
Architectures to tradeoff performance vs debug
for software development on emulation platforms

Loganath Ramachandran, Ph.D,
Verikwest Systems Inc

Ragavendar Swamisai,
Belmont Computing Inc

Prof. Makato Ikeda, Ph.D
University of Tokyo, Japan

Belmont
Computing

Agenda
• Brief description of SOC
• Early software development requirements
• Emulation use models
• Our solution

• Debug focused architectures
• Performance focused architecture

• Implementation ideas on the Palladium engine
• Results

A typical SOC (Athos)

• RISC-V-based SOC platform using the Ibex core
• Easily expandable architecture
• Implemented entirely in System Verilog
• Designed for emulation and rapid prototyping
• Complete software stack (based on C code)
• RISC-V compatible debug components
• Flexible memory architecture

• 512kB Flash
• 64kB SRAM for data
• 8kB ROM for boot

Main Bus (Tilelink)

Peripheral Bus (Tilelink)

RVCORE DebugMgr

dbg_mem RAM eflash flash_ctrl PLIC

UART GPIO rv_timer pwrmgr rstmgr clkmgr AONTimer sysrst_ctl

rom_ctrl

Verification Layer

Main Bus (Tilelink)

Peripheral Bus (Tilelink)

RVCORE DebugMgr

dbg_mem RAM eflash flash_ctrl PLIC

UART GPIO rv_timer pwrmgr rstmgr clkmgr AONTimer sysrst_ctl

rom_ctrl

Backdoor
Loader

Backdoor
Loader

gpiodpiuartdpi

dmidpi

• Backdoor interfaces for ROM and
Flash

• Backdoor interfaces to SW
programmable registers

• Virtual I/O blocks for peripherals
• Source code debug interface with

OpenOCD.

Verification Layer

uartdpi
gpiodpi
dmidpi

• Manages the signals being driven to the SOC

• Uses DPI functions to read/write the SOC
primary inputs/outputs

• Drives as per the protocol requirements

• Captures the signals being driven out of the SOC

• Decodes signals as per protocol requirements

• Outputs data to a unix file or terminal

• Manages backdoor loading of ROM

• Manages backdoor loading of FlashRAM

Code is not synthesizeable and is based on DPI.

Early software development

SoC Hardware

Hardware Abstraction layer
(device driver APIs)

RunTime Libraries (log, printf)

Test Harness

User code
(application)

IP

Sub-system

Boot Code

IP/Subsystem
verification

Early SW
development

Pre-Silicon Post silicon

SW
development

on chip

Shift Left
Enable Early SW Dev Enable easy debug

• Develop SW concurrently with HW and integrate HW/SW as early as possible.
• Regression testing of multiple complex scenarios involving bare-metal, device interface, firmware and user

level software.
• Allows continuous software development before silicon is back.

Pre-Silicon Post silicon

But… the big question!

Commercial
Emulators

ISS

Hardware
Prototypes

Hybrid
Emulation

Virtual
Prototypes

Platform ?

Software models

Hardware models

Custom
Emulators

RTL
Simulation

ASIC
Hardware

Early SW development requirements
• Support for debug

• Chase problems through both software and hardware to identify root causes.
• Reduce turn-around-time for debug and fixing SW/HW

• Very high performance
• As close to real-world as possible
• Needed to bringup the complete software stack

• Additional effort to enable the platform (NRE)
• Ability to quickly bring-up HW on emulators
• Enable SW users to quickly change their SW and bring-up on the platform
• Enable easy change of HW in case issues are found and fixed in H/W

• Shift Left strategy feasibility
• How early can we start?

Emulator is a viable SW dev platform

• Performance – not the best but fast enough for developing software
• Shift Left - can be brought up as soon as RTL reaches a level of maturity
• Mature build flows - compiling -> download image -> run -> debug
• Debuggability - well developed debug solutions for both HW/SW
• Deployablility– remote interactive usage
• Scalability – support multiple users on a single emulator
• IP protection – HW is synthesized to bitstream, SW is compiled to object code
• Collaboration - HW & SW teams working in parallel
• Productivity - SW users use their own dev environment to develop SW

Our solution can be implemented on any emulation platform
But we show the implementation on the Palladium

Emulation Use Models

Transaction Based
Acceleration

Signal Based
Acceleration

ICE

Debug/Visibility

1x

Pe
rfo

rm
an

ce

10x

100x

10,000x

1000x Virtual ICE

Frame based
Acceleration

Our solution

Transaction Based
Acceleration

Signal Based
Acceleration

ICE

Debug/Visibility

1x

Pe
rfo

rm
an

ce

10x

100x

10,000x

1000x Virtual ICE

Frame based
Acceleration

Ideal
Architect

ure

Performance
Focused

Debug
Focused

Design requirements
• Users should be able to switch between these two architectures seamlessly
• Reduce implementation cost of solution

• Share as much code as possible
• Underlying RTL has to be the same in both architectures

• Build the solution on top of existing emulator capabilities
• E.g, ixclkgen based on Palladium “cake” technology

• RTL bugs found in one should be easily reproducible in the other
• Use the same RTL between both platforms.

• Underlying software code has to be the same for both arch
• Common compile and run of the SOC software

• “Testbench” architecture will differ but minimize the differences

Debug Focused Implementation Performance Focused Implementation
Cycle Accurate sync between TB and Design Transaction accurate sync between TB and design

Single common clock design between TB and design Separate clocks between TB and design

Ability to reuse common debug/monitor components Implement transactors to support debug/monitors

Performance 10-100 Khz Performance 100 Khz - 10 Mhz

Tracer to trace each retired instruction Transaction buffer required to hold symbols

Support for software debugger to set breakpoints

Signal based Virtual components Transaction based Virtual components

Features

Common RTL
Common software compilation flow

Palladium

TCL – Simulation control

Debug Focused Architecture
Simulation

Ibex
Tracer

Debug
Interface

Clock/Rst
Generator

Backdoor
Loader

Force signal
values

End of Test
detector

GPIO
Interface

UART
Interface

RISC-V Tracer

Simulation

Ibex
Tracer

RISCV

RV
FI

 In
ter

fac
e • Enables easy debug of software execution

• Uses RVFI interface on Ibex
• Signals are transferred using SBA
• Tracer receives retired instructions
• Prints out instruction information

554500 525 000080f0 08458593 addi x11,x11,132 x11:0x00008000 x11=0x00008084
555500 526 000080f4 00052283 lw x5,0(x10) x10:0x00008080 x5=0x0040006f PA:0x00008080 store:0x00000000
556500 527 000080f8 0509 c.addi x10,2 x10:0x00008080 x10=0x00008082
557500 528 000080fa feb56de3 bltu x10,x11,80f4 x10:0x00008082 x11:0x00008084 x0=0x00000000
561500 532 000080f4 00052283 lw x5,0(x10) x10:0x00008082 x5=0x40810040 PA:0x00008082 store:0x00000000
562500 533 000080f8 0509 c.addi x10,2 x10:0x00008082 x10=0x00008084
563500 534 000080fa feb56de3 bltu x10,x11,80f4 x10:0x00008084 x11:0x00008084 x0=0x00000000
564500 535 000080fe 80818513 addi x10,x3,-2040 x3:0x10000800 x10=0x10000008
565500 536 00008102 81018593 addi x11,x3,-2032 x3:0x10000800 x11=0x10000010

Debug Interface

• Interfaces to the RV_DM component
• Interfaces to the debugger using DMIDPI component
• Uses valid-ready interface to RV_DM
• Compatible with RISC-V Debug specification

Simulation

Debug
Manager

(DPI)
RV_DM

RV
De

bu
g

Int
er

fac
e

Open
OCD

DFA uses “run” mode

§ HW-SW sync happens when
§ TB delay
§ DUT delay
§ All clock edges, even if generated in HW

§ Hardware stops at every software delay event for synchronization.
§ Number of syncs very high as expected

xmsim> xc xt0 zt0 on -run
xmsim> run

Palladium

Performance Focused Architecture
Simulation

Clock/Rst
Generator

Transaction
Buffer

Virtual
GPIO

Virtual
UART

Batch
Send

Simulation Control (TCL) Backdoor
Loader

Force signal
values

End of Test
detector

High performance virtual components
Simulation

Virtual
GPIO

Virtual
UART

Batch
Rcv

Batch
Rcv

• Receives transactions from DUT
• Batch mode

• Virtual UART (receive only)
• Decodes UART transactions
• Uses uartdpi to print log

• Virtual GPIO (receive only)
• Decodes GPIO transactions
• Uses gpiodpi to print log

Backdoor Loading
• Using xe_run.tcl

• memory –load %readmemh
• Works in both modes

• Path is different

memory -load %readmemh <hierarchical_path – file <filename>memory -load %readmemh <hierarchical_path> -file <filename>
-start <locn> -end <locn>

Debugging on the Palladium
• Waveforms can be dumped, but ….

• Waves are great for HW engineers … but not suitable for SW debug
• Waveforms of all nodes for large multi-day workloads is too much data
• Reduced emulation speed and performance while dumping waves
• Long process to identify scope of the issue

• Dumped waves but miss the failure point
• Schedule more emulation time to run again to narrow the scope of issue

• SDL mechanism available for monitoring, but ….
• Pure TCL functions that run in the background periodically (as fast as 2 ms) and execute commands.
• Each monitor can optionally log output to a file
• Possible to miss some events if polling too slow.
• Performance can be degraded if not used appropriately by users.

PFA uses native clock generation
Clkgen.qel ixclkgen clk_module.v

clockSource -add clk_i
clockOption -add {technology CAKE 1}
clockFrequency -add {clk_i 1Mhz}

`timescale 100 ns / 100 ns
`define IXCclkgenTs 100 ns / 100 ns

module clk_gen(output wire clk_i_0);

`ifdef IXCOM_COMPILE
initial $ixc_ctrl("map_delays");
initial $ixc_ctrl("hotswap_top");

`endif

// Generate logic for clock sources
ixc_master_clock #(5) ixcg_0(clk_i_0);

// Bind clock sources to generated clock signal
ixc_cakebind ixcb_0 (clk_i, clk_i_0);
…………

Optimizing the tbsyncs
Experiment DUT Speed Tbsyncs # TBCalls # HW-EMU busy %

TBRUN mode with ALL SDLs to dump trace, uart and other debug info 26.92 KHz 900700 0 1.05 sec (1.04%)

TBRUN without SDL 54.97 KHz 900700 0 1.05 sec (2.13%)

NBRun with ALL SDLs to dump trace, uart and other debug info 68.34 KHz 1946 0 2.75 %, 5.93 sec

NBRun with SDL to dump trace info 2236.76 KHz 29 0 86.82 %, 11.44 sec

NBRun without any SDL & waves download 2575.96 KHz 4 0 99.92 %, 113.54 sec

PFA uses asynchronous run mode

• Both software and hardware domains advance the time
concurrently instead of alternately.

• Timestamps in the software testbench and hardware DUT
are not synchronized.

• Hardware stops only when the hardware needs service or
when the software has to send some data to the hardware.

xmsim> xc xt0 zt0 on –nbrun 100ns
xmsim> run

Results
• Coremark was compiled and run on both architectures

Architecture DUT speed #Tbsyncs HW Busy %

DFA 26.92 kHz 900700 1.04%

PFA (with dumping enabled) 2236.76 kHz 29 86.82

Summary
• Plethora of choices available for early sw development platform

for SOC
• Emulators can become a platform of choice
• Implemented two architectures on the Palladium

• Performance Based
• Debug Based

• Enabled switchability by maximal reuse of code/components
• Demonstrated our method on a RISC-V SOC

And finally ..

Page 27

