further investigation, perhaps with a 

larger data set using the ML engine, which can help address defects that arise early in the manufacturing process. Fault 

simulation time would be reduced by a large time factor and help in testing large ASICS and SOCs. 
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