
How to overcome the hurdle of
customizing RISC-V with formal

Pascal Gouédo, Dolphin Design
Seiya Nakagawa, Siemens EDA
Nicolae Tusinschi, Siemens EDA

Salaheddin Hetalani, Siemens EDA

QOS* Processor introduction
Questa OneSpin Solutions

Challenges of processor verification
ISA, architecture and specification verification deliver cores with integrity

Complex architecture

Very complex µArchitecture

Verification – high effort task

• (Custom) extensions
• Exceptions/ Interrupts

• Continuous PPA optimizations
• Pipelined implementation

• Writing functional coverage model
• Simulation cannot hit all pipeline corner-cases
• Slow debug process
• Functional and structural coverage closure
• Customization introduces bugs in existing functionality

Core

Ultimate freedom of RISC-V

RISC-V

A

E

I

N

V

B

J

P

X

C

GL Q D
M

T

Zicsr

Zicntr

Zifencei
Zam

Zihpm

Zmmul

Ztso

Zfh

Zfhmin

Zfinx

Zdinx
Zhinx

Zhinxmin
Zba

Zbb

Zbc

Zbs

Zawrs

ZihintpauseH

F

Zknh

Zbkx

Zksed

Zksh

Zkr

Zkt

Zkne

Zbkb

Zkn

Zk

Zknd

Zbkc

Zks Zcf

Zca

Zce

Zcb

Zcmp

Zcmt

Svnapot

Smepmp

Zicbom

Sv32

Sdext

Svpbmt

Smstateen

Zicboz
Sv39

Sdtrig

Svinval

Zicbop

Sscofpmf

Sstc

Sv57

Sv48

Zcd

QOS Processor
Accelerate, automate and increase quality of processor verification

Verification
Speed-up
• No writing of testbench
• Find RTL issues earlier than in

UVM flow
• Accelerate coverage closure
• Optimized formal engines
• Pinpoint bugs systematically
• Quick fix check

High degree of
automation
• No writing of functional coverage

model
• Designed for custom extensions
• µArchitecture extraction
• Assertion generation
• Initial value abstraction
• Disassembler annotation
• Trace analysis

Exhaustive & complete
verification
• No undocumented RTL
• 100% functional coverage
• Unbounded proofs
• Finds bugs other technologies can’t
• Essential for state-of-the art

processor DV
• ISA & privileged ISA compliance

~20 years
of cutting-edge

formal processor verification
solutions

Siemens EDA’s Industry proven solutions

Complete Formal Verification
of TriCore2 and Other Processors

The content of this article was
presented at DVCon 2007 and is

posted with DVCon’s permission.

Formal Verification Applied to the Renesas
MCU Design Platform

Complete Formal Verification
of a Family of Automotive DSPs

Complete Formal Verification of RISC-V
Processor IPs for Trojan-Free Trusted ICs

How the Right Mindset Increases
Quality in RISC-V Verification

QOS Processor application results

23 bugs

Application example
CV32E40Pv1

Design specification
• 4-stage single-issue in-order pipeline
• OBI protocol memory interfaces
• Standard external debug and interrupt support
• Partial support for privileged spec 1.10

• User Mode & physical memory protection

Selection of issues reported
• #132 Fetch side exception influences earlier instruction
• #136 Missed illegal exceptions
• #159 Wrong PMP computation
• #185 Exceptions update CSRs while in debug mode
• #533 Illegal instruction retires

RV32IMC_Zicsr_Zifencei

32-bit CV32E40Pv1 (RI5CY)

Standard CSRs21Standard extensions5
Standard instructions84

Application example
CV32E40Pv2

Design specification

• + Floating point & X custom instruction set extensions
• Post-incrementing load & store
• ALU & Multiply accumulate
• Single instruction multiple data (SIMD)
• Hardware loops (zero-cycle branch)

Selection of issues reported
• #722 Wrong instruction fetch caused by multicycle F instructions
• #723 Misaligned memory instructions set wrong memory access
• #725 No illegal instruction exception raised for non-Zfinx instructions
• #729 FMUL.S sets underflow flag of fflags wrongly
• #731 Custom Xpulp memory instructions set extra memory access
• #742 Simultaneous register file update by custom instructions

Standard extensions+2
Custom extensions+2

+8 Custom CSRs

+320 Custom instructions

RV32IMFC_Zicsr_Zifencei_Zfinx_Xpulp_Xcluster

32-bit CV32E40Pv2

CVFPU

31 bugs

X-extension verification effort is down to adding its specification

• Example instruction: Sum of dot product on 2 vectors of four unsigned 8-b data

cv.sdotup.b rd, rs1, rs2

rd = rd +
∑!"#$ 𝑟𝑠1 8 ∗ 𝑘 + 1 − 1: 8 ∗ 𝑘 ∗ 𝑟𝑠2 8 ∗ 𝑘 + 1 − 1: 8 ∗ 𝑘

• User required input: provided using app’s JSON format for regression runs

1001100 src2 src1 001 dest 11 110 11 custom-3

31 25 24 2019 15 14 1211 76 0
funct7 rs2 rs1 funct3 rd opcode

Name Decoding Execution Restrictions

CV.SDOTUP.B 1001100 rs2 rs1 001 rd/rs3 1111011 X(rd) = X(rs3) +
X(rs1)[7..0] * X(rs2)[7..0] +
X(rs1)[15..8] * X(rs2)[15..8] +
X(rs1)[23..16] * X(rs2)[23..16] +
X(rs1)[31..24] * X(rs2)[31..24]

CV32E40Pv2

CVFPU

Application example
CV32E40Pv2

Standard extensions+2
Custom extensions+2

+8 Custom CSRs

+320 Custom instructions

RV32IMFC_Zicsr_Zifencei_Zfinx_Xpulp_Xcluster

32-bit CV32E40Pv2

5
Configurations

~400
Assertions per CFG

~2 hour
Runtime of 70% of
assertions per CFG

100%
Unbounded Proofs

31 bugs

Bug case study

•

CSRRSI x0, mie, 8ID

EX

MEM

WB

CSRRSI x0, mie, 8

CSRRSI x0, mstatus, 8

CSRRSI x0, mie, 8

CSRRSI x0, mie, 8

CSRRSI x0, mstatus, 8

CSRRSI x0, mstatus, 8

Unknown

CSRRSI x0, mstatus, 8

CSRRC x1, mstatus, x0

CSRRC x1, mstatus, x0

CSRRC x1, mstatus, x0

Trace just enables
interrupts

Likely related to illegal opcode at
time of interrupt entry

Interrupt

Unknown Interrupt

Unknown Interrupt

Unknown Interrupt

Verified instruction

Unexpected illegal exception

Right after
taken interrupt

CSRRC x1, mstatus, x0

Time

CV32E40Pv1

5 min

Bug case study

•

ID

EX

MEM

WB

Time

FDIV.S x16, x23, x0, DYN CV.ROR x1, x0, x4 CV.LH.RI x4, x26(x4!)

FDIV.S x16, x23, x0, DYN CV.ROR x1, x0, x4 CV.LH.RI x4, x26(x4!)

FDIV.S x16, x23, x0, DYN CV.ROR x1, x0, x4 CV.LH.RI x4, x26(x4!)

FDIV.S x16, x23, x0, DYNCV.ROR x1, x0, x4 CV.LH.RI x4, x26(x4!)
CV.ROR update

Multicycle FDIV.S update

CV.LH.RI {rd},{rs2}({rs1}!)

X(rs1) += X(rs2)
X(rd) = EXTS(mem16(X(rs1)))

Execution
X4: Updated first via ALU port

X4: Updated later via LSU port

Verified instruction

Disassembly

CV.LH.RI x4, x26(x4!)

X4 is updated simultaneously via
the two ports

Delayed X(rs1) update via ALU port
wrongly takes priority

CV32E40Pv2

31 sec

QOS Processor flow

Assertion
Generation

Coverage
Analysis

Property
Retuning

Post-Analysis
Configuration

Assertion
Running

Design
Analysis

App flow

Design
Setup

Core
RTL

Extract
ISA

Generate
assertions

Coverage
database

Verification
database

Core details

[µ]Architecture
database

Custom
extensions

Run
assertions

Sign off

Analyze
trace

App GUI

Core
RTL

Design
Setup

Design ISA
information

Design
µ-Architecture

information

Processor
apps

Automated design analysis

Extract
ISA

Design
Analysis

Post-analysis configuration

Core details

[µ]Architecture
database

Post-Analysis
Configuration

Custom
extensions

App assertions

Assertion
Running

Run
assertions

Sign off

Analyze
trace

RV32IMC
_Zicsr
_Zifencei

27
Assertions

Application example
CV32E40Pv2

Design specification

• + Floating point & X custom instruction set extensions
• Post-incrementing load & store
• ALU & Multiply accumulate
• Single instruction multiple data (SIMD)
• Hardware loops (zero-cycle branch)

Selection of issues reported
• #722 Wrong instruction fetch caused by multicycle F instructions
• #723 Misaligned memory instructions set wrong memory access
• #725 No illegal instruction exception raised for non-Zfinx instructions
• #729 FMUL.S sets underflow flag of fflags wrongly
• #731 Custom Xpulp memory instructions set extra memory access
• #742 Simultaneous register file update by custom instructions

Standard extensions+2
Custom extensions+2

+8 Custom CSRs

+320 Custom instructions

RV32IMFC_Zicsr_Zifencei_Zfinx_Xpulp_Xcluster

32-bit CV32E40Pv2

CVFPU

31 bugs

Summary

Assertion
Generation

Assertion
Running

Coverage
Analysis

Post-Analysis
Configuration

Design Analysis

Design
Setup

Property
Retuning

Core
RTL

Extract
ISA

[µ]Architecture
database

Generate
assertions

Verification
database

Run
assertions

Coverage
database

Core
details

Sign off

Custom
extensions

Analyze
trace

Over 10x improvement
On verification setup and runtime

High degree of automation
Designed to easily verify custom RISC-V cores

Exhaustive & complete verification
Leaves no bugs and exposes vulnerabilities

Superior & unique
Unrivalled expertise & leverage unique solutions

Enabling high-quality processors
Siemens EDA supports the RISC-V community

QOS Processor verification
• Core verification
• Integration verification

Industry involvement

User community Commercial solution adoption

Technology

RISC-V International
OpenHW Group
Scale4Edge project

Disclaimer

• © Siemens 2024

• Subject to changes and errors. The information given in this document only contains general descriptions
and/or performance features which may not always specifically reflect those described, or which may
undergo modification in the course of further development of the products. The requested performance
features are binding only when they are expressly agreed upon in the concluded contract.

• All product designations may be trademarks or other rights of Siemens AG, its affiliated companies or other
companies whose use by third parties for their own purposes could violate the rights of the respective owner.

Contact
Published by Siemens EDA
Seiya Nakagawa
Application Engineer

20F Gotenyama Trust Tower

7-35, Kita-Shinagawa 4-chome, Shinagawa-ku,

Tokyo 140-0001, Japan

E-mail seiya.nakagawa@siemens.com

