
Holistic Verification of Bus Health Monitor 
in Automotive SoC using BHMVC and 

ParaHunter
Gaurav Kumar Yadav, Abhisek Hota, Prashantkumar Sonavane,

Samsung Semiconductor India R & D



Bus Health Monitor(BHM)
• Automotive SoCs require stringent safety measures
• Fault occurring at one component can result in failure at another 

component which is called Dependent Failure
• Bus (Interconnect) is backbone of every SoC
• Fault in Bus can lead to potential dependent failures
• Parameter and Registers based configurable “Bus Health Monitor” 

(BHM) IP is introduced to run predefined periodic test patterns to monitor 
Bus health

• BHM Capable of detecting 90% > permanent faults in the Bus which is 
required for Functional Safety ASIL-B Certification of Automotive SoC

• A UVM based “Bus Health Monitor Verification Component” (BHMVC) 
has been developed to support plug and play verification of the BHM 
instances across SoC



Verification Challenges & Solution
Challenges:

• Verification of all BHM Masters(~15) ↔ Slaves(~40) combinations at SoC
• For all BHM instances total ~800+ Design Parameters to be reviewed/verified 
• Considerable use-case understanding and test case development time for each 

combination. Probable Human-Error.
Solutions:

• Highly customizable and Plug & Play BHMVC for SoC DV
• Exhaustive coverage of all the supported BHM parameters and configurations
• Randomization to explore the corner cases 
• Supporting Stress testing to verify BHM operation along with SoC traffic (use-case)
• Along with BHM’s functional checks, BHMVC supports BHM’s Test of Diagnostic 

Verification
• Extensive in-Built functional checkers to verify all the correct functionality
• Sanity Check support for fast SoC TB bring-up e.g. clock, reset checks & overall 

integrity checks



APB Slave Parameters and 
Configuration
Transactions Related 
1. Address alignment
2. Data patterns are fixed

AXI Slave Parameters and 
Configuration
Transactions Related 
1. AXI Sideband signals’ values
2. Write-Read Data patterns

Memory Slave Configuration
Transactions Related 
1. DRAM Address used to W/R fixed 

Test patterns.

BHMVC

Slave Related Master
Parameters and Config.

1. No. Of Slaves
2. Each Slave’s Type
3. Base Addr of Each Slave

Transaction Related Master
Parameters and Configuration
1. AXI Sideband Signals config.
2. R/W Data Patterns
3. Transaction Timeout Values
4. No. of outstanding Transaction

BHMVC usage in SoC Verification

MASTER

APB SLAVE

INTERCONNECT

BHM-Master
AXI AXI

BHM-APB
SLAVE

APB

MEMORY
SLAVE

AXI

GIC Fault Aggregator

INT0INT1
INT

INT

Timeout Error (Write/Read Channel)
Pattern Mismatch (Write / Read Channel)

Pattern Mismatch (Write / Read Channel)
Timeout Error (Write /Read Channel)

AXI SLAVE

BHM-AXI 
SLAVE INT

Transaction 
Done

• BHM Master/Slave Modules are instantiated along with each Master/Slave respectively
• UVM based Plug N Play BHMVC is deployed to verify each BHM Master to Slave 

combination



BHM Verification Component(BHMVC)
• BHMVC Plugged-in during initial design integration phase
• Support provided to check output interrupt integrity from all over the blocks to Fault 

Aggregator and GIC
• It helped in making SOC environment up quickly for BHM verification 
• User friendly sequences which user can customize as per vector requirements
• Target Master and slave combinations selection
• Choice of start and end addresses for memory slaves
• Target types selection for 1 to many and many to 1 scenarios
• Based on user selection configuration of master and slave will be done by BHMVC
• Pre-defined data patterns will be transmitted from master to slave ensuring bus health
• Continuous Parallel monitoring of faults/Interrupts using extensive checkers
• In case any mismatch or timeout error occurs fault will be reported to fault aggregator
• In case no fault/error occurs transaction done will be routed to GIC once asserted



BHM Master to AXI Slave
• After PoR first BHM AXI slave is configured 
• AXI sideband signal and data register is programmed what 

master is going to send
• Slave is initialized by configuring control register which will 

keep slave ready to receive data from Master
• Then BHM master register is configured with AXI slave 

address
• Along with timer register and slave type (AXI) are also 

programmed
• Once Master is initialized it will send predefined data pattern 

to slave and do write and read operation
• During operation, timeout and data mismatch error registers 

are also checked at both master and slave end which will 
assert INT0/INT

• INT0 and INT will be processed to FA for any BUS failure 
from both master and slave respectively 

• INT1 will be sent to GIC once all data operation is completed

MASTER

BUS
BHM-

Master

GIC Fault Aggregator

INT0INT1

INT

INT

Timeout Error 
(Write/Read 
Channel)
Pattern 
Mismatch 
(Write / Read 
Channel)

Pattern 
Mismatch (Write 
/ Read Channel)

Timeout Error 
(Write /Read 

Channel)

AXI 
SLAVE

BHM-
AXI 

SLAVE
INT

Transaction 
Done



BHM Master to APB Slave
• After PoR first BHM APB slave is configured 
• Slave is initialized by configuring control register which will 

keep slave ready to receive data from Master
• Then BHM master register is configured with APB slave 

address
• Along with timer register and slave type (APB) are also 

programmed
• Once Master is initialized it will send predefined data pattern 

to slave and do write and read operation
• During operation, timeout and data mismatch error registers 

are also checked at both master and slave end which will 
assert INT0/INT 

• INT0 and INT will be processed to FA for any BUS failure 
from both master and slave respectively 

• INT1 will be sent to GIC once all data operation is completed

MASTER

BUS
BHM-

Master

GIC Fault Aggregator

INT0INT1

INT

INT

Timeout Error 
(Write/Read 
Channel)
Pattern 
Mismatch 
(Write / Read 
Channel)

Pattern 
Mismatch (Write 
/ Read Channel)

Timeout Error 
(Write /Read 

Channel)

INT

Transaction 
Done

APB
SLAVE

BHM-
APB

SLAVE

INT

INT



BHM Master to Memory Slave
• After PoR first BHM AXI Master is configured 
• Then BHM master register is configured with DRAM address
• Along with timer register and slave type (DRAM) are also 

programmed
• Once Master is initialized it will send predefined data pattern 

to DRAM and do write and read operation
• During operation timeout and data mismatch error registers 

are also checked at master end which will assert INT0
• INT0 will be processed to FA for any BUS failure from master  
• INT1 will be sent to GIC once all data operation is completed

MASTER

BUS
BHM-

Master

GIC Fault Aggregator

INT0INT1

INT

INT

Timeout Error 
(Write/Read 
Channel)
Pattern 
Mismatch 
(Write / Read 
Channel)

INT

Transaction 
Done

MEMORY
SLAVE



ParaHunter
• BHM is highly configurable IP. Which has multiple Parameters (Generics) and supports 

Register based Configurations 
• Depending upon the parameters sub-blocks/registers within BHM will be instantiated
• Though the correct functionality is verified by BHMVC, any wrong parameter value 

especially higher parameter values (e.g. NO_OF_SLAVES_SUPPORTED is 5 instead 
of 4) causing additional logic instantiation within BHM won’t be detected by BHMVC

• Hence a Script-Ware named “ParaHunter” has been developed to verify the BHM IPs 
parameters against the Specification

IP-XACT
Magilleum   
Script

JSON 
file Perl Script-Ware

JSON file SPEC XLS 

JSON file != SPEC XLS =>  Error
JSON file == SPEC XLS => Pass 

OR



Conclusion
• Major outcomes from BHMVC and ParaHunter :

• More than 300 tests added to verify all BHM combinations using this plug and play 
solution, with TAT of 2-3 weeks instead of 4 man-months

• Parameters (~800) verification reduced from 2 man-weeks to 5-10 minutes
• ~500 µm2 area saved due to wrong sub-module instances

• Design Architecture Impact and Critical bug findings :
• Architectural Impact:-

• Bus latency: Timeout counter width increased for masters to cover worst case
• Power :Clock Gating support added to request clock for all masters
• Higher Throughput: Interconnects outstanding transaction handling capacity 

increased
• Slave address alignment bug fixed for all masters (>10 Blocks) 
• Default value for periodic transaction interval updated for all masters (>10 Blocks) 


