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Floating point matrix multiply accumulate

Imagine how many operations you require to calculate the following 

• Each number is floating point operand
• Simulation methods would take months to start finding bugs 
• Exhaustive check for interesting cases and different types of operands / operations is a 

must
• FPU app includes IEEE 754 floating point building blocks : 

• ADD, SUB, MUL operations and Conversions, and taking in consideration different 
rounding modes
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Single function calculation

• Each element of the resulting matrix is calculated as follows 
• R[i] =  ACC[i]  +  Row Matrix X * Column Matrix Y 

• This is a Vector Fuse Multiply and Accumulate operation, which requires to be populated with the 
relevant Row and Column elements of the Matrixes

• We’ve built a new VFMA operation as follows 
VFMA = ACC + X0∗Y0 + X1∗Y1 + X2∗Y2 + X3∗Y3 + X4∗Y4 + X5∗Y5 + X6∗Y6 + X7∗Y7

• Becomes a basic building block to check each result 
• Support different floating-point types  



Floating-Point Unit (FPU) app

• Challenges:
• Floating-point essential for advanced artificial 

intelligence (AI) applications such as deep learning

• Complex IEEE 754 floating-point specification
• Arithmetic and comparison operations
• Bfloat16, half, single, and double precision
• Five rounding modes
• Five exception flags

• Simulation cannot guarantee standard has been 
met

• Only a formal App can prove compliance

• Formally verifying compliance to the IEEE 754 standard

OneSpin Solution:
• Compliance rules captured using standard SystemVerilog 

Assertions (SVA)

• Supports all operands, rounding modes, and exception flags

• Highly automated formal proof strategies

• Parallel proof engines with network and cloud distribution

• Floating point value view of operands for debugging

• Integrates with RISC-V F/D extensions



OneSpin 360 FPU verification app
Accelerate verification, prove correctness

FPU APP

HIGH-LEVEL DEBUG

App Configuration
• Precision
• Rounding Mode
• Latency
• Customization

FPU
(RTL)

Verification
Signoff

COVERAGE METRICS

IEEE 754 SVA MODEL

PROOF OPTIMIZATION

Quick Bug Fix Iterations • Easy to setup
• Supports half/single/double bfloat16 and 

custom precisions
• Supports 10 rounding modes and 5 

exceptions flags
• add, sub, mul, fma, abs, neg
• Conversion and comparison operations
• Parameters to specify ambiguities in the 

standard
• RISC-V configuration
• No need for C++ model of the FPU
• Easy to model intended deviations from the 

IEEE-754 standard
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Matrix Multiplication

Example 

In order to calculate Element 10 of the Matrix: 

R10 =  ACC10 +  X8*Y2 + X9*Y10 + X10*Y18 + X11*Y26 + X12*Y34 +  X13*Y42 + X14*Y50 + 
X15*Y58
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Use case

Template Based
Simplify property writing 
Reduces debug time
Enables fast transfer of 
fails to RnD for further 
debug and fixes 

created a procedure to 
download  fail vectors

property check_op (input integer k) ;
ieee_t local_prod ;
ieee_t local_acc  ;
ieee_t expected   ;
##0 operation = MAC 
##1 (1, local_prod = prod [k])
##1 (1, local_acc  = acc[k] )
##1 (1,expected = vfma (.op(local_acc), .prod(local_prod), .rm(roundmode) )
##X operation = NOP
|-> 
ieee_check_result (.expected(expected), .actual (design_result_with_flags)  );

endproperty

genvar element,i
generate 
for (element =0 ; element < 16 ; element++)

for(i=0;i<8;i=i+1) begin:
prod[element][2*i]   = MX[element/8*8+i];
prod[element][2*i+1] = MY[element%8+i*8];
acc[element] = design_acc_vector[32*(i+1):32*i];

end
asrt_element : assert property check_op (element);

endgenerate

Property Template

User Data



Debugging fails

• IEEE 754 annotations
• on code and waveform
• Traceability (drivers and loads)
• Property Debugger shows fails
• Active code marking 



Results 

Found an error when having a small accumulator exponent and large product exponent but zeros on mantissa 

• We’ve  implemented several operations reusing the same function 
i.e.  NEG  - Negate the accumulator with no matrix multiplication 

neg = vfma(.op(acc) , .prod (‘0) , .rm(roundmode) ) ;

MUL- Only calculate the product, ignore the accumulator 
mul = vfma(.op(‘0), .prod(prod) , .rm(roundmode) ) ;

• Were able to fully prove Addition, Negation and other operations 
• Full proof on restriction of the multiplication having either all zeros or special numbers (i.e NaN etc) 
• Full proof for 2 multiplications being non zero and all other zero’s

Prevented a bug escape ! 



Runtime Results

Operation Unrestricted
Before fix

Has special 
numbers 
(NaN or Inf) 

Unrestricted
After fix

Restricted 1 
multiplication
After fix

Restricted 2 
multiplications
After fix

VADD/VSUB/VNEG No fails 20 sec 20sec

VMUL (Accumulator is 
zero)

1 min 4min Hold bounded 10min  for full 
prove

4h for full prove

VFMA 1 min 4min Hold bounded 9h for full prove Hold bounded

Results per lane, before and after fixes 



Summary

• FPU operations are tedious and difficult to verify using simulation

• Bugs are on corner cases 

• Questa OneSpin FPU app has the building blocks to construct simple readable 

properties 

• Provers and disprovers performance enables bug finding in minutes 

• Full proof is possible on restricted cases 

• Bounded proof is available for all cases 
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