2023

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Integrating L1 & L2 Cache for multi-Core UVM-based
extended Low Power Library Package

Avnita Pal, VLSI Design Engineer, Silicon Interfaces, Mumbai, India (avnita@siliconinterfaces.com)
Priyanka Gharat, VLSI Design Engineer, Silicon Interfaces, Mumbai, India (priyanka@siliconinterfaces.com)
Sastry Puranapanda, VLSI Design Engineer, Silicon Interfaces, Mumbai, India (sastry@siliconinterfaces.com)

Abstract— This Paper demonstrates the continuum for multi-Core architecture integrating UPF based Low Power
methodologies and strategies to L1 & L2 Cache in Off, Sleep, Dormant and Retention modes within the UVM Low Power
Package by addressing limitation of previous works (referenced) to incorporate multi-Core low power libraries (which has the
classes for SOC environment Devices, Buses and Memory) for low power strategies which may be deployed in UVM Agents
executing within Run Phase with in-built ASM routines to sequence PowerUp/Down for multi-Core L1 & L2 Cache and
incorporate these within low power UVM classes using SystemVerilog and DPI.

Keywords— Power Management, Low Power, UVM (Universal Verification Methodology), Functional Verification,
SystemVerilog, Unified Power Format (UPF), L1 Cache, L2 Cache, DPI (Direct Programming Interface), PowerUp, PowerDown,
Assembly Language (ASM), SoC (System on Chip)

. INTRODUCTION

The current approach of incorporating Power Architecture after or in parallel to Functional Verification is not optimal.
It should be integrated into the strategy from the beginning, along with Methodologies based Functional Verification and
Coverage, and Low Power Implementation. In previous works, a single platform, such as UVM, was used to develop
library components for devices, including low power strategies, Functional Verification Methodology, and UPF-based
Low Power Architecture. This allowed designers and verification engineers to have a comprehensive strategy from the
start of the design/verification process.

Why not expand the use of UVM-based Object Classes to include UVM-based Classes for Low Power for L1/L2 Cache
along with for Cores, Multi-Cores (such as ARM, Intel, and Open Source), Bus Interface for signals (such as AMBA AXI,
CHI, PCle, and Wishbone), Memory and Devices? These could be registered for reusability and constructed within the
UVM Environment. These classes could then be utilized in the Build, Connect, and Run phases, providing SOC
Verification Engineers with ready-to-use classes that can be extended to the SOC Design being tested.

UVM_Power_Package
UVM_Power_Test
UVM_Power_Env

uvM_
Power_Scoreboard
@ =

uvM_
Power_Agent uvmM_
Power_Sequencer
®
L_J
uviMm_ uvmM_
Power_Monitor Power_Driver

UVM_Power_Interface
DUT

Figure 1. UVM Low Power Hierarchical Structure

Il. IMPLEMENTATION DETAILS AND FLOWCHART

The creation of an effective Power Management structure can be achieved by utilizing UVM classes that include
various tasks such as creating power domains, defining different scopes, and supplying nodes for each domain. These
classes can be used as a library and extended to create structures based on the architecture of the device under test. By
incorporating these classes, the Power Management structure can be efficiently managed and adapted to suit the specific
needs of the device.

In this paper, we are extending the work as done and presented in earlier paper for multi-Core. The Power Management
structure is dependent on the Power state of each domain, which triggers various virtual functions, tasks, and sub-routines.
A top-level UVM_power_pkg is incorporated into the test bench for a multi-core and extended based on the specifications
defined in UPF to perform PowerUp and PowerDown of any Core sequences. This approach ensures that the Power
Management structure is fully integrated into the verification process, providing efficient and effective power management
for the device under test.

UVM_LP_PKG

Visual Functions
for Power
UP/DOWN

¢ A 4 ¢

UVM_Fower_Memory UVM_Power_Device UVM_Power_Cores

UVM_Power_Multi_Cores <—‘

v v v

UVM_Power_Multi"H UVM_Power_Multi"—I UVM_Power_Multi ‘|-|

Declaration of
initialization of
Power States

Declaration
of Power Signals

_Core_ARM _Core_lIntel _Core_Open_Source

Figure 2. Architecture of Low Power UVM Package Library

I11. IMPLEMENTATION DETAILS FOR MULTI-CORE LOwW POWER OPERATIONS WITH L1 AND L2 CACHE

ARM has incorporated low-power principles, including UPF, and provided API calls for managing multi-core operations
and transitioning between states. The company has also created Power Domains, such as PD_CPU, PD_L1, PD_L2, and
PD_CORTEX, which can be managed using register bit enabling and output clamps activation/deactivation, making it
unnecessary to create UPF-based Power Domains. These features are leveraged to manage power-down and power-off
operations in compliance with ARM's recommendations. Power Domain Classes are extended to the Low Power UVM
Package as a library, enabling their use in the Power Management architecture for Memories, Bus Interface cores, and
other components. The Power Domain classes for the ARM Cortex A53 processor, such as PDCORTEX, PDCPU, PDL2,
and so on, are created by ARM and can be utilized in the multi-core environment through factory registration in
build_phase, run_phase, and connect_phase.

The Arm Cortex processors incorporate two levels of cache memory - L1 and L2. L1 cache is small and fast and has low
latency providing quick access to frequently used data and instructions. L2 cache has high latency which then makes it
slower but still faster than main memory, and acts as a secondary buffer for frequently accessed data.

Power consumption has been a major concern for processor designers as it is a key factor affecting battery life in portable
devices. In the ARM Cortex A53 processor we can save power by turning off some cores in a cluster. When a core is
turned off, its cache data becomes inaccessible, and it would take a long time to reload the data if required. To address
this issue, we can use common enable to turn off the L1 and L2 caches simultaneously, as our core itself is shut down so
the L1 cache is out of the picture and only L2 Cache will get accessed and can be power-off process.

System
PDSOC
Cortex-A53 processor
PDCORTEXAS53
Core <n>
PDCPU <n> _____________________________1'2‘
1 PDL2*,
Instruction Data T8 : L1 L1 L1 L1 !
cache cache . Duplicate Duplicate| Duplicate Duplicate L2 cache |
RAM 1
RAM RAM i\ tagRAM tagRAM tagRAM tag RAM RAM
! 0 1 2 3 1
I_ _ I U R R . S . B
Core <n> Master
excluding RAM — Interface
Advanced SIMD < .
and Floating-point | [el B (i)e;:ﬁ-. $>ATE
PDADVSIMD<n> registers | <€——»APB

Figure 3. ARM Cortex A53 Power Domain Block Diagram

By incorporating these classes, the Power Management structure can efficiently manage power-down and power-off
operations in compliance with ARM's recommendations. The use of these classes enables the creation of a comprehensive
Power Management structure, with support for multiple cores and power domains. The architecture can be implemented
using the Low Power UVM Package as a library, making it easier to integrate into the verification process.

To sequence PowerUp/Down for multi-Core L1 & L2 Cache there is need to utilize the in-built ASM (Assembly
Language) routines. The package incorporates two levels of cache memory - L1 and L2. L1 cache is on board cache
which is small and fast in transferring and fetching the data with low latency and L2 cache is the external cache its
integrated with SCU (Snoop Control Unit) controlling up to 4 cores within the clusters to provides the duplicate copies
L1 data cache tags for coherency support and high latency which acts as a secondary buffer for fast accessed data. The
sequences for this is being shown in the spreadsheet below. This integrated approach empowers designers and
verification engineers with a comprehensive strategy right from the initiation of the design/verification process.

L1 CACHE POWER CONTROL SIGNALS
#1 |RESET Enable/Disable DBGL1RSTDISABLE L1 Reset Disable State=0 (Initial) to enable L1 Reset in PD
#2 |Disable Data Cache SCTLR.C (C- cache enable) System Control Register Cache line bit C =0
HSCTLR.C (cache enable) Hyper System Control register bit C = 0
#3 |Clean and invalidate cache DCCISW.LEVEL =3'b000(L1) DCCISW (Data cache clean and Invalidate by set way)
Clean and invalidate cache by |DCCIMVACS
Virtual Address
Memory Model Feature L1HvdVA, L1UniVA,L1HvdSW,L1UniSW,L1Hvd, [level 1 harvard cache by virtual address,level 1 unified cache by virtual address,
Register (MMFRI) L1Uni, L1TstCln,BPred; DCCISW_s set_way; level 1 harvard cache by set/way, level 1 unified cache by set/way, level 1
DCCIMVAC s virtual addr;Bpred harvard cache, level 1 unified cache, level 1 cache test clean, Branch Predictor.
#4 |Disable Data Coherency CPUECTLR.SMPEN Low power retention state(CPU RETENTION CONTROL REGISTER .Switch Mode
#6 |ACE READ LOCK L1 Mem ARLOCKM Read no snoop control signal ARLOCKM=1(For ACE Interface)(Inner/outer
#7 |ACE WRITE LOCK L1 Mem AWLOCEM Write No snoop Control signal AWLOCKM= 1(For ACE Bus Interface
#8 |Load No snoop ReadNoSanp Read no snoop control signal with Excl set High)(For CHI Bus Transaction
#0 |Store No snoop WriteNoSap Write No snoop Control signal with Excl set high)(For CHI Bus Transaction
#10 |[Non snoopable Non-snoopable For non shareable cache operations
Bus Interface Configuration Shareable, Non Shareable(inner and Outer) Power domain control signals with / without L3
signals Memory
#12 |snoop/nosnoop cache BROADCASTCACHEMAINT When you set the BROADCASTINNER pin to 1 the inner shareability domain extends
BROADCASTOUTER beyond the Cortex-A53 processor and Inner Shareable snoop and maintenance operations
are broadcast externally. When you set the BROADCASTINNER pin to 0 the inner
BROADCASTINNER shareability domain does not extend beyond the Cortex-AS53 processor.
When you set the BROADCASTOUTER pin to 1 the outer shareability domain extends
beyond the Cortex-A53 processor and outer shareable snoop and maintenance operations
are broadcast externally. When you set the BROADCASTOUTER pin to O the outer
shareability domain does not extend beyond the Cortex-AS53 processor.
When you set the BROADCASTCACHEMAINT pin to 1 this indicates to the Cortex-AS3
processor that there are external downstream caches and maintenance operations are
broadcast externally. When you set the BROADCASTCACHEMAINT pin to O there are no
downstream caches external to the Cortex-A53 processor.

ARM provides assembly code instructions for executing PowerUp and PowerDown routines. The ARM Cortex A53
Processor/Cluster development environment supports multiple core states, including Ready(D3_Hot), Normal, Standby,
Retention, Dormant, Deep Sleep (D3_Cold), which can involve one, two, or even three-step state transitions. Power Up
and Power Down routines are called to operate on single or multiple cores and are implemented in both C Language and
assembly language. The action on the L1 & L2 caches will be dependent on the current state of the Core and to which state

it needs to go. For example, Normal to Standby or even from Retention to Off. The L1 may be PowerDown but the L2
may be still on and when the PowerDown sequence is initiated the memory needs to be retained in system memory.

To leverage and reuse the C code, these Power Down routines are imported into the low power UVM SV package
using Direct Programming Interface (DPI-C). This interface allows for the calling of C functions from SystemVerilog
using "DPI" declarations. By importing C code into the UVM SV package, it is possible to reuse existing code and take
advantage of the functions implemented in C to improve the efficiency and effectiveness of the verification process.

IV. PRE LIMINARY RESULTS AND SOURCE CODE

In sub-sections "A", "B", "C", and "D," we demonstrate our approach to utilizing ARM multi-Core L1 & L2 Power
Up and Power Down sequences for low power operations. We achieve this by using ASM and wrapping it within
SystemVerilog-based classes through DPI and C. Our routines utilize ARM Core Assembly language for PowerDown
and PowerUp of the core or multi-Core, along with its Low Power Management functions. These ARM multi-Core
functions are accessed using ASM within the ARM Development Environment, which includes the commented include
statement for "ARMvV6T2.h," that would be uncommented to run in the environment. We call ARM ASM code in C
functions, which are then utilized in SystemVerilog through DPI for extending classes in Low Power extension to UVM.

In summary, by transferring the L1 cache data to the L2 cache before powering off a core, the ARM Cortex A53
processor can save power while preserving the data and maintaining the overall performance of the processor. This
technique has been widely used in portable devices where battery life is a critical factor, such as smartphones, tablets,
and other 10T devices.

//FIRST SOURCE CODE {134 step
#include <stdio.h> #define CLEAN_INVALIDATE DCACHE_MACRD(op) ({\
#include <stdlib._h> asn("dnb ish"); [* ensure all prior inner-sharezble accesses have been observed®/\
Glpecluie Stdbooll.be asn("urs x@, CLIDR_ELL"); \
Hnelndls “swEpial asn("and w3, wd, $0x7000000"); /¥ zet 2 x level of coherence®/\
//#include<ARMvET2 . h> asn("lsr w3, w3, $3"); \
. gt (CLEAN_BY_SETWAY asn("chz w3, "dop" finished"); \
vpede enum _BY_ » " " % _
INVALTDATE BY SETUWAY, asm “mmr ul, #0°); 1118 = 2 x cache level*/\
CLEAN_INVALIDATE_BY_ SETWAY, asn("nov uB, 21); /* 8 = constant 0b1*/\
CLEAN_BY_VA_TO_POC, asn(#op" loop level:"); |
T asn("add w2, wld, wld, lsr £1%); [* calculate 3 x cache level*/\
Ycmo_type_e; - 2 :
asn("lsr i, uf, w2"); {* extract 3-bit cache type for this level*/\
typedef enum {wfi, not_of_wfi, asn("and wl, ul, Wﬁq\

wfe,not_of_ wfe,
standbywfi,not_of_standbywfi,

(*
(
(
(
(
(
("
(
(
asn("amp wl, #2°); \
standbywfe,not_of_standbywfe asn(*h.1t “fop” _next_level”);
(
(
(
(
(
(
(
(
(
(

* no data or unified cache at this level*/\
Ypower standby methods e; asn("wsr (SSELR_EL1, x16"); * select this cache level®/\
- asn("ish"); * gynchronize change of csselr?/\
7/1st step asn("mrs 1, (CSTOR_EL1"); * read cosidr®/\
void disable cache func() { asn("and w2, ul, §7); * 42 = log)(Linelen)-4%/\
asm volatile (asn("add w2, ul, #"); * 42 = log)(Tinelen)*/\

"mrs x®, SCTLR_EL3\n\t"
"bic x0®, x0, #{1 << 12)\n\t"

2

=

asn("ubfx wd, wl, 43, £18"); = max way number, right aligned®/\

e e e R M e e e e e

"bic x@, x@, #(1 << 2)\n\t" asn("clz 5, wd"); 45 = 3-log){ways), bit position of way in dc operand®/\
s SCETURELS, sEDWmWE™ asn("Is1 9, wd, w5"); W = mex way nusher, aligned to position in dc aperand®/\
):Sb asn("1s] wlh, ug, wo'); ulf = anount to decrement way number per iteration®/\

} asn(#op" Loop way:"); \

A. UVM Low power DPI package

This Assembly Code is being enveloped using DPI calls into SV package by declaring source file for SystemVerilog
package “uvm_Ip core pd pkg”. The C code shown in section A is being called inside “uvm_Ip_core_pd_pkg "~ package
using import “DPI-C” keyword. This helps to provide connectivity using ARM routines defined using C assembly
language in System Verilog.

//SECOND SOURCE CODE

“include

"arm_cortexa53_assembly code.c"

package uvm_1lp_core_pd_pkg;

typedef enum {CLEAN_BY_SETWAY,
INVALIDATE BY SETWAY,
CLEAN_TMVALIDATE_BY_ SETWAY,
CLEAN_BY WA _TO_POC,
CLEAN_BY_WA_TO_POU,
CLEAN_BY_WA_TO_POP,
INVALIDATE_BY_VA_TO_POC,
CLEAN_TNVALIDATE_BY_VA_TO_POC,
CACHE_ZERO_BY_VA,
INVALIDATE ALL TO POUIS,
INVALIDATE_ALL_TO_POU,

import "DPI-C" function
import "DPI-C" function
import "DPI-C" function
import "DPI-C" function
import "DPI-C" function
import "DPI-C" function
import "DPI-C" function

void core_status t();

void check L1data status();

void L2 cache operation();

void disable_cache func();

void clean_invalidate dcache func(cmo_type);
void cpu_extended_contrl reg func();

void barrier_func(barrier);

INVALIDATE_BY_VA_TO_POU
Yuvm_lp_core_cmo_type_e;

import "DPI-C" function void transition func(uf);

import "DPI-C" function void debug sig func(bit DBGPHRDUP);

import "DPI-C" function void activate output_clamp func(bit CLAMPCOREOUT);
import "DPT-C" function void cpu_processor power func(bit nCPUPORESET):

import "DPI-C" function void power domain_cpu_func(bit PDCRU);

typedef enumg {DMB,

DSB,

ISB
Juvm_lp_core_barrier_type_e;

typedef enum {
wfi,
not_of_ wfi,
wfe,
not_of_wfe,
standbywfi,
not_of_standbywfi,
standbywfe,
not_of_ standbywfe
Yuvm_1lp core_power_standby_ methods_e;

B. UVM Low power Scenario Package

The below uvm_power_pkg package includes SystemVerilog file which imports DPI functions mentioned in
uvm_Ip_core_pd_pkg package. Further the same class is being registered in UVM factory. It also includes the
members and methods which performed all the power related routines.

class core_status_for_L1 extends uvm_power;
L1_data_cache L1_dc;
J//THIRD SOURCE CODE power_state p_states;
“include "uvm_lp_core_pd_pkg_dpi_c.sv" virtual task core_status_t;
if(p_states = off)

package uvm_power_pkg; ¢display("turning off L1 data cache");

else
class uvm_power; $display("looks for next transaction for the core");
rand bit Wait_For_Interrupt; endclass
rand bit Wait_For_Event;
rand b?t Delay_tlme_for_poweerown; . virtual task check_Lldata_status;
rand bit Enable_wakeup_timer_interrupt_before_power_down; (L1 dc 1= @)
typedef enum {off,normal,standby,sleep,retention,dormant, 1 Sl it EramstErians & A L2 eacie s
deepsleep,ready,c@,cl,c2,c3,c4,c6,c7,c8}power_state; else $display("called the core routine"):
endtask

power_state state;
endclass

virtual function int powerup(state); class uvm_power_L2_RAM extend uvm_power;
- - = g bl

beg;gegstate) /{12 Cache Standby state
c®: begin rand bit STANDBYWFIL2;
$display("It is in active mode"); //Read no snoop control signal ARLOCKM=1(For ACE Interface)
end (Inner/outer shareable Cache) and FOR Load/store

cl: $display("Auto halt");
c2: $display("Temporary state");
c3: $display(" 11 and 12 caches will be flush");
cd: $display("CPU is in deep sleep™);
c6: $display("Saves the core state before shutting");
c7: $display("c6 + LLC may be flush");
c8: $display("c7+LLC may be flush");
endcase
end
endfunction

rand bit ARLOCKM;

//urite No snoop Control signal AWLOCKM= 1(For ACE Bus Interface transactions)
(Inner/Outer write through) for load/store

rand bit AWLOCKM;

virtual task L2_cache_operation;
if(STANDBYWFIL2 = 1'b1)
$display("asserted to indicate that the L2 memory system is idle")
$display("L2 will be able to access the data from other resources")
if(L2_received_data = L1_send_data)

virtual function sequential power_down_up_multi_core_f(); $display("checking the data natching status between L1 and 12°);

df ti
endfunction endtask

virtual function int power_up_another_core_+(); endclass

endfunction

C. Functional Description for Power Domains for PowerUp and Power Down

Referring to the architecture of ARM Cortex A53 using different power domains such as PDCORTEXA53, PDCPU,
PDL1, PDLZ2, etc. are considered and their relevant power routines functions are being called through UVM as shown in
below source code.

In the sample test case, the user can utilize the library packageat different levels. Class and Functions described in section
A, B and C are being called in uvm_power_multicore class

import uvm_lp_core_pd_pkg::*; class uvm_power_multicore_L2_cache extends uvm_power_core;
//ARM power domain L2 signals

class uvm_power_multicore extends uvm_power_core;

typedef struct { struct PDLZ_%{
bit [3:8]NO_OF_CORES; rand bit ON;
bit [3:@]NO_OF CORES IN CLUSTER; rand bit RET;

bit [3:@0]NO_OF_CLUSTER;

bit [3:@0]NO_OF_CORES_IN_PROC; rand bit OFF;

Imulti_core; rand bit nL2RESET;
rand bit rL2FLUSHREQ;
virtual task core_power_down; rand bit L2FLUSHREQ;
begin . J_
uvm_lp_disable_cache_core(); rand b}t L2FLUSHDONE;
uvm_lp_clean_invalidate_dcache_core(); rand bit L2RSTDISABLE;
uvm_lp cpu extended control reg core(); }
uvm_lp barrier core(); }

uvm_lp_transition_core();
uvm_lp_debug_sig core();
uvm_lp_activate_output_clamp_core();
uvm_lp_cpu_processor_power_core();
uvm_1lp_power_domain_cpu_core();
end
endtask
endclass

This class shall be registered in UVM factory of low power package. The full implementation needs to be done in an ARM
environment in close collaboration and cooperation from ARM in the ARM Cortex Development environment. So, that
would permit us to PowerUp and PowerDown L1 & L2 Cache. In this paper, the outputs are being observed using $display
and C printf (using DPI-C) to check the results. Further, the assembler code which is essential for testing will run on ARM
Development Environment.

V. CONCLUSION

In conclusion, the paper proposed the use of ARM ASM Environment for designing Low Power routines for multi-Core as
a case study, which can also be applied to other multi-Cores like Intel or ARC. The paper suggests that routines can be
built for Bus Interface signals, needs to be written, as the need for smaller and low power designs increase. The paper
emphasizes the importance of implementing power architecture strategy and verification as an integral part of the design
process, rather than an afterthought post-functional verification, to avoid unwanted re-spins that can be detrimental to costs
and time-to-market guidelines. The paper concludes by recommending that low power classes for multi-Core should be
available in the low power extension of UVM Libraries to enable SOC designs to have a UVM-like verification test bench.

V1. REFERENCES

[1] UVM Community (accellera.org)https://accellera.org/community/uvm.
[2] Guide to change in IEEE1801-2013(UPF2.1)(techdesignforums.com)
[3] Arm Cortex-A53 MPCore Processor Technical Reference Manual rOp4

[4] Verification Methodology Manual for Low Power https://www.synopsys.com/company/resources/synopsys press/vmm-low-power.html

[5] Low Power Classes as extension to UVM Package Library by Shikhadevi Katheriya, Avnita Pal, et al, 59th Design Automation Conference, San
Francisco, United States

[6] Leveraging UVM-based Low Power Package Library to SOC Designs
Shikhadevi Katheriya, Silicon Interfaces; Avnita Pal, Silicon Interfaces; Sastry Puranapanda, Silicon Interfacs

https://developer.arm.com/documentation/ddi0500/latest/
https://www.synopsys.com/company/resources/synopsys%20press/vmm-low-power.html
https://www.synopsys.com/company/resources/synopsys%20press/vmm-low-power.html

