
A streamlined approach to validate
FP matrix multiplication with formal

Gerardo Nahum, Siemens EDA
Nicolae Tusinschi, Siemens EDA
Seiya Nakagawa, Siemens EDA

Floating point matrix multiply accumulate

Imagine how many operations you require to calculate the following

• Each number is floating point operand
• Simulation methods would take months to start finding bugs
• Exhaustive check for interesting cases and different types of operands / operations is a

must
• FPU app includes IEEE 754 floating point building blocks :

• ADD, SUB, MUL operations and Conversions, and taking in consideration different
rounding modes

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Single function calculation

• Each element of the resulting matrix is calculated as follows
• R[i] = ACC[i] + Row Matrix X * Column Matrix Y

• This is a Vector Fuse Multiply and Accumulate operation, which requires to be populated with the
relevant Row and Column elements of the Matrixes

• We’ve built a new VFMA operation as follows
VFMA = ACC + X0∗Y0 + X1∗Y1 + X2∗Y2 + X3∗Y3 + X4∗Y4 + X5∗Y5 + X6∗Y6 + X7∗Y7

• Becomes a basic building block to check each result
• Support different floating-point types

Floating-Point Unit (FPU) app

• Challenges:
• Floating-point essential for advanced artificial

intelligence (AI) applications such as deep learning

• Complex IEEE 754 floating-point specification
• Arithmetic and comparison operations
• Bfloat16, half, single, and double precision
• Five rounding modes
• Five exception flags

• Simulation cannot guarantee standard has been
met

• Only a formal App can prove compliance

• Formally verifying compliance to the IEEE 754 standard

OneSpin Solution:
• Compliance rules captured using standard SystemVerilog

Assertions (SVA)

• Supports all operands, rounding modes, and exception flags

• Highly automated formal proof strategies

• Parallel proof engines with network and cloud distribution

• Floating point value view of operands for debugging

• Integrates with RISC-V F/D extensions

OneSpin 360 FPU verification app
Accelerate verification, prove correctness

FPU APP

HIGH-LEVEL DEBUG

App Configuration
• Precision
• Rounding Mode
• Latency
• Customization

FPU
(RTL)

Verification
Signoff

COVERAGE METRICS

IEEE 754 SVA MODEL

PROOF OPTIMIZATION

Quick Bug Fix Iterations • Easy to setup
• Supports half/single/double bfloat16 and

custom precisions
• Supports 10 rounding modes and 5

exceptions flags
• add, sub, mul, fma, abs, neg
• Conversion and comparison operations
• Parameters to specify ambiguities in the

standard
• RISC-V configuration
• No need for C++ model of the FPU
• Easy to model intended deviations from the

IEEE-754 standard

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

1
6

17 18 19 20 21 22 23

2
4

25 26 27 28 29 30 31

Matrix Multiplication

Example

In order to calculate Element 10 of the Matrix:

R10 = ACC10 + X8*Y2 + X9*Y10 + X10*Y18 + X11*Y26 + X12*Y34 + X13*Y42 + X14*Y50 +
X15*Y58

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Use case

Template Based
Simplify property writing
Reduces debug time
Enables fast transfer of
fails to RnD for further
debug and fixes

created a procedure to
download fail vectors

property check_op (input integer k) ;
ieee_t local_prod ;
ieee_t local_acc ;
ieee_t expected ;
##0 operation = MAC
##1 (1, local_prod = prod [k])
##1 (1, local_acc = acc[k])
##1 (1,expected = vfma (.op(local_acc), .prod(local_prod), .rm(roundmode))
##X operation = NOP
|->
ieee_check_result (.expected(expected), .actual (design_result_with_flags));

endproperty

genvar element,i
generate
for (element =0 ; element < 16 ; element++)

for(i=0;i<8;i=i+1) begin:
prod[element][2*i] = MX[element/8*8+i];
prod[element][2*i+1] = MY[element%8+i*8];
acc[element] = design_acc_vector[32*(i+1):32*i];

end
asrt_element : assert property check_op (element);

endgenerate

Property Template

User Data

Debugging fails

• IEEE 754 annotations
• on code and waveform
• Traceability (drivers and loads)
• Property Debugger shows fails
• Active code marking

Results

Found an error when having a small accumulator exponent and large product exponent but zeros on mantissa

• We’ve implemented several operations reusing the same function
i.e. NEG - Negate the accumulator with no matrix multiplication

neg = vfma(.op(acc) , .prod (‘0) , .rm(roundmode)) ;

MUL- Only calculate the product, ignore the accumulator
mul = vfma(.op(‘0), .prod(prod) , .rm(roundmode)) ;

• Were able to fully prove Addition, Negation and other operations
• Full proof on restriction of the multiplication having either all zeros or special numbers (i.e NaN etc)
• Full proof for 2 multiplications being non zero and all other zero’s

Prevented a bug escape !

Runtime Results

Operation Unrestricted
Before fix

Has special
numbers
(NaN or Inf)

Unrestricted
After fix

Restricted 1
multiplication
After fix

Restricted 2
multiplications
After fix

VADD/VSUB/VNEG No fails 20 sec 20sec

VMUL (Accumulator is
zero)

1 min 4min Hold bounded 10min for full
prove

4h for full prove

VFMA 1 min 4min Hold bounded 9h for full prove Hold bounded

Results per lane, before and after fixes

Summary

• FPU operations are tedious and difficult to verify using simulation

• Bugs are on corner cases

• Questa OneSpin FPU app has the building blocks to construct simple readable

properties

• Provers and disprovers performance enables bug finding in minutes

• Full proof is possible on restricted cases

• Bounded proof is available for all cases

	A streamlined approach to validate �FP matrix multiplication with formal
	Floating point matrix multiply accumulate
	Single function calculation
	Floating-Point Unit (FPU) app
	OneSpin 360 FPU verification app
	Matrix Multiplication
	Use case
	Debugging fails
	Results
	Runtime Results
	Summary

